Context-aware M odel Driven Development by
Parameterized Transformation

Samyr Valé? Slimane Hammoudi

' ESEO, 4 rue Merlet de la Boulaye BP 926, 49009 As1gedex 01 France
{samyr.vale, slimane.hammoudi}@eseo.fr

2 LERIA, Université d'Angers, 2 boulevard Lavoisié9045 Angers cedex 01 France

Abstract. Context-aware development has been an emergerdcsudj many

research works in ubiquitous computing. Few of thmepose Model Driven

Development as a standard on context-aware developnvany focus on

context capture and adaptation by the use of legackitectures and others
artifacts to input context into application logi€his work proposes Model
Driven Development to promote reuse, adaptabilityl anteroperability in

context-aware applications development. By concsgparation in individual

models and by transformation techniques contexteaprovided, modeled and
adapted independently of business logic and platfdetails. We also present
in this paper our context metamodel propositionedasn ontology concepts
and the parameterized transformation technique iexppio context-aware
development.

Keywords: Ubiquitous computing, MDA, Parameterization, Coriawtareness

1 Introduction

Nowadays, distributed B2B and B2C applications aggte more functionalities and
implement more complex business logic. Empowered ibtgrnet resources,
enterprises increase application integration wlithirt partners to provide better and
more services for internet users.

The new tendency in software development targmtdbile devices as client
applications. Mobile phones and others handhelg$aing used to access distributed
applications everywhere and at any moment. Metegicdl information, shopping
and GPS guides are some examples of applicati@essed by these device types.

Mobile web-supported devices simplify ubiquitoupligations development. The
term ubiquitous was firstly used by Weiser [1]. idealized a physical environment
with computational devices integrated (sensors,ef@mple). The goal was to help
users in their daily activities, in a transparergywby the use of a computational
environment with non-traditional devices. Nowadayshiquitous applications
development has been studied by various researchpgr Abowdet al [2][3]

122 Proceedings of MDISIS 2008

presented four issues in ubiquitous computimagural interfacescapture and access
of human activitiescontext-aware applicationsndeveryday computing

We focus on context-aware applications. That meamglications which use
context to realize required activities and to pdevirelevant information for users
without human interaction. The majority of contextare applications implement
business and contextual activities and data togeffleis programming practice
hampers software reuse and context management.

Motivated by this problem we apply MBI (Model Driven Development) in
context-aware applications development. OMGObject Management Group)
recommends the MDR (Model Driven Architecture) [4] approach as a stnoliin
Model Driven Development.

Models are the best way to represent the strucamek the semantic of the
concepts manipulated by a system. By the separatfoconcerns (business and
context) we improve reuse, interoperability, adhjitg and management of context
information. Context models can be built as indelgen pieces of application models
and at different abstraction levels then attachgdrénsformation techniques. We
have investigated different techniques to make exdnadaptation and we propose
some solutions for context integration into apglma model.

We present in this work our context metamodel fory®n the context types
most used in ubiquitous development and our parnmetl transformation
proposition. We also have made some extensior®i®CL language to adapt some
model transformation operations used to attachestmmito application models.

This paper is organized as follows. Section 2 prss¢he state of the art in
context-aware applications development and givesed discussion of related works.
Section 3 presents and describes our context meinio Section 4 we expose the
application of Model Driven Architecture in conteaitvare development and we also
describe the use of the parameterized transformdio context adaptation. Finally
we present our conclusions and ongoing activitiesiathis subject.

2 Context-aware Applications

Context-aware application is a topic of the Ubiqug Computing area. In most cases,
applications in this domain use some informaticat tharacterizes a particularity of
the user or the system itself to be more adaptaindeto respond to user needser
name location time, device type and profile are the most used contextual
information.

Dey [5] expanded context notion and defined ita®y information that can be
used to characterize the situation of an entity.efutity is a person, place or object
that is considered relevant to the interaction kedw a user and an application,
including the user and applications themselves”

This definition has been largely adopted by the dapdc community.

Model Driven Development (MDD), Model Driven Areftiture (MDA) OMG are Trademarks of Obj
Management Group, Inc.

Proceedings of MDISIS 2008 123

Nevertheless, this diversity of context meaningdée@ontext-aware programming
more complex.

Some challenges found in context-aware applicati@velopment are:

v/ Context capture,
Context representation,
Context interpretation,
Context adaptation,
Context management,

v' Context reuse.

To illustrate a common problem in context-aware liapfion development,
imagine a system whose interface is developed wid@ayed in a specific handheld
screen. If another device tries to display the sapmication's interface, it may not be
displayed on account of its different screen size.

To make this interface adaptation, system devesopave to change the interface
parameters into the application code. This simglividy requires modifications in
many phases of the application development pramegsode recompilation.

Some recent works in context-aware application kbgweent separate context
information from application code.

Shenget al[6] propose an UML based language for the devetpgmof context-
aware web services. In their language metamodeintext class is responsible for
modelling context information. They classify cortéxformation on composite or
atomic. Composite context can provide multiple eahtvocabularies. Like others
works in the same domain, a particular mechanistimkocontext with web services
is required.

Ou et al [7] have been applied MDA in context-aware agilmn development.
They focus on the development of context-awarebased on ontologies. However,
they did not explore the use of transformation téghes.

Ceri et al. [8] propose a model language for the developmértoatext-aware
web applications. They focus on context adaptatiactions, context data
representation and management.

Different context formalisms and representationetyfave been used as XML
[9], ontologies, data bases, agents and othersugudlly context adaptation depends
on particulars infrastructures likenterpreters wrappers parsers, aggregators,
adaptorsand other legacy artifacts.

All this arduous work developing context-aware #mgilon leads systems
designer and programmers to insert context intdiGaion code.

SNRNENRN

3 Context Metamode

The OMG's MDA aims to provide a set of standardsModel Driven Development.
The principal concept in Model Driven Development to standardize software
development by an approach based on models. MDésfoa business and technical
concerns separation in individual models by the cepts of PIM (Platform
Independent Model) and PSM (Platform Specific Mdddt also introduces
transformation language concepts, transformatitesrand transformation engine.

124 Proceedings of MDISIS 2008

In MDA approach everything is model. Each modddased on a metamodel and
a metamodel is based on a meta-metamodel. The MBék §s separated in four
different abstraction levels: the meta-metamodeB)Mvel (the most abstract one),
the metamodel (M2) level, the model (M1) level @hd application execution level
(MO0). Although, MO does not correspond to a moted represented as one.

A meta-metamodel is a language model for expressingetamodel (e.g. MOF).
A metamodel is a language model for expressing @ein@.g. UML, EDOC)[10].

Some authors identified that model representatifords considerable benefits to
context-aware development and context representatienricksen and Indulska [11]
defined a context graphical language to model comiata.

Tao Guet al [12] propose a context model based on OWL ontekg The
principal reason of their choice is the capabiliof supporting semantic
interoperability to exchange, share and understamtext information. They worked
with a set of different contexts provided by sessagents and others. So they
separate context in different domains to facilitatecessing and interpretation by
mobile clients.

By the diversity of meaning, to develop a contex¢tanmodel expressing a
generic context is a difficult task.

We suggest the context representation using ontotmmcepts. An ontology
defines the common terms and concepts (meanind)tasgescribe and represent an
area of knowledgd13].

Ontologies have been used to represent complex lkdge and to improve
semantic and consistence to web applications. Aseafentioned, there are some
works using ontologies to represent context infdioma due to their variety of
meanings and sources.

Fig.1 presents our context metamodel based on amyolconcepts and
represented by an agnostic UML formalism and base@DM (Ontology Definition
Metamodel) [13] principles. ODM is the OMG MDA stiard for ontology
development.

The context metamodel represents the context doamadnhdefinitions. We use
W3C's RDF (Resource Description Framework) to regme context information at
model (M1) level. RDF is used to describe and repmé metadata associated with
resources. RDF is the formalism used in the ODMachetia layer. So it fits to context
representation provided in most cases by sensooshers artifacts but also by URI
(Uniform Resource Identifier) references. The cahtdomain and data can be
described for developers and referenced as a URI.

RDF Schema (RDFS) is the abstraction of RDF anel@~ supported. RDFS
permits definitions of vocabularies to represemttegt in metamodel level.

RdfsContextElemengs described in Fig,lis a RDF Resource that represents
context elements. Resource is a semantic widesm@ackpt to represent context in
metamodel level [14].

ContextElementepresents any element that denotes context.

RDFSContainerepresents URI context references or externalksoisburces.

RDFSContextPropertyepresents context elements attributes, assotsatmd
values.

Proceedings of MDISIS 2008 125

The advantages compared with UML attributes andociations are the
independence provided by Properties. Property candéfined independent of
associations as the opposite of UML classes.

RDFSContextDataTypgroups context data. We are interestegrifile, device
location and time context information due to their importance in mo& context-
aware applications, as represented in the mode) (@&l in Fig.1.

The data type is compatible with XML Schema absimacand consists of the
triple: lexical spacevalue spaceandlexical to value mapping A data type can also
be identified by a URI reference [14].

Rdfs: Context
Element j

M2
] Rdfs: Context Rdfs: Context
Rdfs: Container DataType Property
| | | |
M1 | Rdf: Profile | | Rdf: Device | | Rdf: Location | |Rdf: Time |

Fig. 1. Context Metamodel

As above mentioned, context reasoning is a chgdleior developers. In some
cases the types of context information (Profile,vibe, Location and Time) can
change in different applications. In certain on&scation for example, is not
contextual information whilst in others it is.

Applications can not adapt themselves to any caniteormation due to its
variability of meanings. So specification of coritescope is necessary to provide
context reasoning for applications.

The RDF of our context model can be representedMly as follows:

<l-- example -->

<rdf: RDF xm ns: rdf =«http://ww. w3. or g/
1999/ 02/ 22-r df / synt ax- ns#»

xI ms: ex=«http://profile.org/schema/ »>
<Profile rdf:| D=«name»>

<Devi ce rdf:type=«Mobi | ePhoneMddel _M»/ >
<Location rdf: position=«x, y»/ >

<Ti me rdf: hour m nut e=«hh: mm»/ >
</Profile>

</ rdf : RDF>

126 Proceedings of MDISIS 2008

4 Context-awareness and M odel Driven Architecture

The UML is the most used language to model oriemtgjgct systems and OMG's
MDA has enhanced the UML benefits by separating FRatform Independent
Models) from PSM (Platform Specific Models) and the use of transformation
techniques between these models. This approacly wsincerns separation leads
developers to decompose tasks and to representithdifferent models.

The most important concepts in MDA are the mappargl transformation
techniques. UML PIM models can be mapped to XML, QWDOC, BPEL and
others formalisms and a PIM model can be transfdrioaifferent platforms (PSMs)
like Web Services, CORBA or EJB.

Transformations provide to Model Driven Developmentlarge flexibility in
reuse, adaptation and interoperability. Some teplas and different operations have
been defined, evolved and applied in models transdtions.

There is no consensus about transformation teromgiesd nor transformation
patterns. MOF QVT [15] is the OMG proposition ofransformation language and it
presents two principal models operations: mappirdyteansformation.

Mapping is the $pecification of a mechanism for transforming theneents of
model conforming to a particular metamodel intonedémts of another model that
conforms to another (possibly the same) metamddél].

For many authors mapping and transformation operatimean the same
concept. In [16], the authors discuss the imporarfcdistinguishing and separating
the concepts of mapping and transformation in tieegss of transformation in MDA.
In our context, we have analyzed some differennigpies in the development of
model driven context-aware applications and propibse best fitted solution for
context-aware model driven development as desciib#dte next section.

4.1 Parameterized Transfor mation

From PIM to PSM transformations are the heart o MDA approach. The
advantage of different models construction, as Rl PSM is the treatment of
different concerns in individual models. Differaatget platforms and languages can
be used to the same business logical representadPbiyi model.

The transformations can also be realized betweedelsmf the same type, i.e., a
PIM model can be modified by transformation techmeisjto another PIM model. The
same can occur with PSM models. This type of tamsétion is mainly used to
refine models.

Parameterized transformation consists on any modeksformation based on
parameters. This transformation technique is nptoggd and there is not a standard
transformation language implementing it.

“A parameter specifies how arguments are passeal dntout of an invocation of
a behavioural feature like an operation. The typwl anultiplicity of a parameter
restrict what values can be passed, how many, arether the values are ordered”
[10].

Proceedings of MDISIS 2008 127

Frankel [17] mentions the importance of parame&dion in model operations
using the association of tagged values with PIM BS&M models. Tagging model
elements allows the model language to easily fitdrsome specific elements.

Transformation by parameter could be used to improew functionalities
(values, properties, operations) or to change pipéiGation behaviour (activities).

In this work we present parameterized transforomafocusing on PIM to PIM
transformations.

The designer must specify the parameters to betéwseat the transformation
phase. In our proposition these parameters ar@xiat context-aware and after the
transformation the application will join the conterformation specified into the
parameters as illustrated in Fig.2.

PIM

T1 <<parameterized>>

Parameter

CPM, |l |
: <<parameterized>>
@ Y

Parameter
CPIM, |= |
fn <<parameterized>>
7] v
Parameter
CPIM,_ |« |

Fig. 2. Parameterized Transformation Concepts

A PIM model can be developed without contextuabidet User name, profiles,
device type, location can be added as parametdrarisformations. The same PIM
can be re-transformed and refined many times addiatpting or updating context
information.

We named PIM with context as CPIM (Contextual PIMje can have different
CPIMs of the same PIM, i.e., the same busines< logh be adapted to different
contexts by the contextual parameters adaptatibe. CPIM fits together business
requirements with contextual activities, properéesl data. A CPIM can generate a
CPSM (Contextual PSM) by the traditional transfatioya techniques, as shown in
Fig.3. The CPSM inheritsusiness requirements and context from the CPIM.

CPSM specifies operation system requirements, progiing languages,
middleware architectures and networking.

128 Proceedings of MDISIS 2008

— CPIM
Context :
+ [I p| _ Traditional
Platform T Transformation
Requirements . Techniques
= CPSM

Fig. 3. From CPIM to CPSM Transformation

The designer has to specify into the applicatiord@hdhe elements that will
receive the context information. A mark, identified the symbo#, is given for these
elements to be recognized by the transformationinengThe marked elements
represent context-aware elements, in others wah#gsmodel elements that can be
contextualized.

The transformation language must be parameterigpgosted. In our case the
parameters can be a Context Property and/or a &iddéda Type.

We use templates to specify which elements in agfitin model are potentially
context-aware as depicted in Fig. 4.

Template w Context

Parameter Property
\ Context
i parameters; DataType

f_‘

Transformation
Specification

FParameterized
Transformation

Fig. 4. Context Adaptation

The transformation engine has to navigate by thé Riodel verifying the
parameters and the elements marked and then maketisformation.

Template parameter [10] is an element used to fgphoiv classifiers, packages
and operations can be parameterized. UML 2.0 ptedbat any model element can
betemplateable

For independent context-aware models we needetatifgt context elements that
could beparameterable A parameterableslement is an element that can be exposed

Proceedings of MDISIS 2008 129

as a formal template parameter for a templatepecifed as an actual parameter in a
binding of template [10].

Context parameter can be expressed as constradhtcampared with the
elements signature in template parameter. This abtiper is named asnatch
operation. UML presents a Template Signature eléthe defines the signature for
binding the template.

We resume our device adaptation example for aquéati user. In Fig. 5 the PIM
model identifies a user that uses a device. Thigesis not pressed on define the
type of the device in the PIM model. The contexaeavelements, the device type in
this example, are marked with the # symbol to iadico the transformation engine
the elements that will be contextualized. The fti@msation consists on context
information adaptation.

The User Element, presented in Fig. 5, has a Dé\pe parameterable property
expressed as a constraint in the template paranitematchoperation compares
the parameter expressions.

User Device '~~~ TTTTTTTyTTTTTTTTTrmrrmeee
User_Name: string="John" #DeviceType: type="Model "
#DeviceType: type="Wadel " ::"KeyboardType:type:”Keyboard‘
PIM Preferences: string DisplayType:type="Display"
' i *
<<mate b | o <<match>>

v DeviceType ->Type: MobilePhoneModel_M !

Mobile Phone

Context Model_ M

#DeviceTypa=type

Keyboard

Fig. 5. Parameterized Transformation

The context of thdlobilePhoneModel Nk attached after the comparison.

After the parameterized transformation tbeviceTypeoroperty ofUser will be
connected with a particulddevice (context) element to supply to this model the
characteristics of the mentioned device. This iglenhy theincludesoperation at
instantiation time. In Fig. 6 we present our partamieed transformation metamodel.

Differently from traditional model transformatiorthie parameterized one has as
source model a set of contextual parameters arndrgst model the PIM marked

130 Proceedings of MDISIS 2008

model. The designer determines which model elemvédhbe transformed by tagging
parameters.

The matchoperation is realized before the transformatior.orhe match binds
and checks the concerned (marked) elements thatbwiltransformed. It is also
responsible for determining if a parameterable eletms compatible with another
one.

Semantical interpretation among these elementbeasupplied by the ontologies
use. Our context metamodel is ontology supportedti®y RDF interpretation.
According to W3C RDF Semantic [14] a RDF logicahsatic is identified by a
triple(x,y,z)wherex andz are semantical elements, data types or resouraag icase
(represented by a string), andis the relation between them. The context can be
represented by N-triples in URI references.

Nevertheless, we propose a semantic solution fotesd representation; this
paper does not focus on context interpretation.

In Fig. 7 we illustrate some examples of contex®BIF triples for our scope of
contextual elements. As aforementioned a rdf.ptgp@nstance of rdfs:property) is
MOF supported and can be a UML relationship, aitgtor value.

The Match class, as illustrated in Fig. 6, is also oesible for navigating over
models. The OCL Rules class specifies the navigatides using OCL (Object
Constraint Language).

Context —> Template ocL
Element .
Constraints
Zﬁ +expression
Templateable Match +rules oCL
Element Rules
+left +right
+parameter +parameter
Parameterable Transformation Template
tual
Element ractua *PRY| parameter
CtxElement:elemt markedElemt:elemt
PIM
Model

Fig. 6. Parameterized Transformation Metamodel

Proceedings of MDISIS 2008 131

OCL permits filter expressions to add platform riegments and context
information. The match operation generates the correspondences between th
elements of the Parameterable Element and its sponglents into the Template
Parameter. This can be realized by the use of@heSQL queries supported by OCL
2.0.

OCL owns a set of types and operations definetsi®CL Library. Some of the
types are integer, string, real and boolean. AlgioOCL is easily adapted for new
types insertion and provides mechanisms for langetension. For example, the
expression permits definitions of variables and regsions. OCL also allows
attachment of the new variables defined to a methqatoperty.

rdf : profile, rdf:property, rdf:profile
rdf:location, rdf:property, rdf:location
rdf: device, rdf:property, rdf:device

rdf :tinme, rdf:property, rdf:tine

rdf : profile, rdf:property, rdf:tine

rdf : device, rdf:property, rdf:location
rdf : 1 ocation, rdf:property, rdf:time

Fig. 7. Contextual RDF Triples

We define some OCL [18] extensions with the presesfdhematchoperation. As
aforementioned, the match operation checks theespondence of the elements
evolved in the parameterized transformation. Thernevalue can be a type, property
or N-triple.

The match navigates over the model searching thk&kandaelements and their
correspondences. The left and right models elenmantt have the same signature to
be interpreted as correspondents.

In other words, the constraint rules of thatchoperation identify thatUser_ID,
Userld or UserID has the same meaning. The semantic meaning oéxtoglements
is expressed in the ontology vocabulary domain kéfdrenced.

The match operation products the correspondences and thesforanation
operation applies context represented by the pdeaaide Element into the
Application Template Parameter. The match and foamstion operations are
partially present as follows. The complete matdegdior context-aware development
will be presented in future works.

132 Proceedings of MDISIS 2008

mat ch (Tenpl at ePar anet er . mar kedEl ent .
al | paraneters ->

col l ect (Ot xEl ement | Ct xEl enent .

Par aret er abl eEl ement .

type(x,y,z) and

col | ect (Mar kedEl ent | mar kedEl ent .
Tenpl at ePar anet er .

type(x,y,z) and

sel ect->(Ct xEl ement | Ct xEl enent.

Par amet er abl eEl enent .
type(x,y,z)isConpatiblewth

Mar kedEl emt | mar kedEl ent .

Tenpl at ePar anet er .

type(x,y, z)

result= sel ect match{
correspondences->col | ect (c| match.
correspondences. at (i ndex))}

Self -> transform (Tenpl at ePar aneter |
Tenpl at ePar anet er . Type(x, Yy, z). mar kedEl erment - >
i ncl udes(par anet er abl eEl enent))

5 Conclusion

In this work we presented our approach for contex&re application development in
the context of Model Driven Architecture. Everythins considered as model in
MDA approach and the application development idized by a set of different
abstraction levels construction and the use oérbffit transformation techniques.

We identify some important benefits of MDA as camseseparation, reuse of
models and interoperability. These features ar@p&d in many context-aware
applications.

By the application of MDA approach we supply itsneéts in ubiquitous
computing. OMG's MDA proposes separation of plaifatetails in different models.
We separate context information from business logindividual ones.

We also propose the use of template parametersttanddentification by a
specific mark of the context-aware elements in Ribtlels.

By the use of a particular transformation techniqne contextual parameter
identified into the model will be contextualizedtivithe parameterable element which
represents context information.

To accomplish this we propose parameterized tramsfion implemented with
OCL language. OCL is a pattern language commondyl der models operations. It
has many advantages as traceability concerns, UMpated and adaptability.

We propose our parameterized transformation metalnmaimposed principally
of matchandtransformationoperations. Some extensions in OCL have beerzeghli
to provide these functionalities.

We also propose for context information definitioontologies concepts
represented by RDF and RDFSchemas. Contrary to Umihdel, ontologies

Proceedings of MDISIS 2008 133

represented by RDF models supply reasoning andpeémence in context
information and are MOF supported.

As a future activity about this work we are implertieg our parameterized

transformation engine based on the OCL language.€ktensions proposed in OCL
syntax will also be implemented.

References

1. Weiser, M. The Computer for the 21s century, Sdiertimerican, 94-104 (1991)

2. Abowd, G.D., Mynatt, E.D., Charting Past, Preserd Bature Research in Ubiquitous
Computing. ACM Transactions on Computer-Human Intévac®(1).29-58(2000)

3. Abowd, G.D., Mynatt, E.D. Rodden. T, The Human Eigme. IEEE Pervasive
Computing.(1), 48-57(2002)

4., OMG(Object Management Group).Model Driven Architeet (MDA), document
number ormsc/2001-07-01(2001)

5. Dey AK., Salber D. and Abowd G. D. A conceptfir@mework and a toolkit for
supporting the rapid prototyping of context-awangplecations., Human-Computer
Interaction Journal, pp. 97-166(2001)

6. Sheng Q. Z., and Benatallah B., ContextUML: A UML-Bhdéodeling Language for
Model-Driven Development of Context-Aware Web Seegic The 4th International
Conference on Mobile Business (ICMB'05), IEEE Computerci®y. Sydney,
Australia(2005)

7. OuS., Georgalas N., Azmoodeh M., Yang K. and %yrA Model Driven Integration
Architecture for Ontology-Based Context Modellingda@ontext-Aware Application
Development, A. Rensink and J. Warmer (Eds.): ECMDW-FO06, LNCS 4066,
pp.188-197. Springer-Verlag Berlin Heidelberg (2006)

8. Ceri S., Daniel F., Matera M., Facca F.M., Modeliven Development of
Context-aware Web Applications, ACM Transactions omternet
Technology(TOIT), ACM Publisher, Volume 7, Issug2007)

9. WS3C. XML specification. W3C document REC-XML11-20040d2

10. OMG. UML 2.0 Superstructure, OMG document ptc/03028 2003.

11. Henricksen K, Indulska J., and Rakotonirainy A., Mgy Context Information in
Pervasive Computing Systems, F. Mattern and M. Nagkh (Eds.): Pervasive 2002,
LNCS 2414, pp. 167-180, 2002.Springer-Verlag Berlkaiddlberg (2002)

12. Tao Gu, Xiaohang Wang, Hung Keng Pung, Daging Zh&myOWL-based Context
Model in Intelligent Environments. Communication Wetks and Distributed Systems
Modeling and Simulation Conference (CNDS'04), Sargbj&alifornia(2004)

13. OMG. Ontology Definition Metamodel. OMG document @M RFP ad/2006-05-
01(2006)

14. W3C.RDF Semantics, W3C document rdf-mt, 10-02-04

15. OMG. QVT-Merge Group. Query, View and Transformatiofor MOF 2.0. OMG
document RFP (ad/2002-04-10)(2004)

16. Lopes D., Hammoudi S., Bézivin J., Jouault F., Gatireg Transformation Definition
from Mapping Specification: Application to Web Sieer Platform, The 17 Conference
on Advanced Information Systems Engineering (CaelONCS 3520, 309-325, Porto-
Portugal (2005)

17. Frankel S. David., Model Driven Architecture: Applg MDA to Enterprise Computing,
Wiley Publishing, Inc(2003)

18. OMG. UML 2.0 OCL Specification, OMG document ptc/03-08(2003)

