I/O-Efficiently Pruning Dense
Spanners

Joachim Gudmundsson! and Jan Vahrenhold?

! Department of Mathematics and Computing Science,
TU Eindhoven, 5600 MB, Eindhoven, The Netherlands.
h.j.gudmundsson@tue.nl
2 Westfilische Wilhelms-Universitit Miinster, Institut fiir
Informatik, 48149 Miinster, Germany.
jan@math.uni-muenster.de

Abstract. Given a geometric graph G = (S, F) in R?
with constant dilation ¢, and a positive constant e, we show

how to construct a (1 + ¢)-spanner of G with O(]S|) edges
using O(sort(|E|)) 1/0s.

1 Introduction
Complete graphs represent ideal communication net-
works but they are expensive to build; sparse span-
ners represent low cost alternatives. Spanners for com-
plete Euclidean graphs as well as for arbitrary weighted
graphs find applications in robotics, network topol-
ogy design, distributed systems, design of parallel ma-
chines, and many other areas. Consider a set S of n
points in the Euclidean space R%. Throughout this pa-
per, we will assume that d is constant. A Euclidean
network on S can be modeled as an undirected graph
G with vertex set S and with edges e = (u,v) of weight
|uv|. If G is a Euclidean graph, then dg(p, q) denotes
the Euclidean length of a shortest path in G between p
and ¢. Hence, G is a t-spanner for S if d¢(p, q) < t|pq|
for any two points p and ¢ of S. The minimum value
t such that G is a t-spanner for S is called the dila-
tion of G. A subgraph G’ of G is a t'-spanner of G, if
dar (p,q) <t'-dc(p,q) for any two points p and g of S.

Many algorithms are known that compute ¢-
spanners with O(]S|) edges that have additional prop-
erties such as bounded degree, small spanner diameter,
low weight, and fault-tolerance; see the survey [4].

For the analysis in this paper we use the standard
two-level I/O model [1] which defines the following pa-
rameters:

N = # of objects in the problem instance,

M = # of objects fitting in internal memory,
B = # of objects per disk block,

where N > M and 1 < B < M/2. An input/output
operation (or simply I/0) consists of reading a block
of contiguous elements from disk into internal memory
or writing a block from internal memory to disk. Com-
putations can only be performed on objects in internal
memory. This model of computation captures the char-
acteristics of working with massive data sets that are

Dagstuhl Seminar Proceedings 04301
Cache-Oblivious and Cache-Aware Algorithms
http://drops.dagstuhl.de/opus/volltexte/2005/156

too large to fit into main memory and thus are stored
on disk. In the two-level I/O model, we measure the
efficiency of an algorithm by the number of 1/Os it per-
forms, the amount of disk space it uses (in units of disk
blocks), and the internal memory computation time.
Aggarwal and Vitter [1] developed matching upper and
lower I/O bounds for sorting and permuting: sorting
N items in external memory requires (% log,, /B )
I/Os while scanning N items in external memory ob-
viously can be done in ©(%) I/Os. The upper bounds
for sorting and for scanning N items are often ab-
breviated as O(sort(N)) = O(%logM/B &) and as
O(scan(N)) = O(%). I/O-efficient algorithms have
been developed for several problem domains, includ-
ing computational geometry, graph theory, and string
processing. Recent surveys can be found in [2, 7].

In this paper we consider the problem of I/O-
efficiently pruning a given t-spanner, even if it has a
super-linear number of edges. Given a geometric graph
G = (S, E) in R? with constant dilation ¢, and a pos-
itive constant €, we show how to I/O-efficiently con-
struct a (1 + €)-spanner of G with only O(]S|) edges
using O(sort(|E|)) I/Os. This bound matches the (in-
ternal memory) complexity of the algorithm in [6].

While building a sparse spanner is asymptotically
faster than pruning a dense spanner, the latter tech-
nique allows to specifically designate edges that should
participate and edges that are not allowed in the sparse
spanner to be constructed.

2 Pruning Dense Spanners

We are now ready to sketch our algorithm for I/0O-
efficiently pruning a dense ¢-spanner G = (S, F). Our
algorithm is similar to the internal memory algorithm
by Gudmundsson et al. [6]. They showed that one can
use the well-separated pair decomposition (WSPD) by
Callahan and Kosaraju [3].

First we present three lemmas that demonstrate that
a tree can be labeled I/O-efficiently in a hierarchical
manner.

Lemma 1. Given a tree T with N nodes, we can label
all leaves in left-to-right order in O(sort(N)) I/Os.

Lemma 2. Given a tree T with N nodes whose leaves
are labeled in left-to-right order, we can, in O(sort(N))
I/0s, label each internal node v with an interval
Lo, 0], Lo, 70 €N, such that the following holds:

1. Each leaf in the subtree rooted at v is labeled with
some integer £(v) € [ly, 7]

2. There exists at least one leaf in the subtree rooted
at v that is labeled with an integer £(v) € [l,,Ty).

3. The interval [l,,r,] is the minimal interval having
this property.



Lemma 3. Given a unique relabeling of the vertices of
a geometric graph G = (S, E), we can relabel the edges
in E such that each edge e = (v,w) € E is labeled
(L(v), L(w)) where £(v),L(w) € [1...]S]] are the unique
labels assigned to v and w. Given the set E of edges
and a tree storing the labeled vertices in its leaves, we
can relabel all edges in O(sort(|E|)) 1/0s.

Now, assume that we are given a t-spanner G =
(S, E). Compute a WSPD {A4;,B;}, 1 < i < m, for
S, with separation ratio s = 4(1 4+ (1 + ¢)t)/e and
m = O(|S|). Let G’ = (S, E’) be the graph that con-
tains for each i, exactly one (arbitrary) edge (z;,y;)
of £ with z; € A; and y; € B;, provided such an
edge exists. It holds that G’ is a (1 4 ¢)-spanner of G
with m edges [6]. Our algorithm first computes a well-
separated pair decomposition {A;, B;} with separation
ratio s = 4(14(14¢)t) /e, using the algorithm of Govin-
darajan et al. [5] and spending an overall number of
O(sort(]S])) I/0s. The well-separated pair decomposi-
tion is represented by a split tree having O(|S]) leaves
which is laid out on disk in O(]S|/B) disk blocks. We
then use Lemma 1 to label all vertices stored in the
leaves from left to right and to label each leaf v with
the minimal interval containing the labels of the points
stored with v, that is we assign to each vertex v of the
graph an unique integer £(v) € [1...|S]]. Finally, we
perform a labeling of the internal nodes that fulfills the
requirements of Lemma 2. By Lemma 1 and Lemma 2
the complexity computing this labeling is O(sort(|S])).

The algorithm of Gudmundsson et al. [6] prunes a
dense spanner by only keeping one edge connecting the
two components of each well-separated pair {A;, B;}
considered. We can restate this pruning processes as a
special case of the range-reporting problem. We first
identify each edge e = (v,w) in the original span-
ner with a point p. = (£(v),l(w)) € [1...|S|]? (see
Lemma 3).

Lemma 4. Let T be a split tree for G = (S,E)
whose nodes have been labeled with intervals accord-
ing to Lemma 2 and let a and b two nodes of T that
correspond to a well-separated pair {A;, B;}. An edge
e = (v,w) € E connects two vertices v € A; and
w € B; if and only if £(v) € [lq, 74 and L(w) € [ly, 7).

Let the set & be defined as & := {({(v),l(w)) €
[1...]1S])? | (v,w) € E}. The above lemma allows us to
perform the pruning algorithm for each well-separated
pair { 4;, B;} corresponding to two nodes a and b in the
split tree by performing an orthogonal range reporting
query with query range [lo,74] X [lp,75] On the set &
while reporting exactly one point. Except for the edge
corresponding to the point reported, all edges connect-
ing points in A; and B; can be pruned, and this implies
that the pruned spanner consists exactly of all edges
corresponding to the results of all range queries.

What remains to show is that all range reporting
queries can be performed I/O-efficiently. First of all,
note that constructing the set £ from the set E of
edges can be done in O(sort(|E|)) I/Os, see Lemma 3.
In a similar way, we can construct the query ranges
[lasTa] X [lp,rp] for all pairs {A;, B;} in the well-
separated pair decomposition: We extract the labels
of all nodes in the split tree and use two successive
sort-merge steps to generate the set Q of O(|S|) query
ranges in O(sort(|S])) I/0s.

Lemma 5. Given a set Q of orthogonal range queries
on a set & of points in the plane where |Q| € O(|€)),
we can process all queries in O(sort(|€])) I/O0s while
at the same time reporting no more than one answer
per query.

We use the above result to process a dataset of size
O(|E|) and a query set of size O(]S]), and thus we
obtain an answer set of size O(|S|) spending no more
than O(sort(|E|)) 1/0s.

Theorem 1. Given geometric graph G = (S, E)
which is a t-spanner for S for some constant t > 1
and given a constant € > 0, we can compute a (1+¢€)-
spanner G' = (S, E') of G with E' C E and |E'| €
O(|S]) spending O(sort(|E|)) I/0s.

References

1. A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116-1127, Sept. 1988.

2. L. A. Arge. External memory data structures. In
J. Abello, P. M. Pardalos, and M. G. C. Resende, edi-
tors, Handbook of Massive Data Sets. Kluwer, 2002. 313-
357.

3. P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to k-
nearest-neighbors and n-body potential fields. Journal
of the ACM, 42:67-90, 1995.

4. D. Eppstein. Spanning trees and spanners. In J.-R. Sack
and J. Urrutia, editors, Handbook of Computational Ge-
ometry, pages 425-461. Elsevier Science Publishers, Am-
sterdam, 2000.

5. S. Govindarajan, T. Lukovszki, A. Maheswari, and
N. Zeh. I/O-efficient well-separated pair decomposition
and its application. In Proc. 8th European Symposium
on Algorithms, volume 1879 of Lecture Notes in Com-
puter Science, pages 220-231. Springer-Verlag, 2000.

6. J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and
M. Smid. Approximate distance oracles for geometric
graph. In Proc. 13th ACM-SIAM Symposium on Dis-
crete Algorithms, pages 828-837, 2002.

7. J. S. Vitter. External memory algorithms and data
structures: Dealing with massive data. ACM Computing
Surveys, 33(2):209-271, June 2001.



