Dagstuhl Seminar 10421
Model-Based Testing in Practice
October 18-22, 2010

Wolfgang Grieskamp!, Robert M. Hierons? and Alexander Pretschner?
b Microsoft, USA
wrwg@microsoft.com
2 Department of Information Systems and Computing, Brunel University
Uxbridge, Middlesex, UB8 3PH United Kingdom
rob.hierons@brunel.ac.uk
3 Karlsruhe Institute of Technology
alexander.pretschner@kit.edu

1 Model-Based Testing

Software testing is one of the most cost-intensive tasks in the modern software
production process. Model-based testing is a light-weight formal method which
enables the automatic derivation of tests from software models and their envi-
ronment. Model-based testing (MBT) has matured as a rich research area in the
last decade, with a significant body of research and applications. The academic
community is well established with many conferences, workshops, and research
projects. Tools for model-based testing have been developed both as research
prototypes and as commercial or semi-commercial applications brought to users
by midsize and enterprise-level companies, and applied in large scale projects.

In the family of model-driven approaches, model-based testing can be seen as
a success story in particular with respect to the degree of mechanical processing
and automation that has been achieved, and the adoption in practice. The suc-
cessful deployment of model-based testing in industrial settings can be seen in
the telecommunication domain, chip cards, specific Windows components, and
embedded systems in general. An interesting issue is under which circumstances
we can expect these successes to carry over to other domains and families of
systems as well (e.g., distributed systems; testing the cloud).

2 The Seminar

This Dagstuhl Seminar brought together top researchers, young scientists, and
practitioners to discuss the state of the art, compare it with practical experiences,
and derive future directions for model-based testing research and industrialisa-
tion. Model-based testing has proved promising even in industrial terms and
currently seems at the verge of large-scale deployment. While previous Dagstuhl
seminars around model-based testing (04371 in 2004 and 98361 in 1998) were
dedicated to bringing research results into practice, in this seminar we aimed

Dagstuhl Seminar Proceedings 10421
Model-Based Testing in Practice
http://drops.dagstuhl.de/opus/volltexte/2011/2925



to take advantage of the relative successes of model-based testing and have the
discussion guided by available industrial experience. For this reason, this semi-
nar was designed with a particularly high industry participation rate. We also
started with a day of talks from industrialist with the focus being on the use of
MBT in industry and the challenges faced.

3 Challenges from 2004

In Seminar 04371, in 2004, 10 main MBT challenges were identified and we
discussed the progress that has been made on these challenges. We now briefly
describe the outcome of this discussion.

— Challenge 1: Measures for coverage and test quality: Model-based test gen-

eration algorithms can produce many test cases, but there is no method yet
to compare the quality of two test suites. Quantification of test quality is
desirable to compare test suites and to select the best one.
Conclusions: It was agreed that there has been little progress on this chal-
lenge. Mutation based methods can help us to compare the quality of test
suites, and these approaches have been extended to models. However, the
relationship between the ability of a test suite to detect mutants and to find
real faults is still an open question, despite some recent promising empirical
results.

— Challenge 2: Test purposes and test scenario control: Often, it is necessary

to guide or control the model-based generation of test cases so that the
interesting, error-prone, or tricky parts of a system under test (SUT) are
tested. How to identify and specify suitable test purposes, and how to control
and guide the generation of tests is still unclear.
Conclusions: The view was that this is still a challenge. There has been
some limited progress, for example showing how test purposes can be pro-
duced based on coverage, but it is unclear how this relates to detecting faults
in real systems.

— Challenge 3: Merging different models: Many test generation methods work

for particular aspects of behaviour, e.g., state-based models mainly test for
control flow. For real systems many aspects must be tested at the same
time: state, control flow, data flow, data transformation real-time, etc. This
requires integration of the corresponding modeling formalisms, and of the
test generation methods.
Conclusions: Current practice still involves using separate models for dif-
ferent aspects of a system and typically these are not integrated. As a result,
this was seen as still being a challenge. However, there are models that com-
bine control and data and also control and time and MBT methods have
been devised for such models.

— Challenge 4: The role of quiescence, timed and untimed: An SUT should do
what it is required to do. Doing nothing is a particular form of such a require-
ment and is expressed as being quiescent. Quiescence is treated differently



in different test generation methods. Better understanding of quiescence is
necessary, in particular, when real-time is involved.

Conclusions: The view was that significant progress has been made on
this topic and in real-time testing in general and this is no longer a major
challenge.

Challenge 5: Modelling method invocations: Many test generation methods
have their origins in a message-oriented paradigm. Current component-based
systems work differently: they are based on the object-oriented paradigm
of method invocations. The modeling of method invocations for testing is
not yet well-understood, in particular if parallelism and multi-threading is
involved, so that several method invocations can exist concurrently.
Conclusions: The view was that there has been significant progress in the
use of languages for such systems, an example being languages in the UML.
There are MBT tools for such languages and this is no longer a challenge.
Challenge 6: Integration of techniques: The boundaries between such tech-
niques as model-based testing, model checking, static analysis, abstract in-
terpretation, theorem proving, constraint solving, run-time verification, etc.
diminuish. Integration of these techniques is necessary to be able to choose
for every task the best combination of techniques.

Conclusions: It was agreed that there has been significant progress on this
challenge. Among others, (bounded) model checkers and constraint solvers
are standard tools in the model-based test case generation toolbox today.
Challenge 7: Modelling test interfaces: For the execution of tests, the tester
is connected to the SUT via some kind of test interface. The behaviour of
this interface, e.g., an operating system pipe which behaves as a FIFO queue,
must be taken into account when tests are generated. Research on different
kinds of test interfaces and their influence on test generation and observation
is desirable.

Conclusions: It was agreed that there has been relatively little progress in
this area. There has been some work on specific cases, such as when there are
buffers and (to a lesser extent) when the testers are distributed. However,
many issues remain.

Challenge 8: Tool architecture frameworks: Integration and interoperability
of different (test) tools is desirable, e.g., interoperability of test generation
tools and (on-the-fly) test execution tools.

Conclusions: The integration of different tools is still seen as being desirable
but there appears to have been little progress on this challenge.
Challenge 9: Model based testing of non-functional properties: Most theory,
methods, and tools for model-based testing have been devoted to testing of
functionality. Model-based testing of other quality characteristics, such as
security, reliability, performance, usability, etc., often referred to as non-
functional properties, is an interesting field of research.

Conclusions: There has still been some work in this area, in particular on
reliability, safety, performance and security. However, this is still a major
challenge.



— Challenge 10: Promoting MBT in industry: To advance the industrial usage
of MBT, it is necessary that the methods scale well to industrially sized
problems, that they are sold with the right level of expectation, and that
feedback from case studies is used in the next generation of MBT methods
and tools.

Conclusions: MBT is now used in many more companies and significant
case studies are appearing. While it is still crucial to promote MBT in in-
dustry, there has been significant progress on this challenge.

We can see that there has been progress on meeting several of the challenges,
but some also remain. Given that these challenges were identified only five years
ago, it is natural that not all challenges have been overcome. However, we are
encouraged by the fact that MBT has clearly become industrially applicable in
this short period of time; this is a sign of very lively and productive communities
of researchers and test engineers. Naturally, new challenges have arisen.

4 Challenges Identified

During the Seminar we discussed the key challenges for the community. Within
this discussion we identified three groups of challenges and specific challenges
within these groups. We now discuss the challenges identified by group.

4.1 Challenges for conformance and test selection

— Concurrency and Distribution.

Concurrency and distribution in the SUT affect the ability of the users or
testers to observe behaviours. In particular, if there are distributed testers
then we obtain a set of local observations rather than a global observation.
There is a need to develop new conformance relations that reflect this reduced
observational power. Naturally, this also affects the oracle problem: if we
have different conformance relations then we need new ways of checking
observations against a model.

Traditional deterministic models are unsuitable for distributed and concur-
rent systems. There is therefore the question of what type of models are
suitable. In addition, there is potential to reflect some of the issues met, such
as communications being asynchronous, in either the conformance relation
or in the model (by e.g. modelling the queues). It is unclear which approach
leads to least complexity and greatest potential to reuse current methods
and tools. Naturally, there are also consequences for test selection and test
execution is radically changed if we have separate independent testers at the
different system interfaces.

— Model analysis and test selection.

There are clear benefits to using model analysis techniques to detect anoma-
lies as early as possible. For specifications and design models, this can lead
to the early identification of potential problems. The analysis of test mod-
els can also identify requirements errors but can also avoid testing from an



incorrect model. However, such analysis techniques can have an additional
benefit: they can be used to drive test selection. There has already been
some work along these lines but there is scope to extend this. In particular,
most work in this area has used model checkers and there has been rela-
tively little work using other analysis techniques. There is also the question
of whether models can be modified to simplify the process of test generation
and possibly also to lead to simpler test cases.

— Non-determinism in models and SUTs.
Many models and systems are non-deterministic. Non-determinism leads to
additional challenges in testing. One practical problem is that testing often
has to be on-the-fly: methods that devise preset test cases suffer from a
combinatorial explosion. However, in order to apply on-the-fly methods one
requires a test tool/infrastructure that is sufficiently quick and this can be
difficult for systems that rapidly interact with their environment.
There are alternative sources of non-determinism, such as concurrency and
abstraction. It seems likely that these different sources of non-determinism
will require different test methods.

— Coverage and fault detection.
Many test selection methods are based on a notion of coverage. However,
there is only limited evidence regarding the relationship between coverage
and fault detection; the community would benefit from the development of
an elegant theory that explains this relationship. In addition, there are often
many alternative models at different levels of abstraction. It is unclear how
the level of abstraction influences the effectiveness of a coverage criterion
and how we can evaluate models with regards to potential fault detection.

— Fault models.
Fault models can be used to represent possible or likely faults. When using a
model M for testing, a fault model can be represented as a set of mutations
of M: versions of M with faults/differences introduced. This allows one to
reason about test effectiveness. However, there is a need to better understand
what types of fault models are suitable and how these relate to faults in real
systems.

4.2 MBT and Cloud Computing

The Cloud is special because is brings together the following aspects: it is large
scale; there is significant amount of concurrency; it is highly distributed; and
it is dynamically changing. These properties introduce significant challenges for
any engineering method and here we describe some of the challenges for using
MBT for cloud computing.

— Controllability, observability and test oracle
It is known that controllability and observability are affected by distribu-
tion: if the system interacts with its environment at physically distributed
interfaces then a tester at one interface only observes observes events at its
interface and no tester has a global view. As a result of testers not having a



global view, a tester might not know when to supply an input. These issues
make testing more difficult. Sometimes we can overcome these problems by
allowing the testers to communicate during testing but this can make test-
ing more expensive since there is a need for an external communications
network. It can also make testing take longer since testers have to wait to
receive messages. There is a need to understand the trade-off between the
cost of including communications between testers and the benefits it brings.
There is also the question of whether there should be a global test oracle
of whether each tester should have its own local oracle. Finally, there is the
potential to have a Cloud infrastructure that is designed for testability.
Testing against simulator vs. real cloud

In testing software designed to run on a Cloud infrastructure we might sim-
ulate the infrastructure. This can make testing much simpler but has some
clear disadvantages: the simulation might be incorrect and even if it is cor-
rect it will be an abstraction of the Cloud infrastructure and this abstrac-
tion could lead to misleading results. If we do not use a simulator then we
may need to deploy the test cases into the Cloud. This makes testing more
complex and relies on properties of the Cloud. There are also likely to be
additional costs where the provider of the Cloud charges for its use. There
are challenges relating to the development of appropriate simulations and
also the understanding of the trade-off between cost and effectiveness when
using a simulation.

Non-functional testing becomes more important

Cloud systems will typically have important non-functional requirements
contained in Service Level Agreements. There is the challenge of producing
MBT methods for testing such requirements, a problem that is complicated
by the nature of Cloud systems. There is also a potential opportunity for
MBT since MBT methods might be used to certify cloud service quality?
How to get repeatability?

Cloud systems can be dynamic and non-deterministic and so we can lose
repeatability in testing. For example, we might run a test, observe a failure,
but not be able to reproduce this failure. This can make it more difficult
to locate and fix a fault. There is the challenge of devising methods to help
make testing repeatable.

Applying existing methods of concurrency testing

Cloud systems are likely to be highly concurrent. Several testing methods
have been produced for testing concurrent systems. However, these are typ-
ically for testing multi-threaded systems. There is a need to devise such
methods that are specialised for Cloud systems: they need to scale to large
systems and also to work with systems that are highly distributed. The
properties of Cloud systems are likely to introduce significant theoretical
and practical challenges.

MBT vs. Runtime Monitoring

In runtime monitoring we observe the behaviour of the system and check
that the observations are consistent with certain requirements. There is the
potential to use the same model in MBT and runtime monitoring. Runtime



monitoring could be a good complement for testing. It is potentially less
costly and easier to conduct when compared to MBT since there is not the
need to generate and apply test cases. However, runtime monitoring is a
form of passive testing and so the tester does not decide which parts of the
system are to be tested: this depends on how the system is used. There is a
need to understand how MBT and runtime monitoring can complement and
where each is suitable.
— Strong collaboration between research and industry

There is a need for more significant real collaboration between academia and
industry. In order to make experimental results more relevant, academia
needs real environments and subjects. These have to come from industry.
All should gain from such collaboration: if companies can be persuaded to
provide such environments and subjects then the results of experiments will
be more relevant and will be particularly relevant to these companies.

4.3 Adoption, Model-Driven Development, Functional and
Extra-Functional Requirements

— Ensure Model Quality.
The quality of the model used is important, but how can we measure this?
Are there criteria that we can use to evaluate the quality of models? It
appears that there are no standard criteria and it seems likely that criteria
will vary with problem and/or domain. There is also likely to be a trade-
off between factors, such as clarity/abstraction and containing all of the
important aspects.
There are also issues related to the modelling language since different mod-
elling languages can lead to different tests being derived. The goals of tests
generated from models depend on the features of the modelling language. It
is unclear how we can decide which modelling languages are most suitable
and also how we measure the suitability of a language.

— How to Teach / Learn Modelling?
It is often said that many developers and testers find it difficult to produce
appropriate models. Assuming this is the case, there is the challenge of find-
ing effective ways to teach modelling. It might be helpful if researchers and
practitioners published ‘good’ models and possibly also ‘bad’ models. Natu-
rally, what is meant by a ‘good’ or ‘bad’ model depends on the intended use
of the model and so there may be a need to produce several sets of examples.
Naturally, tool support for model authoring and analysis is also important.

— Is There a Methodology for Modeling?
The development of good models would be facilitated by there being suitable
methodologies. The methodology may well depend on the type of language
used and, for example, whether it is compositional. It may also depend on
the intended use of the model since the model can completely change for
different concerns.

— Do we need Multi-Faceted Models?



5

Different kinds of models are needed for non-functional concerns and it seems
that this is particularly the case for distributed systems. As it turned out, this
same question was, in a slightly different context, discussed in the context of
the cloud; a second listing of the insights is omitted here for brevity’s sake.
Adoption of Model-Driven Engineering

Much of industry still does not use model-driven engineering (MDE) despite
the significant amount of research in MDE. In part this may be because the
MDE community has not been effective in promoting some of the advantages
of using formal models. There should be particular emphasis on this in MBT
since the use of a formal model can allow test generation and execution to
be automated but adoption is still limited. We are starting to see empirical
results that show significant savings resulting from the use of MBT in indus-
try and this may help promote the use of MBT and, in turn, MDE. However,
the MDE community would benefit from additional case studies, possibly in
an area such as the nuclear power plans in which there are several different
concerns, such as safety and security.

There are several alternative types of modelling languages, For example,
the UML has the advantages of being standardised and having significant
tool support. However, some prefer domain specific languages (DSLs). In
addition, different languages are appropriate for different stakeholders. For
example, one might use UML for designers and a language such as C++ for
testers.

Relate requirements and models.

Requirements are typically text documents that cover several kinds of aspects
such as security, safety, and timing. There is the question of how models can
be derived directly from requirements and there are some methods, such as
sequence enumeration, for doing this. If we can relate parts of the model
to requirements then we gain traceability. This should help the tester to
communicate the purpose of a test case (what requirements it tests) and also
for failures to be traced back to requirements. Such traceability is crucial
if MBT is to be used more widely and there is therefore a need for the
development of methods for deriving a model in a manner that facilitates
traceability.

Conclusions

There has been significant progress in MBT since the previous Dagstuhl seminar
in 2004. In particular, many more tools are available and there is significant in-
dustrial uptake. However, many challenges remain. Some of these challenges were
identified in 2004, an example being understanding the relationship between cov-
erage and test quality. In addition, new challenges have arisen. It appears that
the move towards highly distributed systems, such as Cloud systems, introduces
many interesting scientific and engineering challenges for the community. How-
ever, it also provides a great opportunity: these systems are extremely difficult to
test in a systematic manner and if effective MBT approaches can be developed
for such systems then this should further promote the industrial use of MBT.





