Diameter of Polyhedra: Limits of Abstraction

Friedrich Eisenbrand* Nicolai Hahnlef
Alexander Razborovt Thomas Rothvof®

June 15, 2010

Abstract

We investigate the diameter of a natural abstraction of the 1-skeleton
of polyhedra. Even if this abstraction is more general than other ab-
stractions previously studied in the literature, known upper bounds on
the diameter of polyhedra continue to hold here. On the other hand,
we show that this abstraction has its limits by providing an almost
quadratic lower bound.

One of the most prominent mysteries in convex geometry is the question
whether the diameter of polyhedra is polynomial in the number of its facets
or not. If the largest diameter of a d-dimensional polyhedron with n facets
is denoted by A,(d,n), then the best known lower and upper bounds are
n—d+ |d/5] < Au(d,n) < nttesd shown by Klee and Walkup [15] and
Kalai and Kleitman [13| respectively. The gap which is left open here is huge,
even after decades of intensive research on this problem.

Interestingly, the above upper bound holds also for simple combinato-
rial abstractions of polyhedra by which term we (loosely) mean a rigorously
defined set of purely combinatorial properties of the polyhedra in question
that are strong enough to allow non-trivial conclusions about its geometry.
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In the quest of bounding /A, one can restrict attention to non-degenerate
polyhedra (we call a polyhedron non-degenerate if each vertex is contained
in exactly d facets) since, by perturbation, any polyhedron can be turned
into a non-degenerate polyhedron whose diameter is at least as large as the
one of the original polyhedron. For this reason we also allow ourselves this
simplifying assumption of non-degeneracy (all our results, though, perfectly
hold without it).

Combinatorial abstractions have been studied in the literature for a long
time [11, 2, 1]. The subject of this paper is a simple base abstraction which is
defined by one single feature, common to all previously studied abstractions
from which lower and upper bounds have been previously derived. As an ex-
tra evidence (besides simplicity) that our framework is quite natural, we give
for it three different descriptions that all turn out to be pairwise equivalent.

Even if our abstraction is more general than previously considered ones,
we nonetheless show that all known upper bounds do hold here with natural
and simple proofs. On the other hand, we prove an almost quadratic lower
bound on the diameter in this abstraction, and this constitutes the main
concrete result of this paper.

While only one feature of the previously studied abstractions suffices to
derive the best known upper bounds, our lower bound also shows the limits of
this natural base abstraction for the purpose of proving linear upper bounds
on the diameter. To prove such a bound, more features of the geometry of
polyhedra will have to be understood and used than the single one that we
identify here. Let us, however, note that a polynomial (or even quadratic!)
upper bound in this framework still remains a possibility.

In the first description, our base abstraction is given by a connected graph
G = (V,E). Here! V C [n]¢ and the edges F of G are such that the following
connectivity condition holds:

i) For each u,v € V there exists a path connecting v and v whose inter-
mediate vertices all contain u N wv.

Let B, be the set of all graphs G with the above property; the largest diam-
eter of a graph in B, will be denoted by D(d,n). We call d the dimension
and n the number of facets of the abstraction.

Before we proceed, let us understand why this class contains the 1-
skeletons of non-degenerate polyhedra in dimension d having n facets. In

1[n]? is the family of all d-element subsets of [n] = {1,...,n}



this setting, each vertex is uniquely determined by the d facets in which it
is contained. If the facets are named {1,...,n}, then a vertex is uniquely
determined by a d-element subset of {1,...,n}. Furthermore, for every pair
of vertices u, v there exists a path which does not leave the minimal face in
which both u and v are contained. This is reflected in condition i). Thus if
Ay (d,n) is the maximum diameter of a non-degenerate polyhedron with n
facets in dimension d, then A, (d,n) < D(d,n) holds.

Our main result is a super-linear lower bound on D(d, n), namely D(n/4,n)
Q(n?/logn). The non-trivial construction relies on the notion of disjoint cov-
ering designs and in order to prove the existence of such designs with desired
parameters we use Lovasz Local Lemma.

At the same time the bound of Kalai and Kleitman [13], A,(d,n) <
nitled as well as the upper bound of Larman [16], A,(d,n) < 2471 . n,
which is linear when the dimension is fixed, continue to hold in the base
abstraction. While the first bound is merely an adaption of the proof in [13],
our proof of the second bound is much simpler than the one which was proved
for polyhedra in [16].

We strongly believe that the study of abstractions, asymptotic lower
and upper bounds for those and the development of algorithms to compute
bounds for fixed parameters d and n should receive more attention since they
can help to understand the important features of the geometry of polyhedra
that may help to improve the state-of-the art of the diameter question.
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