
10351 Abstracts Collection

Modelling, Controlling and Reasoning About

State

� Dagstuhl Seminar �

Amal Ahmed1, Nick Benton2, Lars Birkedal3 and Martin Hofmann4

1 Indiana University - Bloomington, US

amal@cs.indiana.edu

2 Microsoft Research UK - Cambridge, GB

nick@microsoft.com

3 IT University of Copenhagen, DK

birkedal@itu.dk

4 LMU München, DE

mhofmann@informatik.uni-muenchen.de

Abstract. From 29 August 2010 to 3 September 2010, the Dagstuhl

Seminar 10351 �Modelling, Controlling and Reasoning About State �

was held in Schloss Dagstuhl � Leibniz Center for Informatics. During

the seminar, several participants presented their current research, and

ongoing work and open problems were discussed. Abstracts of the pre-

sentations given during the seminar as well as abstracts of seminar results

and ideas are put together in this paper. Links to extended abstracts or

full papers are provided, if available.

Keywords. Mutable State, Program Logics, Semantics, Type Systems,

Veri�cation

10351 Executive Summary

Amal Ahmed (Indiana University, US), Nick Benton (Microsoft Research, GB),
Lars Birkedal (IT University of Copenhagen, DK) and Martin Hofmann (LMU
München, DE)

From 29 August 2010 to 3 September 2010, the Dagstuhl Seminar 10351 �Mod-
elling, Controlling and Reasoning About State � was held in Schloss Dagstuhl �
Leibniz Center for Informatics. 44 researchers, with interests and expertise in
many di�erent aspects of modelling and reasoning about mutable state, met
to present their current work and discuss ongoing projects and open problems.
This summary provides a general overview of the goals of the seminar and of the
topics discussed.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2810

Dagstuhl Seminar Proceedings 10351
Modelling, Controlling and Reasoning About State
http://drops.dagstuhl.de/opus/volltexte/2010/2811

http://drops.dagstuhl.de/opus/volltexte/2010/2810

2 Amal Ahmed, Nick Benton, Lars Birkedal and Martin Hofmann

Representing Binding Using Parametricity

Robert Atkey (The University of Strathclyde - Glasgow, GB)

I will talk about using parametric polymorphism with Kripke logical relations
to represent binding. This seems to be related to the type based method used
to make the Haskell ST monad for isolated local state safe.

Full Paper:
http://personal.cis.strath.ac.uk/~raa/parametricity/syntaxforfree.pdf

Step-Indexing: The Good, the Bad and the Ugly

Nick Benton (Microsoft Research UK - Cambridge, GB)

Over the last decade, step-indices have been widely used for the construction of
operationally-based logical relations in the presence of various kinds of recursion.
We �rst give an argument that step-indices, or something like them, seem to be
required for de�ning realizability relations between high-level source languages
and low-level targets, in the case that the low-level allows egregiously intensional
operations such as re�ection or comparison of code pointers. We then show how,
much to our annoyance, step-indices also seem to prevent us from exploiting such
operations as aggressively as we would like in proving program transformations.

Keywords: Step-Indexing, Logical Relations, Low-Level Languages, Compiler
Correctness

Joint work of: Benton, Nick; Hur, Chung-Kil

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2808

Kripke Models over Recursive Worlds (The Joy of
Ultrametric Spaces)

Lars Birkedal (IT University of Copenhagen, DK)

Over the last decade, there has been extensive research on modelling challenging
features in programming languages and program logics, such as higher-order
store and storable resource invariants. A recent line of work has identi�ed a
common solution to some of these challenges:

Kripke models over worlds that are recursively de�ned in a category of metric
spaces. In this talk I give an overview of this approach, which applies both to
denotational and operational models of programming languages.

Keywords: Semantics of Higher-Order Store, Kripke Models, Recursive Worlds

http://personal.cis.strath.ac.uk/~raa/parametricity/syntaxforfree.pdf
http://drops.dagstuhl.de/opus/volltexte/2010/2808

Modelling, Controlling and Reasoning About State 3

Veri�cation of Imperative Programs Through
Characteristic Formulae

Arthur Chargueraud (INRIA - Le Chesnay, FR)

I have developed and implemented a new approach to reasoning on imperative
programs, based on characteristic formulae. Given a Caml program, I generate
a Coq formula that accurately describes the behaviour of that program. This
formula is stated only in terms of the values and of the basic connectives from
higher-order logic; it does not refer to the syntax of Caml source code (like a deep
embedding would do) and it does not rely on Coq functions to represent Caml
functions (like a shallow embedding would do). The speci�cation of programs
is done through statement of Coq lemmas, in which heaps are descibed using
Separation Logic style predicates similar to those used in Ynot. The veri�cation
of a program is conducted through an interactive proof following the structure
of the characteristic formula. One key feature of characteristic formulae is that
they are of linear size and that they can be pretty-printed just like the source
code they describe. In this talk, I will explain how characteristic formulae are
generated and I will describe the veri�cation of imperative functions such as
in-place list reversal, map function on lists, CPS list append, and Landin's knot.

Cost-E�ective and Foundational Veri�cation of Low-Level
Code

Adam Chlipala (Harvard University, US)

Several recent projects have involved machine-checked proofs of correctness for
programs in assembly language or other not-much-higher abstraction levels.
"Machine-checked proofs" can mean many things.

Projects that rely on automated theorem-provers typically lead to the least
programmer e�ort per unit of assurance. However, automated tools tend not to
do well with higher-order goals, such as reasoning about �rst-class code pointers
or proofs of type system soundness.

The more the automated prover can do, the more reason there is to worry
that prover has a critical soundness bug. In contrast, other recent work has used
interactive proof assistants, such that program veri�cations may be trusted with-
out believing in the correctness of much more than a small, generic proof checker
and some basic formalization of language semantics. The programmer overhead
of these systems has been shown to be rather higher than with automated tools,
sometimes at the level of hundreds of lines of proof per program instruction.

The Bedrock framework is a new library for Coq that combines some of the
characteristic advantages of the two prior approaches.

Higher-order reasoning is readily supported, via Coq's usual mechanisms;
and the trusted code base for a program veri�cation depends only on the Coq
core and simple operational semantics for machine languages. At the same time,

4 Amal Ahmed, Nick Benton, Lars Birkedal and Martin Hofmann

structured programming is supported, in the style of traditional reasoning with
axiomatic semantics; and proofs can be automated about as e�ectively as in
recent (non-foundational) work in that style. We have veri�ed a number of ex-
ample programs so far, including one (list append in CPS with explicit closures)
that requires orders of magnitude less proof code than in past work which posed
it as a challenge problem.

Keywords: Veri�cation, Coq

Oracular Environments for Compiler Correctness

Robert Dockins (Princeton University, US)

The CompCert veri�ed compier is a well-known project which formally veri�es
the correctness of a compiler for a C-like language. Correctness is proved with
respect to the observable behavior of programs, which is de�ned to be the se-
quence of external function calls made be the programs; such calls are restricted
to have arguments and return values of atomic types. However, this model of ob-
servables is too weak to reason about realistic environments (e.g., POSIX system
calls) where communication with the environment may occur through memory.

Here we present preliminary work on �oracular environments�, a way to make
richer observations of the runtime behavior of a program while still retaining the
overall operational structure of the CompCert proofs. They allow us to reason
about more sophisticated environments and, with a little ingenuity, make few
changes to the existing CompCert proofs.

Keywords: Compiler Correctness, Oracles

The Art of the State in Logical Relations

Derek Dreyer (MPI for Software Systems - Saarbrücken, DE)

Kripke logical relations are a powerful method for reasoning about observational
equivalence of higher-order state-manipulating programs.

In this talk, I will present an overview of some of our recent work on devel-
oping Kripke logical relations for realistic "ML-like" languages�languages that
support recursive types, abstract types, higher-order state, continuations and/or
exceptions. One of the central ideas in our work is that, when reasoning about
local state, establishing *invariants* on the local state is not enough; rather,
one must be able to establish properties about local state that *change* (in a
controlled way) over time. Thus, the possible worlds that we use to index our
Kripke relations are essentially state transition systems (STS's), with each state
corresponding potentially to a di�erent relation on heaps. I will explain how
the use of state transition systems sheds light on the interaction of local state
with various other features, such as higher-order functions, abstract types, and
control operators.

Modelling, Controlling and Reasoning About State 5

Joint work of: Ahmed, Amal; Birkedal, Lars; Dreyer, Derek; Neis, Georg;
Rossberg, Andreas

Abstraction and Re�nement in Local Reasoning

Philippa Gardner (Imperial College London, GB)

Local reasoning has become a well-established technique in program veri�cation,
which has been shown to be useful at many di�erent levels of abstraction. In sep-
aration logic, we use a low-level abstraction that is close to how the machine sees
the program state. In context logic, we work with high-level abstractions that
are close to how the clients of modules see the program state. We apply program
re�nement to local reasoning, demonstrating that high-level local reasoning is
sound for module implementations. We consider two approaches: one that pre-
serves the high-level locality at the low level; and one that breaks the high-level
`�ction' of locality.

Joint work of: Dinsdale-Young, Thomas; Gardner, Philippa; Wheelhouse, Mark

A Theory of Termination via Indirection

Aquinas Hobor (National University of Singapore, SG)

Step-indexed models provide approximations to a class of domain equations and
can prove type safety, partial correctness, and program equivalence; however, a
common misconception is that they are inapplicable to liveness problems. We
disprove this by applying step-indexing to develop the �rst Hoare logic of total
correctness for a language with function pointers and semantic assertions. In fact,
from a liveness perspective, our logic is stronger: we verify explicit time resource
bounds. We apply our logic to examples containing nontrivial �higher-order�
uses of function pointers and we prove soundness with respect to a standard
operational semantics. Our core technique is very compact and may be applicable
to other liveness problems. Our results are machine checked in Coq.

Joint work of: Dockins, Robert; Hobor, Aquinas

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2805

A Kripke Logical Relation Between ML and Assembly

Chung-Kil Hur (University Paris-Diderot, FR)

There has recently been great progress in proving the correctness of compilers
for increasingly realistic languages with increasingly realistic runtime systems.

http://drops.dagstuhl.de/opus/volltexte/2010/2805

6 Amal Ahmed, Nick Benton, Lars Birkedal and Martin Hofmann

Most work on this problem has focused on proving the correctness of a par-
ticular compiler, leaving open the question of how to verify the correctness of
assembly code that is hand-optimized or linked together from the output of
multiple compilers. This has led Benton and other researchers to propose more
abstract, compositional notions of when a low-level program correctly realizes
a high-level one. However, the state of the art in so-called "compositional com-
piler correctness� has only considered relatively simple high-level and low-level
languages.

In this paper, we propose a novel, extensional, compiler-independent notion
of equivalence between high-level programs in an expressive, impure ML-like λ-
calculus and low-level programs in an (only slightly) idealized assembly language.
We de�ne this equivalence by means of a biorthogonal, step-indexed, Kripke
logical relation, which enables us to reason quite �exibly about assembly code
that uses local state in a di�erent manner than the high-level code it implements
(e.g. self-modifying code). In contrast to prior work, we factor our relation in
a symmetric, language-generic fashion, which helps to simplify and clarify the
formal presentation, and we also show how to account for the presence of a
garbage collector. Our approach relies on recent developments in Kripke logical
relations for ML-like languages, in particular the idea of possible worlds as state
transition systems.

Keywords: Logical Relation, Compositional Compiler Correctness

Analysing Call-By-Need

Ste�en Jost (University of St Andrews, GB)

We want to automatically and statically analyse the worst-case resource usage
of a higher-order functional language with explicit deallocation primitives, that
is evaluated under a call-by-need strategy. Thus, expressions are �rst stored
in memory and only evaluated to weak-head-normal-form when needed, but
the memory is constantly updated with the obtained weak-head-normal-form,
thereby avoiding the cost to reevaluate an aliased thunk.

We employ our tried and tested amortised analysis, that abstracts the ma-
chine state to a single number, against which costs must be amortised. Thunks
are simply treated as use-once functions without arguments.

This talk is about a small problem that arises around thunks which return
more resources than they had asked for.

Keywords: Amortised Analysis, Lazy Evaluation, Functional Programming,
Call By Need, Program Analysis

Modelling, Controlling and Reasoning About State 7

Domain-Theoretic Semantics in Coq

Andrew Kennedy (Microsoft Research UK - Cambridge, GB)

We've recently developed a Coq library for doing domain-theoretic semantics,
based on earlier work by Paulin-Mohring. Using this library we have formalized
the denotational semantics of a typed PCF-like language and of the untyped
lambda calculus, proving soundness and adequacy theorems. The mechanization
of domains is purely constructive, with lubs represented by Coq functions, and
with lifting making use of a coinductive stream type and a cunning corecursive
"search" for the lub.

Joint work of: Kennedy, Andrew; Benton, Nick; Varming, Carsten

Full Paper:
http://research.microsoft.com/en-us/um/people/akenn/coq/Domains.pdf

Communicating Transactions

Vasileios Koutavas (Trinity College Dublin, IE)

In this talk I will present a new language construct called communicating trans-
actions, obtained by dropping the isolation requirement from classical trans-
actions, which can be used to model automatic error recovery in distributed
systems. I will show a simple reduction semantics of TransCCS, an extension of
CCS with this construct, and examine the properties of simple systems. I will
also discuss a behavioural theory of traces for TransCCS that is sound and com-
plete with respect to the may-testing preorder, where the atomicity property of
communicating transactions is encoded as non-pre�x-closure of trace sets in the
theory.

Keywords: Concurrency, CCS, Transactions, Non-isolated Transactions

Joint work of: de Vries, Edsko; Koutavas, Vasilios; Hennessy, Matthew

Full Paper:
http://www.scss.tcd.ie/Vasileios.Koutavas/publications/transccs-concur10.pdf

See also: Communicating Transactions, CONCUR 2010

Limitations of Applicative Bisimulation (Preliminary
Report)

Vasileios Koutavas (Trinity College Dublin, IE) and Paul Blain Levy (University
of Birmingham, UK) and Eijiro Sumii (Tohoku University, JP)

We present a series of examples that illuminate an important aspect of the
semantics of higher-order functions with local state.

http://research.microsoft.com/en-us/um/people/akenn/coq/Domains.pdf
http://www.scss.tcd.ie/Vasileios.Koutavas/publications/transccs-concur10.pdf

8 Amal Ahmed, Nick Benton, Lars Birkedal and Martin Hofmann

Namely that certain behaviour of such functions can only be observed by
providing them with arguments that contain the functions themselves. This pro-
vides evidence for the necessity of complex conditions for functions in modern
semantics for state, such as logical relations and Kripke-like bisimulations, where
related functions are applied to related arguments (that may contain the func-
tions). It also suggests that simpler semantics, such as those based on applicative
bisimulations where functions are applied to identical arguments, would not scale
to higher-order languages with local state.

Keywords: Imperative Languages, Higher-Order Functions, Local State

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2807

Proving GUIs correct

Neel Krishnaswami (Microsoft Research UK - Cambridge, GB)

GUIs combine some of the nastiest problems for program veri�cation, for two
reasons. On the one hand, the programs make heavy use of state, higher-order
code, and concurrent execution. On the other, even if these features were some-
how rendered easy to deal with, we can't get started on correctness proof without
answering the question of what the speci�cation is!

However, if were able to answer these questions, we could write cool demos.
Motivated by this prospect, we have studied the question of verifying inter-

active programs, and (a) discovered a beautiful abstract semantics for them in
terms of ultrametric spaces, and (b) proved the correctness of a realistic im-
plementation in terms of callbacks and event loops. Our proof calls for nearly
the whole toolkit of modern semantics: type theory, denotational models, logical
relations, step-indexing, rely-guarantee and separation logic all play a role.

We cannot claim to have a simple proof, but we can claim that the technology
exists to verify even very sophisticated programs.

Keywords: Veri�cation, Semantics, Ultrametric Spaces, Separation Logic

Joint work of: Krishnaswami, Neel; Benton, Nick

Operational game semantics

Paul Blain Levy (University of Birmingham, GB)

In many presentations of game semantics, it is explained informally, using ex-
amples, that the strategy denoted by a term describes its behaviour. Yet this
intuition is not captured in the formal de�nition - except for ground terms, where
an adequacy result says that the operational and denotational semantics agree.

In this talk we show how to give a transition system on terms, de�ned using
the operational semantics. Then the behaviour of each term is its trace set. The
compositionality of this semantics is then a theorem, rather than a de�nition.

http://drops.dagstuhl.de/opus/volltexte/2010/2807

Modelling, Controlling and Reasoning About State 9

Keywords: Transition System, Game Semantics, Continuations, Composition-
ality

Joint work of: Laird, Jim; Lassen, Soren; Levy, Paul Blain

An algebraic investigation of local stores

Paul-Andre Mellies (University Paris-Diderot, FR)

A few years ago, Gordon Plotkin and John Power described a local state monad
on the category of presheaves over �nite sets and injections, and provided a nice
and intuitive algebraic presentation for it. In this talk, I will explain (1) how to
recast this work in the diagrammatic language of string diagrams and (2) how
to think of this local state monad as a model of a particular notion of nominal
theory � this providing a natural extension of the notion of Lawvere theory for
a �nitary monad.

Keywords: Local State Monad, String Siagrams, Algebraic Theories

Call-by-value Games and Automated Equivalence
Checking

Andrzej Murawski (University of Oxford, GB)

After a brief introduction to call-by-value game semantics, I will show how one
can prove some "awkward" equivalences discussed in previous talks using game
models.

This will be followed by a survey of decidability/undecidability results for
program equivalence in a �nitary ML-like language with ground-type references.

Verifying Liveness Properties of Higher-Order Programs

Chih-Hao Luke Ong (University of Oxford, GB)

We consider the problem of verifying liveness properties of higher-order recursive
programs that manipulate stateful objects such as �les, memory cells and locks.

The desired correctness properties are described in temporal logic (e.g. CTL
or CTL*) or appropriate automata. Building on and extending Kobayashi's work,
we show that the problem of verifying all modal mu-calculus properties is sound,
complete and automatic for a simply-typed lambda calculus with recursion and
primitives for dynamic resource creation and access; this is achieved by reduc-
tion to the model checking problem for higher-order recursion schemes (HORS).
Time permitting, we will brie�y describe a type-based model checking algorithm
and implementation of a prototype CTL (equivalently alternating weak tree au-
tomata) model checker for HORS.

10 Amal Ahmed, Nick Benton, Lars Birkedal and Martin Hofmann

Keywords: Veri�cation of Liveness Properties, Model Checking, Resource Us-
age Analysis, Functional Programs, Modal mu-calculus, Higher-order Recursion
Schemes

Semantics of Scope

Andrew M. Pitts (University of Cambridge, GB)

This talk concerns the operational semantics of programming constructs involv-
ing locally scoped names. Typically such semantics involves stateful dynamic
allocation: a set of currently-used names forms part of the state and upon en-
tering a scope the set is augmented by a new name bound to the the scoped
identi�er. (Deallocation of names upon leaving a scope is sometimes appropriate
too.) More abstractly, one can see this as a transformation of local scopes by
expanding them outward to a(n implicit) top-level.

By contrast, in a neglected paper from POPL 1994, Martin Odersky gave a
stateless lambda calculus with locally scoped names whose dynamics contracts
scopes inward. The properties of �Odersky-style� local names are quite di�erent
from dynamically allocated ones. The former enjoy much nicer equational prop-
erties up to contextual equivalence than the latter. However, it is not so clear,
until now, what is the expressive power of Odersky's system.

Here we show that Odersky-style local names provide a direct semantics of
scope from which the dynamic-allocation semantics of scope can be obtained
by continuation-passing translation. More precisely, we show that there is a cps
translation of typed lambda calculus with dynamically allocated names (the
Pitts-Stark nu-calculus) into Odersky's λν-calculus that is computationally ad-
equate with respect to contextual equivalence in the two calculi.

Keywords: Local Names, Dynamic Allocation, Continuations, Contextual Equiv-
alence

Joint work of: Pitts, Andrew M.; Loesch, Ste�en

Step-Indexed Biorthogonality: a Tutorial Example

Andrew M. Pitts (University of Cambridge, GB)

The purpose of this note is to illustrate the use of step-indexing combined with
biorthogonality to construct syntactical logical relations. It walks through the
details of a syntactically simple, yet non-trivial example: a proof of the "CIU
Theorem� for contextual equivalence in the untyped call-by-value λ-calculus with
recursively de�ned functions.

Keywords: Biorthogonality, Logical Relations, Operational Semantics, Step-
Indexing

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2806

http://drops.dagstuhl.de/opus/volltexte/2010/2806

Modelling, Controlling and Reasoning About State 11

Proving the Concurrent Garbage Collector

Uday Reddy (University of Birmingham, GB)

One of the �rst challenging concurrent programs whose correctness proof was
attempted is that of a concurrent garbage collector (called "on-the-�y" garbage
collector). The algorithm as well as its correctness proof was formulated by
Dijkstra et al. in the period 1975-78, and a simpler proof using the Owicki-Gries
technique was given by Gries. In this talk, we revisit the problem using the tools
of Concurrent Separation Logic with Permissions. The challenges in formulating
the proof in this setting as well as the mileage obtained by the new logical tools
will be discussed.

Keywords: Concurrent Separation Logic

Full Paper:
http://www.cs.bham.ac.uk/~udr/papers/gc.pdf

Reasoning about Stored Procedures

Bernhard Reus (University of Sussex - Brighton, GB)

This informal talk will address various (incoherent) issues of veri�cation of pro-
grams that use stored procedures and recursion through the store. There may
also be a demo of an early prototype of a (Smallfoot inspired) tool developed by
us supporting such reasoning.

Keywords: Separation Logic for Stored Procedures, Recursion Through the
Store, Program Veri�cation

Joint work of: Charlton, B.; Horsfall, B.; Haberland, R; Reus, B.

Verifying Linearizability with Hindsight

Noam Rinetzky (University of London, GB)

We present a proof of safety and linearizability of a highly-concurrent optimistic
set algorithm. The key step in our proof is the Hindsight Lemma, which allows
a thread to infer the existence of a global state in which its operation can be
linearized based on limited local atomic observations about the shared state.
The Hindsight Lemma allows us to avoid one of the most complex and non-
intuitive steps in reasoning about highly concurrent algorithms: considering the
linearization point of an operation to be in a di�erent thread than the one
executing it.

The Hindsight Lemma assumes that the algorithm maintains certain simple
invariants which are resilient to interference, and which can themselves be veri-
�ed using purely thread-local proofs. As a consequence, the lemma allows us to

http://www.cs.bham.ac.uk/~udr/papers/gc.pdf

12 Amal Ahmed, Nick Benton, Lars Birkedal and Martin Hofmann

unlock a perhaps-surprising intuition: a high degree of interference makes non-
trivial highly-concurrent algorithms in some cases much easier to verify than less
concurrent ones.

Keywords: Linearizability, Hindsight, Concurrency

Joint work of: O'Hearn, Peter; Rinetzky, Noam; Vehev, Martin; Yahav, Eran;
Yorsh, Greta

Full Paper:
http://www.eecs.qmul.ac.uk/~maon/pubs/PODC10-hindsight.pdf

Type inference for RAJA - A Static Heap Space Analysis
of OO-programs.

Dulma Rodriguez (LMU München, DE)

RAJA is a type system for a compile-time analysis of heap-space requirements
for Java style object-oriented programs. The system was �rst described in ESOP
2006 by Hofmann and Jost, where the soundness of the analysis has been proven.
Later, in CSL 2009, Hofmann and Rodriguez described e�cient type checking
for an annotated version of the system. Our next goal is to infer the typing
annotations automatically in order to make the system feasible for programming.

In this talk we will present a type inference algorithm consisting of two main
parts:

1. A sound and complete constraint-generation system.
2. An algorithm for solving the subtyping constraints by eliminating view vari-

ables which is inspired by the Fourier-Motzkin algorithm for eliminating
variables from a system of linear inequalities.

Joint work of: Hofmann, Martin; Rodriguez, Dulma

A Step-indexed Kripke Model of Hidden State

Jan Schwinghammer (Universität des Saarlandes, DE)

Frame and anti-frame rules have been proposed as proof rules for modular rea-
soning about programs. Frame rules allow one to hide irrelevant parts of the
state during veri�cation, whereas the anti-frame rule allows one to hide local
state from the context.

I describe a possible worlds semantics for Chargueraud and Pottier's type and
capability system including frame and anti-frame rules, based on the operational
semantics and step-indexed heap relations.

http://www.eecs.qmul.ac.uk/~maon/pubs/PODC10-hindsight.pdf

Modelling, Controlling and Reasoning About State 13

Reasoning about Optimistic Concurrency Using a Program
Logic for History

Zhong Shao (Yale University, US)

Optimistic concurrency algorithms provide good performance for parallel pro-
grams but they are extremely hard to reason about. Program logics such as
concurrent separation logic and rely-guarantee reasoning can be used to ver-
ify these algorithms, but they make heavy uses of history variables which may
obscure the high-level intuition underlying the design of these algorithms. In
this paper, we propose a novel program logic that uses invariants on history
traces to reason about optimistic concurrency algorithms. We use past tense
temporal operators in our assertions to specify execution histories. Our logic
supports modular program speci�cations with history information by providing
separation over both space (program states) and time. We prove Michael's non-
blocking stack algorithm and show that the intuition behind such algorithm can
be naturally captured using trace invariants.

Keywords: Program Veri�cation, Optimistic Concurrency, Temporal History
Invariants, Rely-Guarantee Reasoning

Full Paper:
http://�int.cs.yale.edu/�int/publications/roch.html

See also: To appear in CONCUR'10.

Full Abstraction in a Metalanguage for State

Sam Staton (University Paris-Diderot, FR)

Programming languages only allow the programmer to interact with the machine
state through speci�ed operations, such as operations for reading and writing
cells. In particular one cannot write programs that copy or discard the state �
an observation that goes back at least to Scott and Strachey almost 40 years
ago. O'Hearn and Reynolds suggested using a linear state monad translation for
Idealized Algol because it preserves more program equivalences than the usual
state monad does. In this talk we propose using the Enriched E�ect Calculus
(EEC), a calculus for linear usage of e�ects introduced by Egger, Møgelberg
and Simpson, as a metalanguage for reasoning about state e�ects. To support
our claim that this is a language capturing stateful computation, we show that
the linear state monad translation from a call-by-value language with store into
EEC is fully complete in the sense that any term in EEC of a translated type
corresponds to a unique program via the translation. The result is not speci�c to
store, but can be applied to any computational e�ect expressible using algebraic
operations in the sense of Plotkin and Power, even to e�ects that are not usu-
ally thought of as stateful. E�ect operations are translated using "state access

http://flint.cs.yale.edu/flint/publications/roch.html

14 Amal Ahmed, Nick Benton, Lars Birkedal and Martin Hofmann

operations" with linear type. The theory of global store supports state access
operations for reading and writing each cell.

As a detailed example we treat local store, i.e., store in which fresh cells can
be allocated. In this context, our intuition is that the state keeps track of the
cells that have been allocated, as well as what the store contains. We axiomatize
a notion of state object for local store, extending the operations for global store
above with an operation for allocating cells.

Joint work of: Møgelberg, Rasmus; Staton, Sam

Parametricity via Bisimilarity

Eijiro Sumii (Tohoku University, JP)

I will discuss through examples how to prove parametricity properties by using
Sumii et al.'s environmental bisimulations instead of logical relations.

Krivine's Realisability for Low Level Languages

Nicolas Tabareau (Ecole des Mines de Nantes, FR)

I will discuss how to use the notion of Krivine's realisability to develop a se-
mantics for low level languages such as assembly code. This approach o�ers the
possibility to reason modularly about low level programs. In this way, we can
prove a compositional version of correctness of a compiler. This technics also
enables to show that some low level code coming from the compilation of a high
level imperative language (like C) can be connected safely to another low level
code coming from a high level functional language (like ML).

Keywords: Krivine's Realisability, Semantics of Low Level Languages, HTT

Joint work of: Jaber, Guilhem; Tabareau, Nicolas

Full Paper:
http://hal.archives-ouvertes.fr/hal-00475210/fr/

See also: Krivine realizability for compiler correctness Jaber G., Tabareau N.
LOLA 2010 (LiCS workshop)

Combining Recursive Types and General References: An
Unfortunate Observation

Jacob Thamsborg (IT University of Copenhagen, DK)

We observe that a certain naive, possible-world interpretation of general refer-
ence types and recursive types does not exists, i.e., we derive a contradiction
from assuming the existence.

Joint work of: Birkedal, Lars; Støvring, Kristian; Thamsborg, Jacob

http://hal.archives-ouvertes.fr/hal-00475210/fr/

Modelling, Controlling and Reasoning About State 15

Program Equivalence in a Simple Language with Names

Nikos Tzevelekos (University of Oxford, GB)

The nu-calculus of Pitts and Stark was introduced as a paradigmatic functional
language with a very basic local-state e�ect: references of unit type. These were
called names, and the motto of the new language went as follows:

"Names are created with local scope, can be tested for equality, and are
passed around via function application, but that is all."

Because of this limited framework, the hope was that fully abstract models and
complete proof techniques could be obtained. However, it was soon realised that
the behaviour of nu-calculus programs is quite intricate, and program equivalence
in particular is surprisingly di�cult to capture. In this talk we shall focus on the
following "hard" equivalence:

new x, y in λf.(fx = fy) == λf.true

We shall examine attempts and proofs of the above, explain the disadvantages of
the proof methods and discuss why program equivalence in this simple language
remains to date a mystery.

Keywords: Nu-calculus, Local State, Logical Relations, Game Semantics

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2809

Yarra: A Lightweight Extension to C with Data Integrity
and Local Reasoning

David Walker (Princeton University, US)

In this work-in-progress talk, I will discuss the development of Yarra, a lightweight
extension of C that allows programmers to specify data integrity constraints.
More speci�cally, Yarra allows programmers to declare new, protected data
types. When raw memory is cast to one of these protected types, the only way
to access the data is through the use of a pointer with the correct static type �
other attempted accesses are dynamically detected and disallowed. This protec-
tion mechanism can be used to thwart an important class of non-control data
attacks. More broadly, data integrity constraints can be used to improve the
robustness and reliability of general-purpose programs. Yarra also comes with
a novel program logic that supports sound local reasoning and powerful frame
rules, even in the presence of calls to unknown, unveri�ed C libraries.

http://drops.dagstuhl.de/opus/volltexte/2010/2809

16 Amal Ahmed, Nick Benton, Lars Birkedal and Martin Hofmann

Keywords: Data Integrity, Write Integrity Testing, Frame Rule, Local Reason-
ing, Safe C, Array Bounds Checking

Joint work of: Pattabiraman, Karthik; Schlesinger, Cole; Swamy, Nikhil; Walker,
David; Zorn, Ben

Automatic Veri�ers Based on Separation Logic

Hongseok Yang (University of London, GB)

In the past few years, quite a few automatic veri�cation tools based on separa-
tion logic have been developed. In this talk, I will give a brief overview of these
tools, and then describe two tools, SpaceInvader and Abductor, in detail. Both
SpaceInvader and Abductor are fully automatic veri�ers based on separation
logic, and they have been developed by me, Cristiano Calcagno and Dino Diste-
fano. The focus of my talk will be the main design decisions that enabled us to
come up with and to easily implement e�cient algorithms inside those tools.

Keywords: Automatic Veri�cation, Separation Logic, Abstract Interpretation,
Static Analysis, Software Veri�cation

Joint work of: Calcagno, Cristiano; Distefano, Dino; Yang, Hongseok

	10351 Abstracts Collection Modelling, Controlling and Reasoning About State — Dagstuhl Seminar —
	 Amal Ahmed, Nick Benton, Lars Birkedal and Martin Hofmann

