3 General forced response

» So far, all of the driving forces have been sine or cosine
excitations

* In this chapter we examine the response to any form of
excitation such as

— Impulse
— Sums of sines and cosines

—Any integrable function



Linear Superposition allows us to break up complicated
forces into sums of simpler forces, compute the response
and add to get the total solution

If x,, X, are solutions of a linear homogeneous
equation, then
X =aX +a,X, IS also a solution.

If x, is the particular sol of X+ w’x = f,
and x, the particular sol of X+ @’x = f,

= ax, +bx, solves X+ w’x = af, +bf,



3.1 Impulse Response Function

F(D)
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Figure 3.1
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From sophomore dynamics The impulse

Imparted to an object Is equal to the change In the
objects momentum

i.e. area iImpulse force = jF(t)dt = FAt
F(t) under
oy puls i I
£ 1(£) = j F(t)dt:jF(t)dtN-s
2& e -
_F 2¢=F
2&
T—& T+&
< | >
T



We use the properties of impulse to define the impulse

function: :
Opacoea  equa
4 Impulses
F(t) | /
~(t—-7)=0, t=7 A
_OO F(t—7)dt = F | _ l

If F =1, this is the Dirac Delta §(t)



The effect of an impulse on a spring-mass-damper Is
related to its change in momentum.

Just after Just before

impulse impulse
Impulse=momentum change \
FAt=Amv =mlv(t,)—-Vv()]
A F FAt
F=mv,=>V,=—=—
m m

Thus the response to impulse with zero IC is equal to the free
response with 1C: X,=0 and vq =FAt/m



Recall that the free response to just non zero initial
conditions is:

The solution of:
mX+cx+kx=0 x(0)=x, X(0)=v,
In underdamped case:

VOV + 0% ) +(%@, ) %o
X(t) = e ™ sin(aw,t +tan” 0 )
wd VO+§wnX0
For x, =0 this becomes:
-Capt
v,e ot
X(t) =2 sin w,t

Wy



Next compute the response to x(0)=0 and v(0) =FA#/m

The solution of:
mX+cX+kx=0 x(0)=x, X(0)=FAt/m :E
m

In underdamped case from the previous slide is:

= Lot
e n
X(t) =

sin w,t
Ma,

Response to an impulse at t = 0, and zero initial conditions



So for an underdamped system the impulse response is (Xo = 0)

= _—Co.t

X(t) = sinw,t (responseto F) (3.6)
Ma,
. g < F
X(t) = Fh(t), where h(t) =>——sinw,t (3.8) l
Wy
unit impulse re;/ponse function X(t) r M

os |

\h(t o] \\ //\\ L//\\//"\\_/«—\‘d,,—'x - k ITI ¢
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The response to an impulse is thus defined in terms of the
Impulse response function, h(t).

So, the response to o(t) Is given by h(t).

—Cw,t
h(t) =

sinw,t (3.8)
Mo,

What is the response to a unit impulse applied
at a time different from zero?

The response to o(t-7) Is h(t-7).
This is given on the following slide



0 t<r
h(t — T) — e_gwn (t-7)

ma,

sino,(t—7) t>r7

for the case that the impulse occurs at z note that the effects of
non-zero initial conditions and other forcing terms must be super
imposed on this solution (see Equation (3.9))

For example: If two T\if\\/\v
pulses occur at two
different times then =10 ~
their impulse ™ ° \/
responses will o 10
superimpose hi

P P “h : \//\"/\\/




Consider the undamped impulse response

Setting £ =0 In the equation (3.8)
Response to unit impulse applied att =7,
l.e. o(t-7) Is:

h(t—f)zﬁsina)n(t—f)

n



Example 3.1.2 Design a camera mount

vibration constraint

" > wind = x(2)
‘ camera — m —— F&()
' / mounting | x(2)
bracket /. Fs 3E7 3/\/\/\/\ — > FS(1)
{:,»3
= — —> i _3EL
{,‘.,\
> JT77777 '
ey (D) fex () = FSH

with a

Consider example 2.1.3 of the security camera again only this
time with an impulsive load



Using the stiffness and mass parameters of Example 2.1.3,
does the system stay with in vibration limits if hit by a 1 kg
bird traveling at 72 kmh?

The natural frequency of the camera system is

K 3Ebh®
@, = =
m. \12m ¢

(7.1 x 10" N/m)(0.02 m)(0.02 m)?
N 4(3 kg)(0.55)°

=75.43 rad/s

From equations (3.7) and (3.8) with { = 0, the impulsive response is:

X(t) = FAT sinm, t = ™Y Sin @t
mca)n mca)n
5 — | MV
The magnitude of the response due to the impulse is thus = — m.a,



Next compute the momentum of the bird to complete the
magnitude calculation:

km 1000 m hour

mVv=1Kg 72 .
hour km 3600s

=20 kg m/s

Next use this value in the expression for the maximum value:

| myv 20 kg m/s

X —
3 kge75.45 rad/s

M, @,

This max value exceeds the camera tolerance



Example 3.1.3: two impacts, zero initial conditions
(double hit).

m=1Kkg, c=0.5kg/s, k =4 N/m
F=2N-s and F(t)=25(t)+5(t—7)
o =2, =0.125

—Co,t

sin m,t =1.008e " sin(1.984t),t > 0

0=

X, (t) = 0.504e %" sin(1.984(t — 7)), t > 7

X(t) =% + X,
- 1.008e %" sin(1.984t) O<t<rt
1.008e %% sin(1.984t) + 0.504e **"?sin(1.984(t—7)) t>7



Example 3.1.3 two impacts and initial conditions

X+2X+4x=06()-0o(t—-4), Xx,=1mm, x,=-1mm/s
Solve three simple problems and add the results.

Homogeneous solution (e, = 2rad/s, £=0.5, w,=+/3 rad/s)

V, + X .
X, (t) =e "' [2 06y sin w,t + X, Cos w,t]
Wy
—t _1+1 - —t
=e [ \ﬁ sin 3t+cosﬁt]=e cos«ﬁt
Lﬂ_ﬂd cell Impact
signal H. hammer
Note, no need to redo constants of integration f(”l
for impulse excitation (others, yes) fest | m lx{r)

structure
c |J'| k

NN RN N NN




Computation of the response to first impulse:

Treat o(t) asx,=0andv, =1, O<t<4

V, . 1 :
X (t)=e""| Lsinw,t |=—=e"sin/3t

Wy J3

O<t<4




Total Response for 0<t<4

X, (1) = X, (t) + X, (t)
= e ' (cos~/3t - -

J3

for 0<t<4

Sin+/3t),



Next compute the response to the second impulse:

-1 ~t+4 .-
x, =—e "siny3(t—4) t>4
2 ﬁ ( )

—t+4
€

J3

siny3(t-4)  H(t-4)

Heaviside Step function

Here the Heaviside step function iIs used to “turn on” the
response to the impulse at t = 4 seconds.



To get the total response add the partial solutions:

1 . e—t+4 -
x(t) = e (==sin/3t+ cos~/3t )— sin/3(t —4)H (t —4)
ﬁ _Initial condition \E )
frist i%pulse secondepuIse
1 -
0.5 T
ﬂ i _ e —_

=057




3.2 Response to an Arbitrary Input

The response to general force, F(t), can be viewed as a series
of impulses of magnitude F(t;)At

: th
Response at time tdue to the i impulse zero IC

x(t) = [F(t)Dt Tht-t) for t>t % AN~
F(t) t \/J Tt
Impul\s:es / If t =t, (thei" time interval)
j./, TN F(t) x(t.)=i2'1‘,[F(ti)At]h(t—ti)
} \‘\ At >0t > 7=
~— .
X(t) = [F()h(t-7)dr (3.12)

E I Kt T t convolutign integral ’




Properties of convolution integrals: It is symmetric
meaning:

Let « =t—17,t fixed so that 7=t —«
and dr=—-da. Also 7:0o>t=a:t—>0

X(t) = [ F(r)h(t-7)dz={ F (t —2)h(a)(-da)

:j F(t—a)h(a)da



The convolution integral, or Duhamel integral, for
underdamped systems is:

X(t) = —— — G jO[F(r)e@nfsinwd (t-7) [dz

d

=L F(t r)e " sinw,rdr (3.13)
Ma, *°

* The response to any integrable force can be computed with

either of these forms

« Which form to use depends on which is easiest to compute



Example 3.2.1: Step function input

0 O<t<{,
F, t, <t
X, =0, v,=0, 0<{<l

Fﬂ m5<'+c>'<+kx={

-

Iy

Figure 3.6 Step function To solve apply (3.13):

1
M,
|:0

—Cw,t t CONT 7
=——¢ j e" sinw, (t—7r)dr
Ma, b

X(t) =

)
: 1 t ..
g e j (0)e*™* sinw, (t —7)dz +——e "' | Fe** sinw,(t—7)dr
0 Ma, b



Integrating (use a table, code or calculator) yields the

solution:
x(t) = R R e "0 cos(w, (t—t,)—6), t=t, (3.15)
k k\/]? d 0 ! 0
f=tan™ g (3.16)




Example: undamped oscillator under IC and constant force

For an undamped system: ' (f ) A

h(t) = Lsin @t
Mo,

v

The homogeneous solution is t t

V, .
X, =—=Sinm t+Xx,c0smt, t<t F(t)

a)n
Good until the applied force acts at t , then: l

3

X, = [F(Oh(t-7)dr, t, <t<t, o ¥
0

:]‘F(r)h(t—\r{?r+jF(r)h(t—r)dr K
0 0 t




Next compute the solution between t; and t,

Fort <t<t,

t

X o = _[ F

[

Sinw, (t—7)dr
M,

cosw, (t—7)

R ey
(D)

Mo,

n

t
b

n

F
= —>[l-cosa,(t-t)]
0o

n




Now compute the solution for time greater than t,

Fort>t,
0 0
t t, t
X, :IF/M%(t—r)dzwj.F(r)h(t—r)dr+j|:/0f¢(t—f)df

0 ty t

o[ 1 a
=—2 2 —cosm (t—7)| ¢

Mo, | o, .

F
= —>-[cosw, (t—t,) —cosa, (t —t,)]
Mo

n




Total solution Is superposition:

Vv, .
—Lsinot+x,c0sm,t t<t

@,

V, . F
x(t)=1  —sinot+Xx,cosat+—5[1-cose,(t-t)] t <t<t,
Q, Mo,

n n

V, . F
—2sinm t+ X, cosaw, t + —2

2
|, ma;

[cosam, (t—t,)—cosw,(t—t)] t>t,

m=F =10 =8t =2t,=4,%x,=0.1v,=0
Check points: x increases after application of F. Undamped response around x =0
0.3

Disptl)afement X(t)

01 /\

°\/ \/ o

-0.1

0 2 4 6 8 10



Example 3.2.3: Static versus dynamlc load

F=m,g

A
m t>0
Mg+ Ck+kx =4 09 o
0 t<0

Truck being filled with dirt Vibration model

m,

= X(t) =

IR P cos(aw,t—6)
1-¢°

£ =0=> x(t) = a9 t)

m;g
Kk

This has max value of X, =2 _twice the static load



Numerical simulation and plotting

At the end of this chapter, numerical simulation is used to
solve the problems of this section.

* Numerical simulation is often easier then computing these
Integrals

* It 1s wise to check the two approaches against each other
by plotting the analytical solution and numerical solution
on the same graph



3.3 Response to an Arbitrary Periodic Input

X+2lw X+’ x=F(t) where F(t)=F(t+T)

« We have solutions to sine and 2 —
cosine inputs. 15 (\\ /\T /\\ i /\\ /\
« What about periodic but non- o1 \
harmonic inputs? D'Spcl)?gememx(\p / \ / / \ /
; NN
« We know that periodic 0

functi be represented 0.

bl;/n; ;Z:?escsfn sines and cosines O_j U \ / \/ \ / V \ /

(Fourier) 1s \ / \ / \ /
* Response is superposition of as 5 \/ \/ U

many RHS terms as you think 0 2 4

are necessary to represent the
forcing function accurately

Time (S)

Figure 3.11



Recall the Fourier Series Definition:

a

Assume F(t) = ?O +> (a,cosQ t+b,sinQt) (3.20)
n=1
where Q= 2mn _ N
T

a, = %:OT F(t) dt (3.21) : twice the average

a = %:OT F(t) cosQ tdt (3.22):Oscillations around average

b =2 F(t)sinQ tdt (3.23)

n T Jo n




The terms of the Fourier series satisfy orthogonality
conditions:

IT { 0 m=#n
Sin N, tsin mep, tdt = T - (3.24)
0 A m=n

J,T { 0 m=n
COS Neo; 1 COS M tdlt =4 ¢ (325
0 A m=n

Jj cos N, tsinme tdt =0 (3.26)



Fourier Series Example
F(t) 4

Step 1: find the F.S. and

%o determine how many terms
you need
0
f 0, t<t,

(t-t), t<t<t,




Fourier Series Example

1.2
1 L

— F(t)
------ 2 coefficients

0.8 — — 10 coefficients

100 coefficients S
Forc,%@:(t) """ , &
o : //
I'o “' l
04 i ¢.“ ‘0.0’ //
.. R
\ . R
0.2 ,\ ".. 0:’ /
\ vt
* “ /
v g
\ ‘e z o - ‘/
R N e e 4
\ / .........
0.2 | | | ‘ | ' |
0 05 1 1.5 2 2.5 3 3.5



Having obtained the FS of input

* The next step Is to find responses to each term of the
FS

* And then, just add them up!

» Danger!!: Resonance occurs whenever a multiple of
excitation frequency equals the natural frequency.

You may excite at 100rad/s and observe resonance
while natural frequency is 500rad/s!!



Solution as a series of sines and cosines to
X+ 2w X+’ x = F(t)

The solution can be written as a summation

% () =X (0 + D% (0 + X, (1

where x, (t) Is a solution to

a0
2
n

iy . a
X+ 2w X+ @’ X =?° = X, (t) =

and x_, (t) and x, (t) are a solutions to

.. . 2y
X+ Zé/wnx T W, X= an cos(nalrt) D— Solutions calculated from

.t . 2y - <« equations of motion (see
X+ Zg“a)nx T, X= bn Sm(na)rt) section Example 3.3.2)



3.4 Transform Methods

An alternative to solving the previous problems, similar
to section 2.3



Laplace Transform
 Laplace transformation
F(s) = jo“’ f(t)e Sdt = L{f (1)} (3.41)

Laplace transforms are very useful because they change
differential equations into simple algebraic equations

» Examples of Laplace transf&rms (see page 244) in book)

— f(t) F(s)
Step function, u(t) 1/s
- 1/(s+a)
sin(|t) (s +1)




Laplace Transform

« Example: Laplace transform of a step function u(t)

LU= e {—6“} 1 ) }
0 S .

S

» Example: Laplace transform of ¢™®

-at

L{e*}= IOOO e e "dt = j OOO e G gt [ e

K:

t

_a-(s+a)t 1%
L{eat}:{ € } 1

(s+a) | " (s+a)



_Laplace Transforms of Derivatives

 Laplace transform of the derivative of a function

] {m} [0 gag
dt 0 dt

Integration by parts gives,

(40
dt

[0
dt

} =[ f(t)e™ ]: +5 j:’ f(t)e *dt

}:—f(0)+sL{f(t)}



aplace Transform Procedures

 Laplace transform of the integral of a function

L{ [ (t)dt} _ % L{f@)+]" fdt

Steps in using the Laplace transformation to solve DE’s
* Find differential equations

* Find Laplace transform of equations

» Rearrange equations in terms of variable of interest

* Convert back into time domain to find resulting response
(inverse transform using tables)



aplace Transform Shift Property

Note these shift properties in t and s spaces...

e f (t)——>F(s—a)
f(t—a)®(t—-a)——>e ™ F(s)
thus

Sty —>1= St—-a)——e™



Example 3.4.3: compute the forced response of a
spring mass system to a step input using LT

The equation of motion is
mX(t) + kx(t) = d(t)
Taking the Laplace Transform (zero initial conditions)

1 _ 1l/m
s(ms® +k) s(s®+a?)

(ms® +k) X(s) :£:> X (s) =
S
Taking the inverse Laplace Transform yields:

x(t):llm
a

n

(1-cosa)t)=%(l-cosa)nt)

n

Compare this to the solution given in (3.18)



Fourier Transform |, ;..qu=

0.1

From Fourier series of non-periodic

functions 0.05 |f)
Allow period to go to infinity !\ /\
Similar to Laplace Transform ht o

Useful for random inputs ‘ \/ \% ~
-0.05

X (@)= x(t)e dt

-0.1

Corresponding inverse transform 0 1 2 3

Time (S) )
Fourier

X(t) =% ji X (w)e'*dw

Transform

20
Fourier transform of the unit impulse Nogmalized H(w) (A

response is the frequency response . / \
function o

N\

N

H(w) = h(t)e dt > T~

-20

0 1 2 3 4
Frequency (Hz)



3.5 Random Vibrations

« So far our excitations have been harmonic, periodic, or at least known in advance
* These are examples of deterministic excitations, i.e., known in advance for all time
— That s given t we can predict the value of F(t) exactly

* Responses are deterministic as well

« Many physical excitations are nondeterministic, or random, i.e., can’t write explicit
time descriptions

— Rockets

Earthquakes

Aerodynamic forces

— Rough roads and seas

* The responses x(t) are also nondeterministic



Random Vibrations

» Stationary signals are those whose statistical properties
do not vary over time

* Functions are described in terms of probabilities
— Mean values*
— Standard deviations

« Random outputs related to random input via system
transfer function

*1e given t we do not know x(t) exactly, but rather
we only know statistical properties of the response

such as the average value



Autocorrelation function and power spectral density

The autocorrelation function describes how a signal is
changing in time or how correlated the signal iIs at two
different points in time.

R, (1) = lim % [ X x(t+ )7

The Power Spectral Density describes the power in a signal as
a function of frequency and is the Fourier transform of the
autocorrelation function.

S ()= % [" Ry dr



Examples of signals

HARMONIC

/\ A <— Signal — "
x(t) | > X(t)
\/ \ time
A—
2
2 A T A
A /2 € > rms
\ /\ <+— Autocorrelation —>
RXX(t) > Rxx(t)
AT2 \/ \J t time shift

RANDOM

t time shift



SoW)

Power Spectral Demsity_>

SoW)

[

1T

F'requency
(Hz)

»

»

Frequency
(Hz)



More Definitions

X =lim=|x(t)dt (3.47
Average T—>ooTJ' () ( )

x> =lim= [x2()dt (3.48
Mean-square: T%TI (1) ( )

X :ﬁ:\/nmijxm)dt (3.49)

'ms: me T—)ooT



Expected Value
(or ensemble average)

e PO
The expected value = E[x()] _!'ﬂ! Tdt =X  (3.63)

The Probability Density Function, p(x), is the probability
that x lies in a given interval (e.g. Gaussian Distribution)

The expected value is also given by

E[x] = T xp(x)dx (3.64)



Recall the Basic Relationships for Transforms:

Recall for SDOF

1
ms? +cs + k

frequency responsefunction : Gjw) = H(w) = 12 ;
K —Mw” + Cawf

transfer function : G(s) =

unitimpulseresponsefunction : A(t) = ™" sina,t

mao,

UAD]=— ' —Gls)
ms< +csS+k

And the Fourier Transform of h(t) is H(®)




What can you predict?
The response of SDOF with f(t) as input:

Deterministic Input: Random Input:
X (s) = G(s)F(s) S (@) =[H ()| Sy (@)
x(t)= [n(t—2) f ()de E[x*]= [|H (@) Sy (@)do

0 b

In a Lab, the PSD function of a random input and the output can be measured simply in one experiment. So the
FRF can be computed as their ratio by a single test, instead of performing several tests at various constant
frequencies.

Here we get an exact Here we get an expected
time record of the output value of the output given
given an exact record of the a statistical record of the

input. Input.



Example 3.5.1 PSD Calculation

Consider mX+cx+kx = F(t), where the PSD of F(t) Is constant S,

The corresponding frequency response function is:

1
K—mo® +Cwj

H(w) = (2.59)

2

1
k—mo® +cwj
- 1

~(k—ma?)? +ctw’

1 1

:>H 2: = °
H@) K—Me’ +coj K—Ma’ —co]

From equation (3.62) the PSD of the response becomes:

SO
(K —ma?)? + (co)?

Sxx :‘H (w)‘z Sff —



Example 3.5.2 Mean Square Calculation

Consider the system of Example 3.5.1 and compute:

2

o 1
27 _
E[X }_SO 0|k — M@’ +Co dav
_g zm _ 7S,
“kem ke

Here the evaluation of the integral is from a tabulated value
See equation (3.70).



Section 3.6 Shock Spectrum

Arbitrary forms of shock are probable (earthquakes, ...)

The spectrum of a given shock iIs a plot of the maximum

response quantity (x) against the ratio of the forcing
characteristic (such as rise time) to the natural period.

Maximum response gives maximum stress.

X(t) = j; F(Oh(t-7)dr  (3.71)



Using the convolution equation as a tool, compute the
maximum value of the response

Recall the impulse response function undamped system:

h(t—7) = ml sin . (t—7) (3.73)

n

—

[[F@sin(o,t-7))de  (3.74)

X = —
Mo,

n max

Such integrals usually have to be computed numerically



Example 3.6.1 Compute the response spectrum for

gradual application of a constant force Fy,. Assume zero
Initial conditions

mX(t) + kx(t) = F (t)

t, =Infinity, means static loading  r )= F ) +F, (1)

N R()=—F,
tl
Fl o time shift and negative, like half sine problem
0 O<t<t
i FE@)={ t-t
t t ’ —( tll)FO t>t

The characteristic time of the input



Split the solution into two parts and use the convolution
Integral

o ¢Fr . F(t sinot
t)=—2|-8 t—7)dr=-L2| —— :
% (0) = j L sine,(t-r)dz k(tl ot ] 0<t<t (37
Forxzapply _
: - F(t— SINw, (t—t
time shift t, Xz(t)z— 0 t1_ n( 1) ottt (3.76)
k| t O

O = %0+ 5,0 =%(ti—s'g?“tj— L (t;tl - “;;‘fl‘tl)jma—tl)

(3.77)



Next find the maximum value of this response

To get max response, differentiate x(t).

In the case of a harmonic input (Chapter 2) we computed this
by looking at the coefficient of the steady state response,

giving rise to the Magnitude plots of figures 2.8, 2.9, 2.14.

Need to look attwo cases 1) t<tiand 2) t > t;

For case 2) solve: (what about case 1? Its max is Xstatic)

d| K (o,t, —sine,t+sinaw, (t-t)) |=0=
dt| ko, t,



Solve for t at xmax, denoted t,

—coswpt+cosam, (t—-t)|_, =0

Cosaw,t, =Ccosam,t cosa,t, +Sinat, sina,f

= ot = tanl(

1-cosa,t,

sinw.t,

J

\/sinz ot +(1-cosamt)’

= \/2 (1-cosm,t,)

o !

sSinw, t,

1-cosw,fl,



From the triangle: Sina,z, Z_J%U_COSM)
—-sinw,t,

Cosw,t, =
® Joli—cosam,t)

Minus sq root taken as + gives a negative magnitude

Substitute into x(tp) to get nondimensional X

X

K 1
=1+—,/2(1-
F + Y (1-cosam,t,)

Xmax

st nd
1 term is static, 2 1s dynamic. Plot versus:

t, _ a)ntl Input characteristic time

T 2x System period




Response Spectrum

* Indicates how normalized max output .y .= 4
changes as the input pulse width wi- 11
Increases.

* Very much like a magnitude plot.

« Shows very small t1 can increase
the response significantly: impact, rather
than
smooth force application 2] 154

* The larger the rise time, the smaller

the peaks

-/JE- |[1 — £03 Iium-tljljl

* The maximum displacement is TN
1 t } i

minimized if
rise time is a multiple of natural period tl
* Design by MiniMax idea k T




Comparison between impulse and harmonic inputs

Impulse Input
Transient Output
Max amplitude versus
normalized pulse “frequency”

= 2. win
wn =2 T =

21

uml-tl -nfz- (1 — o3 [mn-tl”

Ximyi=1+

) 15+

Harmonic Input
Harmonic Output
Max amplitude versus

normalized driving frequency

J(l —12]2+ |[2-g.r:|2 ri=0,001..2

&m]




Review of The Procedure for Shock Spectrum

1.Find x(t) using convolution integral
2.Compute its time derivative

3.Set it equal to zero

4.Find the corresponding time

5.Evaluate the max possible value of x (be careful about
points where the function does not have derivative!!)

6.Plot it for different input shocks



3.7 Measurement via Transfer Functions

* Apply a sinusoidal input and measure the response
* Do this at small frequency steps

* The ratio of the Laplace transform of these to signals then
gives and experiment transfer function of the system



Several different signals can be measured and these are
named

TABLE 3.2 TRANSFER FUNCTIONS USED IN VIBRATION

MEASUREMENT
Response Transfer Inverse Transfer
Measurement Function Function
Acceleration Accelerance Apparent mass
Velocity Mobility Impedance
Displacement Receptance Dynamic stiffness
X (s 1
receptance: (s) =— (3.86)
F(s) ms“+cs+Kk
. X (s S
mobility: ( ): > (3.87)
F(s) ms“+cs+Kk
2 2
: S“X(s S
Inertance: () = (3.87)

F(s) ms®+cs+k



The magnitude of the compliance transfer function yields
Information about the systems parameters

H(jow)| = 1 (3.89)
J(k—=ma)? + (cw)’
k| 1 3
H(J\/;)—Ca)n (3.90) - — 7\
H(O)|=%% / \
T

1
“ \
—

0.01 0.1 1 log(w) 10
w=w,\N1l—2(2 =w, =Vkim




3.8 Stability

Stability is defined for the solution of free response case:
Stable: [X(t)|<M, Vt>0

Asymptotically Stable: limx(t) =0
{—o0
Unstable:

If it Is not stable or asymptotically stable



Recall these stability definitions for the free response

Stable Asymptotically Stable

{k.1- ik.1-
c I'!li|i-![ c rt Ll -x 10

L gim 2t oyt

i
13 5 10

Divergent ihstability Flutter instability



Stability for the forced response:
mX(t) +cx(t) + kx(t) = F(t)

* Bounded Input-Bounded Output Stable
v X(t) bounded for ANY bounded F(t)

 Lagrange Stable with respect to F(t)
v If x(t) is bounded for THE given F(t)



Relationship between stability of the homogeneous
system and the force response

* If Xnomo 1S Asymptotically stable then the forced response is
BIBO stable (Bounded input, bounded output)

* If Xnomo IS Stable then the forced response MAY be
Lagrange Stable or Unstable



Stability for Harmonic Excitations

The solution to:
mX(t) + kx(t) = F, cos wt

1S:

Vv, . f
x(t):—osma)nt{xo— : 2jcoscont+

2
Q,

~——COS ot
n @, —W

Q, —w

As long as m, is not equal to ® this is Lagrange Stable, if the
frequencies are equal It Is Unstable



For underdamped systems:
mX(t) + cX(t) + kx(t) = F, cos wt

- f cos(wt —tan 1( 22§a)na)2 j)
J(@! - 0" +(2w,0)" 0, " )
\ . J .

Add homogeneous and particular to get total solution:
X(t) = Ae ' sm(codt+¢) + X cos(at - 6)

homogeneous or tranS|ent solution partlcular or
steady state solution

Bounded Input-Bounded Output Stable



Example 3.8.1

> M, =me’0 =— (ksing) ((cosd)+mg(Lsind)

\ J \ J

Y Y
%_J
Force from Spring moment arm force moment arm

The equation of motion after a small

angle approximation is given becomes:

me2o(t) +k26(t) = mgO(t)
— me20(t) + (k> —mg0)6(t) =0
This will be stable if and only if

the coefficent of & Is positive
orif k{>mg

- The system is thus

Lagrange stable.

- Physically this tells

us the spring must
be large
enough to overcome



Find a force of the form F(t)=-ad—bo
to make the system asymptotically stable (BIBO)

me26 + (k(? —mgl)0 = —ad —bo
— ml%0 +b0+ (k> —mgl+a))d=0

Chooseb>0and a = mg/
— ml%0 +h6+k(?0 =0

Then the system is asymptotically stable and BIBO



3.9 Numerical Simulation of the response

* As before In Section 2.8 write equations of motion as state
space equations

* The Euler integration is just

X(t) = X(t )+ AxX(t )AL +F(t )AL

/



Example 3.9.1 with delay

Let the input force be a step function a t=t,

F(t)
F,=30 N l
F(t) k =1000 N/m
A . X t
3 £=0.1 (t) | v
w,=3.6

t,=2s

v




Example 3.9.1 Analytical versus numerical

X(t) = (0.03—0.03e***** cos[3.144(t —t,) — 0.101] ) d(t —t,)

Response to step input : 0 1 0

clear all X& _ X& 4

%% Analytical solution (example 3.2.1) X '_ k C X F% Q)GZ t )

Fo=30; k=1000; wn=3.16; zeta=0.1; to=0; 2 T 2 — Y
m m m

theta=atan (zeta/ (1-zeta”2));
wd=wn*sqrt (l-zeta"2);
t=0:0.01:12;
Heaviside=stepfun(t,to) ;% define Heaviside Step function for 0<t<12
xt = (Fo/k - Fo/(k*sgrt(l-zeta”2)) * exp(-zeta*wn* (t-to)) *
cos (wd* (t-to)- theta))*Heaviside (t-to); .06
plot (t,xt); hold on

%% Numerical Solution

xo=[0; 0];

ts=[0 127;
[t,x]=0ded5('f',ts, x0);
plot(t,x(:,1),'r"); hold off

Drisplac eme o

function v=f (t, x)

Fo=30; k=1000; wn=3.16; zeta=0.1; to=0; m=k/wn~2; o 2 4 6 A !
v=[x(2); x(2).*-2*zeta*wn + x(1).*-wn”2 + Fo/m*stepfun(t,to)]; Time ¢



Matlab Code

x0=[0;0];

ts=[0 12];
[t,x]=0ded5 (' funct', ts,x0) ;
plot(t,x(:,1))

0.06
Disgl-;;cje ment (X) /A\ A
0.03 \ /\ /\ & G
0.02 \/
0.01
o 2 4 & 8 1 1
Time (s)

function v=funct(t, x)
F0=30;

k=1000;

wn=3.16;

z=0.1;

t0=2;

m=k/ (wn”*2) ;

v=[x(2); x(2).*-2*z*wn+x (1) . *-wn*2+F0/m*stepfun(t,t0)];




Problem 3.22

A wave consisting of the wake from a passing boat impacts a
seawall. It is desired to calculate the resulting vibration.
Figure P3.22 illustrates the situation and suggests a model.
Calculate the resulting response.

Dike

F{(r)

Concrete

seawall k
' }—/\/\/W\—< m

|
I".
WAVAY, \ _EA
Water \ o K= ] 7
] F t
Wake 0

Physical setting Model Input model

NN NN NN NN

Figure P3.22 A wave hitting a seawall modeled as a nonperiodic force exciting an
undamped single-degree-of-freedom, spring-mass system.



Numerical solution of Problem 3.22

Sproblem 3.19
m=1000;

E=3.8e9;

A=0.03;

L=2;

k=E*A/L;

t0=0.2;

F0=100;

global FO k m tO
snumerical solution
x0=[0;07];

ts=[0 0.5];
[t,x]=0ded5('f 3 19',ts,x0);
plot (t,x(:,1))

F(t)

F(t) =

.

<t
TR

F t>1,

v

function v=f 3 19(t,x)
global FO k m tO
A=x(2);

F=(((1-t./t0).*stepfun(t,0))-((1-t./t0).*stepfun(t,t0)))*F0/m;

-k/m) *x (1) +F;
A; Bl




x10"

[

4

P3.22 (

o Al — o —

—COE DO _oon._0O

Al
1

0.5

0.4

0.3

0.2

0.1

Time (<)



3.9 Nonlinear Response Properties

Euler integration formula:

X(¢

[+

) = x(¢,) + F(x(¢,))At +f(¢,)At

Nonlinear term

Analytical solutions not available so we must interrogate the
numerical solution



Example 3.10.1 cubic spring subject to pulse input

mX(t) + cx(t) + kx(t) + k,x° (t) =1500[ D(t —t,) - D(t —t,)]

The state space form is:

Xl(t) =X, (t)

X, (t) = =28, %, (t) — ;% (t) — ox (1) + 15[ D(t —1,) — D(t —t,) ]

20 T

10 +




Nature of Response

Dizplacement m

Red (solid) is nonlinear response. Blue (dashed) is linear response
Is there any justification? Yes, hardening nonlinear spring.
The first part is due to IC.



Matlab Code

clear all

xo=[0.01; 17;

ts=[0 8];

[t,x]=0ded5('f', ts,x0);

plot(t,x(:,1)); hold on % The response of nonlinear system
[t,x]=0ded5('fl"',ts, x0);

plot(t,x(:,1),"'--"); hold off % The response of linear system

function v=f (t, x)

m=100; k=2000; c=20; wn=sqgrt(k/m); zeta=c/2/sqgrt (m*k); Fo=1500; alpha=3;
tl=1.5; t2=5;

v=[x(2); x(2).*=2*zeta*wn + x(1).*-wn"2 - x(1)"3.*alpha+ Fo/m* (stepfun(t,tl)-
stepfun(t,t2))1]1;

function v=fl (t, x)

m=100; k=2000; c=20; wn=sgrt(k/m); zeta=c/2/sgrt (m*k); Fo=1500; alpha=0; tl=1;
t2=5;

v=[x(2); x(2).*=2*zeta*wn + x(1).*-wn"2 - x(1)"3.*alphat Fo/m* (stepfun(t,tl)-
stepfun(t,t2))1];



