
Context-aware Model Driven Development by
Parameterized Transformation

Samyr Vale1,2, Slimane Hammoudi1

1
 ESEO, 4 rue Merlet de la Boulaye BP 926, 49009 Angers cedex 01 France

{samyr.vale, slimane.hammoudi}@eseo.fr

2
 LERIA, Université d'Angers, 2 boulevard Lavoisier, 49045 Angers cedex 01 France

Abstract. Context-aware development has been an emergent subject of many
research works in ubiquitous computing. Few of them propose Model Driven
Development as a standard on context-aware development. Many focus on
context capture and adaptation by the use of legacy architectures and others
artifacts to input context into application logic. This work proposes Model
Driven Development to promote reuse, adaptability and interoperability in
context-aware applications development. By concerns separation in individual
models and by transformation techniques context can be provided, modeled and
adapted independently of business logic and platform details. We also present
in this paper our context metamodel proposition based on ontology concepts
and the parameterized transformation technique applied to context-aware
development.

Keywords: Ubiquitous computing, MDA, Parameterization, Context-awareness

1 Introduction

Nowadays, distributed B2B and B2C applications aggregate more functionalities and
implement more complex business logic. Empowered by internet resources,
enterprises increase application integration with their partners to provide better and
more services for internet users.

The new tendency in software development targets mobile devices as client
applications. Mobile phones and others handhelds are being used to access distributed
applications everywhere and at any moment. Meteorological information, shopping
and GPS guides are some examples of applications accessed by these device types.

Mobile web-supported devices simplify ubiquitous applications development. The
term ubiquitous was firstly used by Weiser [1]. He idealized a physical environment
with computational devices integrated (sensors, for example). The goal was to help
users in their daily activities, in a transparent way, by the use of a computational
environment with non-traditional devices. Nowadays, ubiquitous applications
development has been studied by various research groups. Abowd et al. [2][3]

122 Proceedings of MDISIS 2008

presented four issues in ubiquitous computing: natural interfaces, capture and access
of human activities, context-aware applications and everyday computing.

We focus on context-aware applications. That means applications which use
context to realize required activities and to provide relevant information for users
without human interaction. The majority of context-aware applications implement
business and contextual activities and data together. This programming practice
hampers software reuse and context management.

Motivated by this problem we apply MDDTM (Model Driven Development) in
context-aware applications development. OMGTM (Object Management Group)
recommends the MDA® (Model Driven Architecture) [4] approach as a standard1 in
Model Driven Development.

Models are the best way to represent the structure and the semantic of the
concepts manipulated by a system. By the separation of concerns (business and
context) we improve reuse, interoperability, adaptability and management of context
information. Context models can be built as independent pieces of application models
and at different abstraction levels then attached by transformation techniques. We
have investigated different techniques to make context adaptation and we propose
some solutions for context integration into application model.

We present in this work our context metamodel focusing on the context types
most used in ubiquitous development and our parameterized transformation
proposition. We also have made some extensions in the OCL language to adapt some
model transformation operations used to attach context into application models.

This paper is organized as follows. Section 2 presents the state of the art in
context-aware applications development and gives a brief discussion of related works.
Section 3 presents and describes our context metamodel. In Section 4 we expose the
application of Model Driven Architecture in context-aware development and we also
describe the use of the parameterized transformation for context adaptation. Finally
we present our conclusions and ongoing activities about this subject.

2 Context-aware Applications

Context-aware application is a topic of the Ubiquitous Computing area. In most cases,
applications in this domain use some information that characterizes a particularity of
the user or the system itself to be more adaptable and to respond to user needs. User
name, location, time, device type and profile are the most used contextual
information.

Dey [5] expanded context notion and defined it as “any information that can be
used to characterize the situation of an entity. An entity is a person, place or object
that is considered relevant to the interaction between a user and an application,
including the user and applications themselves”.

This definition has been largely adopted by the academic community.

1Model Driven Development (MDD), Model Driven Architecture (MDA), OMG are Trademarks of Object
Management Group, Inc.

Proceedings of MDISIS 2008 123

Nevertheless, this diversity of context meaning leads context-aware programming
more complex.

Some challenges found in context-aware applications development are:
� Context capture,
� Context representation,
� Context interpretation,
� Context adaptation,
� Context management,
� Context reuse.

To illustrate a common problem in context-aware application development,
imagine a system whose interface is developed to be displayed in a specific handheld
screen. If another device tries to display the same application's interface, it may not be
displayed on account of its different screen size.

To make this interface adaptation, system developers have to change the interface
parameters into the application code. This simple activity requires modifications in
many phases of the application development process and code recompilation.

Some recent works in context-aware application development separate context
information from application code.

Sheng et al.[6] propose an UML based language for the development of context-
aware web services. In their language metamodel a context class is responsible for
modelling context information. They classify context information on composite or
atomic. Composite context can provide multiple context vocabularies. Like others
works in the same domain, a particular mechanism to link context with web services
is required.

Ou et al. [7] have been applied MDA in context-aware application development.
They focus on the development of context-awareness based on ontologies. However,
they did not explore the use of transformation techniques.

Ceri et al. [8] propose a model language for the development of context-aware
web applications. They focus on context adaptation actions, context data
representation and management.

Different context formalisms and representation types have been used as XML
[9], ontologies, data bases, agents and others. But usually context adaptation depends
on particulars infrastructures like interpreters, wrappers, parsers, aggregators,
adaptors and other legacy artifacts.

All this arduous work developing context-aware application leads systems
designer and programmers to insert context into application code.

3 Context Metamodel

The OMG's MDA aims to provide a set of standards for Model Driven Development.
The principal concept in Model Driven Development is to standardize software
development by an approach based on models. MDA focus on business and technical
concerns separation in individual models by the concepts of PIM (Platform
Independent Model) and PSM (Platform Specific Model). It also introduces
transformation language concepts, transformation rules and transformation engine.

124 Proceedings of MDISIS 2008

In MDA approach everything is model. Each model is based on a metamodel and
a metamodel is based on a meta-metamodel. The MDA stack is separated in four
different abstraction levels: the meta-metamodel (M3) level (the most abstract one),
the metamodel (M2) level, the model (M1) level and the application execution level
(M0). Although, M0 does not correspond to a model it is represented as one.

A meta-metamodel is a language model for expressing a metamodel (e.g. MOF).
A metamodel is a language model for expressing a model (e.g. UML, EDOC)[10].

Some authors identified that model representation affords considerable benefits to
context-aware development and context representation. Henricksen and Indulska [11]
defined a context graphical language to model context data.

Tao Gu et al. [12] propose a context model based on OWL ontologies. The
principal reason of their choice is the capability of supporting semantic
interoperability to exchange, share and understand context information. They worked
with a set of different contexts provided by sensors, agents and others. So they
separate context in different domains to facilitate processing and interpretation by
mobile clients.

By the diversity of meaning, to develop a context meta-model expressing a
generic context is a difficult task.

We suggest the context representation using ontology concepts. “An ontology
defines the common terms and concepts (meaning) used to describe and represent an
area of knowledge” [13].

Ontologies have been used to represent complex knowledge and to improve
semantic and consistence to web applications. As aforementioned, there are some
works using ontologies to represent context information due to their variety of
meanings and sources.

Fig.1 presents our context metamodel based on ontology concepts and
represented by an agnostic UML formalism and based on ODM (Ontology Definition
Metamodel) [13] principles. ODM is the OMG MDA standard for ontology
development.

The context metamodel represents the context domain and definitions. We use
W3C's RDF (Resource Description Framework) to represent context information at
model (M1) level. RDF is used to describe and represent metadata associated with
resources. RDF is the formalism used in the ODM metadata layer. So it fits to context
representation provided in most cases by sensors or others artifacts but also by URI
(Uniform Resource Identifier) references. The context domain and data can be
described for developers and referenced as a URI.

RDF Schema (RDFS) is the abstraction of RDF and is MOF supported. RDFS
permits definitions of vocabularies to represent context in metamodel level.

 RdfsContextElement, as described in Fig.1, is a RDF Resource that represents
context elements. Resource is a semantic widespread concept to represent context in
metamodel level [14].

ContextElement represents any element that denotes context.
RDFSContainer represents URI context references or external context sources.
RDFSContextProperty represents context elements attributes, associations and

values.

Proceedings of MDISIS 2008 125

The advantages compared with UML attributes and associations are the
independence provided by Properties. Property can be defined independent of
associations as the opposite of UML classes.

RDFSContextDataType groups context data. We are interested in profile, device,
location and time context information due to their importance in most of context-
aware applications, as represented in the model (M1) level in Fig.1.

The data type is compatible with XML Schema abstraction and consists of the
triple: lexical space, value space and lexical to value mapping. A data type can also
be identified by a URI reference [14].

 As above mentioned, context reasoning is a challenge for developers. In some
cases the types of context information (Profile, Device, Location and Time) can
change in different applications. In certain ones, location for example, is not
contextual information whilst in others it is.

Applications can not adapt themselves to any context information due to its
variability of meanings. So specification of context scope is necessary to provide
context reasoning for applications.

The RDF of our context model can be represented by XML as follows:

<!-- example -->
<rdf:RDF xmlns:rdf=«http://www.w3.org/
1999/02/22-rdf/syntax-ns#»
xlmns:ex=«http://profile.org/schema/»>
<Profile rdf:ID=«name»>
<Device rdf:type=«MobilePhoneModel_M»/>
<Location rdf:position=«x,y»/>
<Time rdf:hourminute=«hh:mm»/>
</Profile>
</rdf:RDF>

 Fig. 1. Context Metamodel

Rdfs: Context
Element

Rdfs: Container
Rdfs: Context

DataType
Rdfs: Context

Property

M2

M1 Rdf: Profile Rdf: Device Rdf: Location Rdf: Time

126 Proceedings of MDISIS 2008

4 Context-awareness and Model Driven Architecture

The UML is the most used language to model oriented object systems and OMG's
MDA has enhanced the UML benefits by separating PIM (Platform Independent
Models) from PSM (Platform Specific Models) and by the use of transformation
techniques between these models. This approach using concerns separation leads
developers to decompose tasks and to represent them in different models.

The most important concepts in MDA are the mapping and transformation
techniques. UML PIM models can be mapped to XML, OWL, EDOC, BPEL and
others formalisms and a PIM model can be transformed to different platforms (PSMs)
like Web Services, CORBA or EJB.

Transformations provide to Model Driven Development a large flexibility in
reuse, adaptation and interoperability. Some techniques and different operations have
been defined, evolved and applied in models transformations.

There is no consensus about transformation terminologies nor transformation
patterns. MOF QVT [15] is the OMG proposition of a transformation language and it
presents two principal models operations: mapping and transformation.

Mapping is the “specification of a mechanism for transforming the elements of
model conforming to a particular metamodel into elements of another model that
conforms to another (possibly the same) metamodel” [15].

For many authors mapping and transformation operations mean the same
concept. In [16], the authors discuss the importance of distinguishing and separating
the concepts of mapping and transformation in the process of transformation in MDA.
In our context, we have analyzed some different techniques in the development of
model driven context-aware applications and propose the best fitted solution for
context-aware model driven development as described in the next section.

4.1 Parameterized Transformation

From PIM to PSM transformations are the heart of the MDA approach. The
advantage of different models construction, as PIM and PSM is the treatment of
different concerns in individual models. Different target platforms and languages can
be used to the same business logical represented by a PIM model.

The transformations can also be realized between models of the same type, i.e., a
PIM model can be modified by transformation techniques to another PIM model. The
same can occur with PSM models. This type of transformation is mainly used to
refine models.

Parameterized transformation consists on any model transformation based on
parameters. This transformation technique is not explored and there is not a standard
transformation language implementing it.

“A parameter specifies how arguments are passed into or out of an invocation of
a behavioural feature like an operation. The type and multiplicity of a parameter
restrict what values can be passed, how many, and whether the values are ordered”
[10].

Proceedings of MDISIS 2008 127

Frankel [17] mentions the importance of parameterization in model operations
using the association of tagged values with PIM and PSM models. Tagging model
elements allows the model language to easily filter out some specific elements.

Transformation by parameter could be used to improve new functionalities
(values, properties, operations) or to change the application behaviour (activities).

 In this work we present parameterized transformation focusing on PIM to PIM
transformations.

The designer must specify the parameters to be inserted at the transformation
phase. In our proposition these parameters are context or context-aware and after the
transformation the application will join the context information specified into the
parameters as illustrated in Fig.2.

Fig. 2. Parameterized Transformation Concepts

A PIM model can be developed without contextual details. User name, profiles,

device type, location can be added as parameters in transformations. The same PIM
can be re-transformed and refined many times adding, deleting or updating context
information.

We named PIM with context as CPIM (Contextual PIM). We can have different
CPIMs of the same PIM, i.e., the same business logic can be adapted to different
contexts by the contextual parameters adaptation. The CPIM fits together business
requirements with contextual activities, properties and data. A CPIM can generate a
CPSM (Contextual PSM) by the traditional transformation techniques, as shown in
Fig.3. The CPSM inherits business requirements and context from the CPIM.

CPSM specifies operation system requirements, programming languages,
middleware architectures and networking.

128 Proceedings of MDISIS 2008

 Fig. 3. From CPIM to CPSM Transformation

The designer has to specify into the application model the elements that will

receive the context information. A mark, identified by the symbol #, is given for these
elements to be recognized by the transformation engine. The marked elements
represent context-aware elements, in others words, the model elements that can be
contextualized.

The transformation language must be parameterized supported. In our case the
parameters can be a Context Property and/or a Context Data Type.

We use templates to specify which elements in application model are potentially
context-aware as depicted in Fig. 4.

 Fig. 4. Context Adaptation

The transformation engine has to navigate by the PIM model verifying the

parameters and the elements marked and then make the transformation.
Template parameter [10] is an element used to specify how classifiers, packages

and operations can be parameterized. UML 2.0 presents that any model element can
be templateable.

 For independent context-aware models we need to identify context elements that
could be parameterable. A parameterable element is an element that can be exposed

Proceedings of MDISIS 2008 129

as a formal template parameter for a template, or specified as an actual parameter in a
binding of template [10].

Context parameter can be expressed as constraint and compared with the
elements signature in template parameter. This operation is named as match
operation. UML presents a Template Signature element that defines the signature for
binding the template.

We resume our device adaptation example for a particular user. In Fig. 5 the PIM
model identifies a user that uses a device. The designer is not pressed on define the
type of the device in the PIM model. The context-aware elements, the device type in
this example, are marked with the # symbol to indicate to the transformation engine
the elements that will be contextualized. The transformation consists on context
information adaptation.

The User Element, presented in Fig. 5, has a Device Type parameterable property
expressed as a constraint in the template parameter. The match operation compares
the parameter expressions.

The context of the MobilePhoneModel_M is attached after the comparison.
After the parameterized transformation the DeviceType property of User will be

connected with a particular Device (context) element to supply to this model the
characteristics of the mentioned device. This is made by the includes operation at
instantiation time. In Fig. 6 we present our parameterized transformation metamodel.

Differently from traditional model transformations, the parameterized one has as
source model a set of contextual parameters and as target model the PIM marked

Fig. 5. Parameterized Transformation

130 Proceedings of MDISIS 2008

model. The designer determines which model element will be transformed by tagging
parameters.

The match operation is realized before the transformation one. The match binds
and checks the concerned (marked) elements that will be transformed. It is also
responsible for determining if a parameterable element is compatible with another
one.

Semantical interpretation among these elements can be supplied by the ontologies
use. Our context metamodel is ontology supported by the RDF interpretation.
According to W3C RDF Semantic [14] a RDF logical semantic is identified by a
triple(x,y,z) where x and z are semantical elements, data types or resources in our case
(represented by a string), and y is the relation between them. The context can be
represented by N-triples in URI references.

Nevertheless, we propose a semantic solution for context representation; this
paper does not focus on context interpretation.

In Fig. 7 we illustrate some examples of contextual RDF triples for our scope of
contextual elements. As aforementioned a rdf:property (instance of rdfs:property) is
MOF supported and can be a UML relationship, attribute or value.

The Match class, as illustrated in Fig. 6, is also responsible for navigating over
models. The OCL Rules class specifies the navigation rules using OCL (Object
Constraint Language).

Context
Element

OCL
Constraints

Match

Transformation Template
Parameter

Template

+expression

+parameter

+rules

+right +left

+actual +apply

markedElemt:elemt

+parameter

OCL
Rules

Fig. 6. Parameterized Transformation Metamodel

Parameterable
Element

CtxElement:elemt

PIM
Model

Templateable
Element

Proceedings of MDISIS 2008 131

OCL permits filter expressions to add platform requirements and context
information. The match operation generates the correspondences between the
elements of the Parameterable Element and its correspondents into the Template
Parameter. This can be realized by the use of the new SQL queries supported by OCL
2.0.

OCL owns a set of types and operations defined in its OCL Library. Some of the
types are integer, string, real and boolean. Although, OCL is easily adapted for new
types insertion and provides mechanisms for language extension. For example, the let
expression permits definitions of variables and expressions. OCL also allows
attachment of the new variables defined to a method or property.

 Fig. 7. Contextual RDF Triples

We define some OCL [18] extensions with the presence of the match operation. As

aforementioned, the match operation checks the correspondence of the elements
evolved in the parameterized transformation. The return value can be a type, property
or N-triple.

The match navigates over the model searching the marked elements and their
correspondences. The left and right models elements must have the same signature to
be interpreted as correspondents.

In other words, the constraint rules of the match operation identify that User_ID,
UserId or UserID has the same meaning. The semantic meaning of context elements
is expressed in the ontology vocabulary domain URI referenced.

The match operation products the correspondences and the transformation
operation applies context represented by the parameterable Element into the
Application Template Parameter. The match and transformation operations are
partially present as follows. The complete match rules for context-aware development
will be presented in future works.

rdf:profile, rdf:property, rdf:profile
rdf:location, rdf:property, rdf:location
rdf:device, rdf:property, rdf:device
rdf:time, rdf:property, rdf:time
rdf:profile, rdf:property, rdf:time
rdf:device, rdf:property, rdf:location
rdf:location, rdf:property, rdf:time
...

132 Proceedings of MDISIS 2008

5 Conclusion

In this work we presented our approach for context-aware application development in
the context of Model Driven Architecture. Everything is considered as model in
MDA approach and the application development is realized by a set of different
abstraction levels construction and the use of different transformation techniques.

We identify some important benefits of MDA as concerns separation, reuse of
models and interoperability. These features are skipped in many context-aware
applications.

By the application of MDA approach we supply its benefits in ubiquitous
computing. OMG's MDA proposes separation of platform details in different models.
We separate context information from business logic in individual ones.

We also propose the use of template parameters and the identification by a
specific mark of the context-aware elements in PIM models.

By the use of a particular transformation technique the contextual parameter
identified into the model will be contextualized with the parameterable element which
represents context information.

To accomplish this we propose parameterized transformation implemented with
OCL language. OCL is a pattern language commonly used for models operations. It
has many advantages as traceability concerns, UML supported and adaptability.

We propose our parameterized transformation metamodel composed principally
of match and transformation operations. Some extensions in OCL have been realized
to provide these functionalities.

We also propose for context information definition ontologies concepts
represented by RDF and RDFSchemas. Contrary to UML model, ontologies

match (TemplateParameter.markedElemt.
allparameters ->
collect(CtxElement |CtxElement.
ParameterableElement.
type(x,y,z) and
collect(MarkedElemt |markedElemt.
TemplateParameter.
type(x,y,z) and
select->(CtxElement |CtxElement.
ParameterableElement.
type(x,y,z)isCompatiblewith
MarkedElemt |markedElemt.
TemplateParameter.
type(x,y,z)
 result= select match{
correspondences->collect (c|match.
correspondences.at(index))}
Self -> transform (TemplateParameter |
TemplateParameter.Type(x,y,z).markedElement->
includes(parameterableElement))

Proceedings of MDISIS 2008 133

represented by RDF models supply reasoning and independence in context
information and are MOF supported.

As a future activity about this work we are implementing our parameterized
transformation engine based on the OCL language. The extensions proposed in OCL
syntax will also be implemented.

References

1. Weiser, M. The Computer for the 21s century, Scientific American, 94-104 (1991)
2. Abowd, G.D., Mynatt, E.D., Charting Past, Present and Future Research in Ubiquitous

Computing. ACM Transactions on Computer-Human Interaction, 7(1).29-58(2000)
3. Abowd, G.D., Mynatt, E.D. Rodden. T, The Human Experience. IEEE Pervasive

Computing.(1), 48-57(2002)
4. OMG(Object Management Group).Model Driven Architecture (MDA), document

number ormsc/2001-07-01(2001)
5. Dey A.K. , Salber D. and Abowd G. D. A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications., Human-Computer
Interaction Journal, pp. 97–166(2001)

6. Sheng Q. Z., and Benatallah B., ContextUML: A UML-Based Modeling Language for
Model-Driven Development of Context-Aware Web Services, The 4th International
Conference on Mobile Business (ICMB'05), IEEE Computer Society. Sydney,
Australia(2005)

7. Ou S., Georgalas N., Azmoodeh M., Yang K. and Sun X., A Model Driven Integration
Architecture for Ontology-Based Context Modelling and Context-Aware Application
Development, A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066,
pp.188–197. Springer-Verlag Berlin Heidelberg (2006)

8. Ceri S., Daniel F., Matera M., Facca F.M., Model Driven Development of
Context-aware Web Applications, ACM Transactions on Internet
Technology(TOIT), ACM Publisher, Volume 7, Issue 1, (2007)

9. W3C. XML specification. W3C document REC-XML11-200400204
10. OMG. UML 2.0 Superstructure, OMG document ptc/03-08-02, 2003.
11. Henricksen K, Indulska J., and Rakotonirainy A., Modeling Context Information in

Pervasive Computing Systems, F. Mattern and M. Naghshineh (Eds.): Pervasive 2002,
LNCS 2414, pp. 167–180, 2002.Springer-Verlag Berlin Heidelberg (2002)

12. Tao Gu, Xiaohang Wang, Hung Keng Pung, Daqing Zhang: An OWL-based Context
Model in Intelligent Environments. Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS'04), San Diego, California(2004)

13. OMG. Ontology Definition Metamodel. OMG document OMG/ RFP ad/2006-05-
01(2006)

14. W3C.RDF Semantics, W3C document rdf-mt, 10-02-04.
15. OMG. QVT-Merge Group. Query, View and Transformations for MOF 2.0. OMG

document RFP (ad/2002-04-10)(2004)
16. Lopes D., Hammoudi S., Bézivin J., Jouault F., Generating Transformation Definition

from Mapping Specification: Application to Web Service Platform, The 17th Conference
on Advanced Information Systems Engineering (Caise’05) LNCS 3520, 309-325, Porto-
Portugal (2005)

17. Frankel S. David., Model Driven Architecture: Applying MDA to Enterprise Computing,
Wiley Publishing, Inc(2003)

18. OMG. UML 2.0 OCL Specification, OMG document ptc/03-08-08(2003)

