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Project Objectives

a. Evaluate the degradation of performance for trench and 

crater film cooling configurations when subjected to 

active deposition of contaminants.  This will be done on 

simulated vane and endwall models.

b. Design improved trench or crater film cooling 

configurations that mitigate the degradation effects of 

deposition of contaminants.  

c. Determine the overall cooling effectiveness (including 

conjugate heat transfer effects) with and without thermal 

barrier coatings for the vane and endwall.  
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Project Objectives, continued

d. Develop the knowledge needed to design film cooling 

configurations on contoured endwalls.

e. Perform detailed velocity and thermal field 

measurements along the vane, endwall, and 

downstream wake, with and without film cooling, to 

provide benchmarks to evaluate CFD simulations.

f. Develop improved cooling designs specifically for the 

vane-endwall junction including mitigation of deposition 

effects.



Simulated vane test facility at UT

• Simulated Three Vane –Two Passage 
Linear Cascade

• Liquid nitrogen cooled secondary flow 
during overall effectiveness 
measurements

• Constant heat flux boundary condition on 
near adiabatic airfoil for heat transfer 
coefficient measurement

• Surface temperatures measured using 
FLIR P20 and P25 IR cameras
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Technical Approach: use matched Biot number models to 
obtain overall effectiveness which includes internal cooling 
effects
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Experimental model needs to match Bi and hf /hi
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A baseline was established by measuring  with 

internal cooling only. 
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Suction sidePressure side

Variation in  was found to correlate with variation 

in external heat transfer coefficient.

From Dees’ dissertation (2010)



Comparison of  and  contours with film cooling 

shows redistribution of localized cooling by coolant 

jets
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This study will evaluate trench and crater film cooling 

configurations
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Thermal field measurements will be an important part 

of this study to show coolant jet details and conjugate 

heat transfer effects
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I = 0.75, x/d = 5

From Dees’ dissertation (2010)

Note thermal boundary layer 

development



The objective of our studies is to understand the effect of 

deposition on non-axisymmetric contoured endwalls
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film cooling with contoured endwalls?



Heater #1

#2

A novel heater design was developed for contoured endwalls

to allow it to conform to the surface
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Oil flow visualization for the contoured endwall did not show 

a scoured region caused by the passage vortex 
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Endwall contouring reduced heat transfer by 25% in the 

region of high heat transfer near the pressure side

Flat endwall

heat transfer
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Coolant does not sweep across the passage as well for the 

contoured endwall, compared to the flat endwall
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PSU will investigate the effects of deposition on film-cooling 

with endwall contouring
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Phase UT Deliverables Penn State Deliverables

Phase I  Planning and 

Project Coordination

• Agreed upon plan for frequency and mode for communication

• Agreed upon test plan for initial phases of work

Phase II - Deposition 

with No Film-Cooling

•Identify where vane deposits occur

• Vane heat transfer with deposits 

• Measurements of aero-thermal BL

• Conducting contoured endwall model

•Identify where endwall deposits occur

• Contoured endwall heat transfer with 

deposits 

• Measurements of aero-thermal BL

Phase III - Deposition 

with Trenched Film-

Cooling on Vane and 

Contoured Endwall

•  and  with trenched holes on 

vane

•Evaluation of new trench / TBC 

design for vane

•  and  for film-cooling on a contoured 

endwall

•Evaluation of trenched film-cooling on 

contoured endwall

Phase IV - Optimized 

Hole/Trench on Vane 

and Contoured Endwall

• Effectiveness measurements for an 

optimized hole shape / trench for 

vane

• Results from numerous hole shape 

/ trench hole designs for the vane

• Effectiveness measurements for the 

optimal hole shape / trench for 

contoured endwall

•Measurements of aero-thermal 

boundary layers

Phase V - Mating of 

Optimized Hole/Trench 

on Contoured Endwall

• Measurements of aero-thermal BL’s 

for hole shape / trench on vane

• Measurements in vane wake with 

optimal hole shape / trench

• Evaluation of mating between vane and 

contoured endwall with overall 

effectiveness measurements using 

optimized hole shape / trench

Phases and Deliverables for the project
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Questions?


