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Class Note: Averaging Theory

H. Shim

I. Averaging for periodic systems

Consider a system given by

ẋ = εf(t, x, ε) (1)

where f(·, x, ε) is T -periodic regardless of ε and f(·, ·, ·) is sufficiently smooth. Also, consider

a system

ż = εfav(z) (2)

(which is autonomous), where

fav(x) :=
1
T

∫ T

0

f(τ, x, 0)dτ.

The goal of this note is to see how we can approximate the solution of (1) by the solution

of (2). Note that, when fav is defined, we set ε = 0 inside the function f . In fact, the

quantity ε inside f is not important for the averaging argument and it is treated just as a

small perturbation to the system. What is important is the ε outside f of (1).

Example 1. More intuitive motivation might be the following example. Consider a system

ẋ = g(x) + h(x)(u(t) + c sin(wt))

where w >> 1, so that the input u is perturbed by quickly changing periodic perturbation

c sin(wt) that has zero mean. We may want to analyze the effect of the perturbation, and

want to conclude that, if the perturbation is fast enough then its effect is negligible. In this

case, we can transform this system into the standard form (1) as follows. Let wt = τ . Then,

ẋ =
dx

dt
= w

dx

dτ
= g(x) + h(x)

(
u

( τ

w

)
+ c sin(τ)

)

which leads to
dx

dτ
=

1
w

[g(x) + h(x) (u(τ/w) + c sin(τ))].

Defining ε := 1/w and rewrite the equation with t instead of τ , we have

ẋ = ε(g(x) + h(x)(u(εt) + c sin(t)).

Therefore, small ε implies large w. //

The main claim of averaging analysis is that the solution of (2) is a good approximate of

the solution of (1) if ε is sufficiently small. To see this, we first define

h(t, x) := f(t, x, 0)− fav(x) (3)

which is T -periodic and has zero mean. Also, let

u(t, x) :=
∫ t

0

h(τ, x)dτ (4)
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which is still T -periodic and has zero mean. (Since the function u has the same property as

h, one may wonder why we define the function u. It will turn out that the function u is a part

of coordinate transformation so that its time derivative (i.e., h) is T -periodic. In this regard,

we will rely on the fact that ∂u
∂t (t, x) = h(t, x) and ∂u

∂x =
∫ t

0
∂h
∂x (τ, x)dτ are T -periodic.)

Let

x = y + εu(t, y).

This defines a new coordinates of y although it is defined implicitly (i.e., not defined like

y = ...(x)). Note that the Jacobian is given by [I + ε∂u
∂y (t, y)] which is nonsingular for

sufficiently small ε on a local region of y, i.e., with bounded ‖y‖. This implies the above

coordinate transformation is locally valid with small ε.

Now, we obtain that ẋ = ẏ + ε∂u
∂t + ε∂u

∂y ẏ, which leads to
[
I + ε

∂u

∂y
(t, y)

]
ẏ = ẋ− ε

∂u

∂t
= εf(t, y + εu(t, y), ε)− ε[f(t, y, 0)− fav(y)]

= εfav(y) + ε[f(t, y + εu(t, y), ε)− f(t, y, 0)] = εfav(y) + ε2p(t, y, ε)

in which we have used the fact that there exists a function p such that

[f(t, y + εu(t, y), ε)− f(t, y, 0)] = p(t, y, ε)ε.

On the other hand, note that
[
I + ε

∂u

∂y
(t, y)

]−1

= I +O(ε)

which follows from the Taylor expansion. Therefore, we finally obtain that

ẏ = (I +O(ε))(εfav(y) + ε2p(t, y, ε)) = εfav(y) + ε2q(t, y, ε),

where q is suitably defined with the properties that q, ∂q
∂t ,

∂q
∂y , ∂q

∂ε are uniformly locally

bounded.

Let s = εt. Then,
dy

ds
= fav(y) + εq(

s

ε
, y, ε)

where q is now εT -periodic. We compare the solution y(s) with the solution z(s) of (2), that

is,
dz

ds
= fav(z).

Indeed, if z(s) is contained in a compact set D for all s ∈ [0, b] and if z(0) − y(0) = O(ε),

then (by Theorem 3.5 of Khalil’s Third Edition) z(s) − y(s) = O(ε) for all s ∈ [0, b]. This

implies that, (noting also that z(εt) is the solution of (2))

x(εt) = y(εt) + εu(εt, y(εt))

= z(εt) +O(ε) + εu(εt, z(εt) +O(ε))

= z(εt) +O(ε)

for all t ∈ [0, b/ε]. Also, by Theorem 9.1 of Khalil’s Third Edition, this approximation holds

for all t ∈ [0,∞) if, in addition, the averaged system (2) is locally exponentially stable at the

origin.
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II. General Averaging

Now we deal with systems (1) that is not periodic, and assert that the solution of (1) can

still be approximated by the solution of (2) where fav is defined differently. This time we

suppose that the system (1) has an average system (2) in the sense that the limit

fav(x) = lim
T→∞

1
T

∫ t+T

t

f(τ, x, 0)dτ (5)

exists. Note that the left hand side is independent of t. Furthermore, to be more specific

on the convergence of the equation (5), we assume that there exist a constant k > 0 and a

strictly decreasing continuous function σ : [0,∞) → [0,∞) such that σ(∞) = 0 and that
∥∥∥∥∥

1
T

∫ t+T

t

f(τ, x, 0)dτ − fav(x)

∥∥∥∥∥ ≤ kσ(T ) (6)

for all t and x of interest. The function σ is called the convergence function.

Example 2. Let f(t, x, ε) = 1
1+th(x). Then fav(x) = 0, and

∥∥∥∥∥
1
T

∫ t+T

t

f(τ, x, 0)dτ − fav(x)

∥∥∥∥∥ =

∥∥∥∥∥
1
T

∫ t+T

t

1
1 + τ

h(x)dτ

∥∥∥∥∥

=
∥∥∥∥

h(x)
T

ln
1 + t + T

1 + t

∥∥∥∥

=
∥∥∥∥

h(x)
T

ln
(

1 +
T

1 + t

)∥∥∥∥

≤ ‖h(x)‖
T

ln(1 + T ) ≤ k
ln(1 + T )

T

where k is a local bound of ‖h(x)‖ on the region of interest. Therefore, the convergence

function is given by σ(T ) = ln(1 + T )/T .

Example 3. When the function f(t, x, ε) is periodic with a period Tp, its convergence

function is given by σ(T ) = 1/(T + 1).

The rest of argument for ‘general averaging’ is similar to the ‘periodic averaging’, but there

is an important difference. We seek again for a coordinate change so that the system (1) can

be seen as a perturbed system of (2). So, we define h(t, x) just as (3), but instead of u(t, x)

defined in (4) we will use the function w(t, x, η) that is defined as

w(t, x, η) :=
∫ t

0

h(τ, x) exp[−η(t− τ)]dτ. (7)

Here, the exponential term is added compared to (4).Note just that, when η = 0, the function

w(t, x, 0) is the same as u(t, x) of (4).

We omit the details.
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