
USER VIEWS -- A MECHANISM FOR A USER-FRIENDLY INTERFACE TO A
LARGE-SCALE DATABASE MANAGEMENT SYSTEM*

A. Adamska, H.D. Covvey, D. Corneil and E.D. Wigle

Toronto General Hospital and the University of Toronto
Toronto, Ontario, Canada

Abstract

The concept of an external views system (EVS)
for a database management system (DBMS) was intro-
duced a long time ago. The idea is to allow a user
to perceive data in the form most convenient for
him. Thus the user can focus on those data and
those relationships that are of some interest,
ignoring all others.

Few commercial DBMS support the above concept
to even a limited extent. We have designed and
implemented our EVS on top of the TOTAL (Cincom)
database system.

The particular requirements of the medical
research environment allowed us to restrict the
operations on views to retrieval only and thus
helped to avoid numerous problems connected with
update operations via views. Using our EVS-system
casual users can access a view with little or no
instruction.

Introduction

The Problem and Why Solve it

A large number of institutions utilize
computer-based DBMS as a tool for storage of
patient and research data. These systems are use-
ful tools for programmers and technically trained
personnel, but usually fall short of fulfilling the
needs of casual users.

We have addressed the problems of casual user
access and will present here a solution, based on a
commercial DBMS (TOTAL), that is designed to sup-
port external user views -- a mechanism for allowing
users to access a DBMS as if it was created only to
serve their specific needs. Our External Views
System (EVS) has been developed for the existing
DBMS in the Division of Cardiology of Toronto
General Hospital.

Overview of the DB and EVS Concepts

In order to understand the idea of the external
views, we must be aware of database architectures.
The remaining part of this section introduces the
DBM and EVS concepts. The second section presents
some of the existing EVS systems. In the third
section we describe the computing environment where
our design took place. The fourth section contains
the actual design of the EVS. Our conclusions are
in the last, fifth section.

The ANSI/SPARC Architecture Overview. The

*WORK SUPPORTED BY THE ONTARIO HEART FOUNDATION

need for a convenient users' interface was recog-
nized in 1970 in the Guide and Share report. A
similar interest was shown in the ANSI/X3/SPARC

report in 1975.

The main components of ANSI/SPARC framework
are: persons with rotes, processing functions, and
the interfaces among them. The ANSI/SPARC database
structure is divided into three levels: the inter-
nal schema, the conceptual schema, and the external
schema.

The internal level is closest to the physical
storage of data.

The heart of the system is the conceptual
schema, which is the next level. It describes the
enterprise as an entity and should change only with
the enterprise itself. This level is logically
placed between the internal and the external levels.

The third level is the external level. It is
closest to the user by providing an application
oriented view of data. Logically, an external view
is like a window presenting the user with an up-to-
date version of the requested parts of data.

Data Independence and Security. An important
advantage of viewing a database according to the
ANSI/SPARC framework is the high level of data
independence that is implicit. The external user
views can be tailored to user's needs and all
interaction with the database restricted to only
the required data and structures. There is no need
for any user to be aware of or concerned about the
internal structure and it can be changed to ensure
greater efficiency with no impact on the users.
Although user views of the database may change, the
conceptual level remains unchanged. The only
changes reauired are the mappings between levels.

A user may select his view from the conceptual
schema by selection of data items and by creating
structures. Depending on the models a given system
supports, the user may omit in the external schema
data items, records, sets, etc. from those on menu
in the conceptual level. The user may also want to
use different domains for data items, such as:
a) different units for numeric values may be used
(e.g. kilograms instead of pounds); b) the data
types may be different (by data type we mean the
representation chosen for domain values, such as
numbers in different bases, character strings, etc.);
c) if a conceptual domain is coded, we may wish to
use either the codes, or the decoded values of the
conecptual domain; d) the external domain may be
virtual, that is its values are computed, based on

847
0195-4210/82/0000/0847$00.75 © 1982 IEEE

some algorithm, from several conceptual domain
values, or the conceptual domain may be split into
two or more external domains.

A user may want to use a specific structure
for his data different from its conceptual level
structure.

The use of an external schema is one way secu-
rity constraints can be enforced. User views can
be created to deprive a user of access to informa-
tion to which he or she does not have a right of
access.

Support of the Multiple Views. A multiple
view support system is a facility that allows the
users to see a datababase in many different forms
even when the underlying information is the same.
The difference would lie in the data taken into
consideration.

Just as for different views, different models
for those views can also be supported. This allows
a user to consider a database in a model of choice
and to employ the desired data language. Examples
of models would be hierarchical, network and
relational.

Updates. As we have mentioned before, a view
is a window. Data manipulation statements can be
supported, in general, if there exists a one-to-one
mapping between a view and an underlying relation.
This means that if the view is a join of two or
more relations and is defined by an application of
aggregate functions, updates are complicated and
require extra conditions.

If no update operations are supported through
a view, then such a view is called a snapshot. It
must be created each time there is a change in the
underlying relations that concern this view.

An extensive study on possibility of update
2 7

support can be found in and . Both papers
present tables of transformations of view updates
to updates in underlying relations. J.M. Osman

10
in presents an even more complicated system,
where some of the views are kept explicitly for
further reference. He states the conditions update
operations have to satisfy in order for such
requests to be allowed.

We will show here an example of update opera-
tion on a view obtained through a join operation.
Let us consider the following relations:

Students and Their
Courses
Student# Course#

SM17 CS220
SD29 CS231
SK37 CS231

Teachers and Their
Courses
Teacher# Course#

TD4 CS220
TD5 CS220
TR6 CS231

Figure 1

The view would be a simple join over a COURSE# and
would show for each student all the teachers he
could choose from.

Student#
SM17
SM17
SD29
SK37 1t Teacher#

TD4
TD5
TR6
TR6 1t Course#

CS220
CS220
CS231
CS321

Figure 2

If the deletion of SD29, TR6, CS231 would be
translated into deletions of SD29, CS231 and
TR6, CS231 from underlying relations in Figure 1,
then SK37, TR6, CS231 would also disappear from the
view. On the other hand, an insertion of SM49, TR3,
CS220 translated into insertions SM49, CS220 and
TR3, CS220 will cause the appearance of SM17, TR3,
CS220; SM49, TD4, CS220 and SM49, TD5, CS220.

The problem with a deletion in the above exam-
ple can be solved by applyingdifferent translations,
It is enough to perform a deletion in one instead
of in two of the underlying relations. In our
example it is a STUDENTS AND THEIR COURSES relation.
There is no simple solution to the insertion
problem. By eliminating all the views that cannot
support correct updates, we end up with the class

of updatable relations identified in .

The complexity of this problem sharply in-
creases in a multi-model environment. In addition,
some of the frequently accessed user views might be
stored explicitly and the updates on them should be
propagated as well. It is not surprising that
existing commercial systems support little of the
rich theory behind the external schema.

Previous Work on Views

Existing Systems Supporting User Views

Which models have commercial systems chosen
for each level in the database architecture and
especially for the external level? How sophistica-
ted is this level and what are its main features?

3SYSTEM R is an experimental relational data-
base system. It supports new relations (views) by
storing their definitions expressed as queries.
Any actions performed against the external views
are done by query modification.

INGRES is another relational experimental
database system. It handles external views in a
manner very much the same as in SYSTEM R. In both
systems, users are presented with relational
views only.

CHEOPS' database offers a user a choice in the
model of a view (relational, hierarchical or net-
work) he or she would prefer to use. The queries
and updates against a vew are translated into the
ones against a conceptual schema. This feature
saves the effort of creating a view. The extent of
allowed operations is limited to the class of up-
datable relations mentioned in the Updates section.

ZETA9 is yet another experimental relational
system supporting user views. The user views are
maintained by keeping a list of pointers to the
tuples in the underlying conceptual relations.

There also exist query languages like ISBL
12(Information System Base Language) and QBE

848

--

(Query-by-example) that are able to support an
external view. They contain a feature that allows
the execution of a statement to be deferred. LIST
or VIEW commands evoke such query definitions and
present users with contents of their views.

Let us now look at commercial systems.

In IMS, external views defined over conceptual
schemas may omit some of the conceptual segments,
together with their children. Some portions of the
tree may be inverted. Each external view has a
list of operations allowed. In general, all update
operations against a view may be performed.

IDMS (a DBTG database system) has external
views defined in terms of subschemas, which are
simply subsets of schemas. Deletions and modifica-
tions (as well as retrieval) can be performed on
views and resulting changes will be carried onto
the conceptual schema.

We may conclude that the external views are
rarely supported in entirety, and reality is far
behind the rich external views theory. In most
existing systems the flexibility in data items'
domains is limited to the change of data types and
the update operations are allowed on specific views
only.

Descriptions of the Existing Database Systems

The Purpose of the Existing Database System

The Division of Cardiology at Toronto General
Hospital uses a database system for the support of
numerous clinical research projects. The main goal
of this system is the collection of information
about diagnostic investigations, surgical and
medical treatment, and followup on patients with
heart disease.

The system provides services for the genera-
tion of patient visit reports and supports clinical
cardiovascular research projects. Researchers
typically wish to select specific information about
patients that satisfy some criteria, for example,
all male patients with a given disease who had a
given procedure during the year 1980.

The entry of information is done basically
through optical mark-sense forms. Physicians or
other hospital personnel fill in the proper form
for each patient visit or procedure. A large
volume of information is entered daily and the
amount of data stored grows rapidly, as the infor-
mation is to be kept for many years.

Another characteristic of the above system is
that cardiovascular projects are initiated and ter-
minated frequently. This requires the constant
evolution of the database and the queries made on-it.

System Design Overview

The architecture of the Cardiovascular Data-
base System is based on ANSI/SPARC guidelines and
consists of three levels.

The tools used for implementing the above
system are network DBMS TOTAL (Cincom) anda package

6
called DIET (Data Independence Extension to TOTAL).
All application programs are written in FORTRAN IV.

The Cardiovascular DBS has the following major
hardware components: a V77-824 minicomputer system
with .75 megabytes of internal memory; two 150
megabyte disk drives; two 800/1600 tape drives
(751PS); a 16 channel communication multiplexor; a
300LPM line printer and a variety of remote and
local terminals.

System Design

The functions of the internal level are per-
formed by TOTAL. An interface with TOTAL has been
accamplished by creating an internal database
schema that is fully compatible with TOTAL.

The conceptual schema is defined in terms of
"forms,' which in turn are organized in a network.
This allows an easy interface with TOTAL and the
possibility of either networks or hierarchies of
forms at the external level. (Until, the works
reported here, there was a one-to-one correspon-
dence between external and conceptual forms.)

The operations allowed on the conceptual and
external level are add, delete, modify and view.

Mapping between levels is done with help of
the Data Dictionary/Directory (DD/D). The DD/D is
a separate database that contains the information
about internal, conceptual and external schemas,
mapping between them, encoding and decoding tables
for each field, field value constraints and
security constraints.

User requests are translated through mappings
from the conceptual schema to the internal schema
and from the internal schema to the internal
storage. Those mappings are performed by transla-
tion routines, which use run-time conversion files
created from the DD/D for each conceptual form.

This system is straightforward for everyday
maintenance and use, and powerful enough to satisfy
the needs of some research projects. What it lacks,
however, is a more sophisticated external schema,
one that would allow a user to view the data in any
fashion. Currently, a user is able to visualize
the data as a collection of numerous studies on
patients. The ability to see information from two
or more studies at the same time would clearly con-
stitute a step toward a better external schema.

Design of the External Views System

Restrictions and Selection of Options in Design

Restriction: No update operations supported
through views.

Reason: The existing cardiovascular database
in the Division of Cardiology presents data entry
users and physicians making patient oriented re-
trieval requests with a specific view of the data.
The users visualize the stored information in terms
of forms, each form corresponding to the specific
cardiovascular study or test. All updates are
carried out at this level.

Restriction: Our initial external views system
will use a relational model.

Reason: The relational model, which represents
the information in the form of a table, is the most
simple model, is easily understood and is commonly

used. Some claim3 that users visualize the data in

849

the form of hierarchies. Hospital input personnel
may be thinking in terms of hierarchies, but
researchers view the database as a table. The rows
of a table correspond to different patients and the
columns to patient results.

Choice: External views will be created when
demanded.

Reason: There are two possible ways of keeping
external views. Explicit external views have
serious weaknesses -- storage overhead and the
maintenance of structure caused by the duplication
of data, or indices to provide access to the view
data.

Data Required for an External Views System

Choice: Data about a new external views
system should be kept as a part of the DD/D.

Reason: Keeping the data about the external
views system as a part of the existing DD/D allows
the use of the existing DD/D system and prevents
possible inconsistencies between two DD/D's.

The External Views Definition Language

The entry of the data to define a view is done
by means of the External Views Definition Language
(EVDL). There are many possible choices for such a
language. As our system is oriented simply to the
casual user, the ease of use should be the main
factor in our choice.

The solution is a man-computer dialogue (menu)
with numerous on-line manuals and explanations.

The EVDL for the medical database places
significant emphasis on the time factor. The time
factor inherent in medical data influences the way
users will like to see data in the database.
Therefore, a specific mechanism should be employed
to help the users in the manipulation of time
factors. We have decided to incorporate the time
factor into the specification of which occurrence
of a given piece of information is required in the
external view. For example FIXED RATE (LAST) would
represent the fixed rate of a pacemaker at the very
last visit in time. The choice of which is the
last visit is done based on the visit or procedure
date. Similarly, MAGNET RATE (IAST -- 3 MONTHS)
will correspond to the magnet rate from the most
recent visit that took place at least three months
before the last one.

We will now present, in an example, the form
of the EVDL:

ENTER THE NAME OF YOUR VIEW:
tes-tl

ENTER THE NAME OF AN EXTERNAL ELEMENT:
pcmk rate

LIST THE ELEMENTS PCMK RATE IS TO BE
CALCULATED FROM FORM NAME?

ccsu

QUESTION NUMBER WITH TIME FACTOR?
#17 (last-3visit)

FORM NAME?
ccsu

QUESTION NUMBER WITH TIME FACTOR?
#17 (last-lOvisit)

FORM NAME?
(* carriage return only *)

SPECIFY THE WAY PCMK RATE IS TO BE CALCULATED:

1, EVALUATION OF CONDITION
2. CONCATENATION OF ALL ELEMENTS

1
ENTER THE CONDITION THIS ELEMENT HAS TO
SATISFY.
AS OPERANDS USE WORD "FROM" FOLLOWED BY A FORM
NAME AND A QUESTION NUMBER WITH TIME FACTOR.
from ccsu#17 (last-lOvisit) -from ccsu#17 (last-
3visit)
ENTER THE NAME OF AN EXTERNAL ELEMENT:

(* repetition of the above *)
(* for every new element *)

SPECIFY THE BOOLEAN CONDITION
from ccsu

JOINING CONDITION
from ccsu #1 = from ccsu #1

WHAT ARE THE CONDITIONS YOUR VIEW HAS TO
SATISFY?

(from ccsu #17 (last-3visit)> '0.5').

Modules Involved in the External Views System

The external views system consists of two
parts: view establishment and view access.

View establishment deals with all the actions
behind the definition and creation of external
views. The information about each new view is
gathered by means of the View Definition Language.
Data thus obtained is checked for syntactical and
structural correctness by the View Definition
Verifier Module. A correct view is one for which
retrieval is feasible, i.e. there exist access
paths to all the desired elements. All the infor-
mation necessary for this module is supplied by
DD/D. Figure 3 shows the modules behind the
external views system.

Figure 3

Once the consistency checking stage is fin-
ished, the data may be stored in DD/D.

The Access Oriented Information Construction
Module performs certain pre-processing functions.
It uses the information stored in the DD/D to con-
struct the data structure to speed up the future
display of the view contents. Since we are dealing
with the I/O bound system, it is to our advantage

850

to be able to have all the information necessary
for the retrieval in the main memory.

There is another module, not presented in the
diagram on Figure 3, that will be required. It
seems highly desirable to be able to present a user
with the option of specifying his or her own output
format. The Output Specification Module should be
activated after the Access Oriented Information
Construction Module.

At the present time, the output format is
standard for all external views and consists
basically of the list of external element names
and retrieved values. In cases where two or more
conceptual fields are concatenated to form one
external element, blanks are inserted between
conceptual fields.

Retrieval Language

The View Access Module will provide the user
with the contents of his or her view. The request
should be stated through the Retrieval Specification
Language.

Choice: Simple 'LIST' statement with the
option of a condition.

Reason: Since we are dealing with a casual
user, simplicity is an important factor. Another
factor is the ability to retrieve all the required
information. Users are assisted in the process of
the definition of the views by the computer person-
nel. Everyday use, however, should be straight-
forward and problem-free. The language used would
be of the following format: LIST(list of
attributes)FROM(view name) WHERE (condition).

Instead of the list of attributes we could
have the word 'ALL' and all the view items defined
would be retrieved. The part specifying the con-
dition is optional and the condition itself may be
specified only on the attributes belonging to the
given view.

The present version of EVS does not include
the above LIST statement. Instead it allows the
user to see each record belonging to that particu-
lar view, one at a time. The conditions that could
be specified in the LIST statement may be included
during the view definition stage. This would mean
the creation of more specific views. The implemen-
tation of the LIST statement will be one of the
future enhancements of EVS.

Conclusions

The implementation of the external view system
was completed in FORTRAN by the author over a 4-
month period.

The implementation of EVS has shown that an
external views system can be installed successfully
on top of a commercial database.

The EVS allows the user to define views based
on conceptual elements from all the physical data-
bases. The time oriented definition gives more
ease in conceptual element specification. The
external element domains may differ from the con-
ceptual. Such changes are possible through the
specification of algorithms (concatenation and per-
formance of conditions). Finally, the user is

presented with a view in a table form even though
the underlying database has a network structure.

References

1. ANSI/X3/SPARC Study Group on Database Manage-
ment System Interim Report, ACM SIGMOD FDT
7,2 (1975).

2. Arora AK, Carlson CR: "On the Updaptability
of Consistent Relational Views," Technical
Report Bell Labs, (1980).

3. Astahan MM, et. al.: "System R: Relational
Approach to DBM," ACM TODS 1,2, pp. 97-137,
(1976).

4. Clemons K: "Design of a Prototype ANSI/SPARC
Three Schema DBS," AFIPS, Vol. 48, pp. 689-
695, (1979).

5. Codasyl Base Task Group 1978 Report, ACM Data
Description Language Committee.

6. Dubien RJ, Covvey HD, Sevcik KGC, Wigle ED:
"A Database System Implementation Providing
Data Independence for Medical Applications,"
MEDINFO 77, Proc. of the Second World Confer-
ence on Medical Informatics, pp. 87-94, (1977).

7. Furtado AL, Sevcik KC: "Permitting Updates
Through Views on Databases," Information
Systems, Vol. 4, pp. 269-283, (1977).

8. Klug A: "Multiple Views, Multiple Data Model
Support in the CHEOPS Database Management
System," CSC Tech. Rep. #418, (1981).

9. Mylopoulos J, Schuster S, Tsichritzis D: "A
Multi-level Relational System," AFIPS, Vol. 44,
pp. 403-408, (1975).

10. Osman JM: "Updating Defined Relations," AFIPS
Vol. 48, pp. 733-740, (1979).

11. Stonbraker M, Wong E, Kreps P, Held G: "The
Design and Implementation of INGRES," ACM TODS
1, pp. 189-222, (1976).

12. Todd SJP: "The Peterless Relational Test
Vehicle a System Overview," IBM System J.,
Vol. 15,4, pp. 285-308, (1976).

13. Zloof MM: "Query-by Example: The Invocation
and Definition of Tables and Forms," Proc.
of ACM Int. Conference on VLDB, pp. 1-24,
(1975).

851

