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Abstract. In the quest for a mathematical measure able to capture
and shed light on the dual notions of information and complexity in
biosequences, Hazen et al. have introduced the notion of Functional In-
formation (FI for short). It is also the result of earlier considerations
and findings by Szostak and Carothers et al. Based on the experiments
by Charoters et al., regarding FI in RNA binding activities, we decided
to study the relation existing between FI and classic measures of com-
plexity applied on protein-DNA interactions on a genome-wide scale. Us-
ing classic complexity measures, i.e, Shannon entropy and Kolmogorov
Complexity as both estimated by data compression, we found that FI
applied to protein-DNA interactions is genuinely different from them.
Such a fact, together with the non-triviality of the biological function
considered, contributes to the establishment of FI as a novel and useful
measure of biocomplexity. Remarkably, we also found a relationship, on a
genome-wide scale, between the redundancy of a genomic region and its
ability to interact with a protein. This latter finding justifies even more
some principles for the design of motif discovery algorithms. Finally,
our experiments bring to light methodological limitations of Linguistic
Complexity measures, i.e., a class of measures that is a function of the
vocabulary richness of a sequence. Indeed, due to the technology and as-
sociated statistical preprocessing procedures used to conduct our studies,
i.e., genome-wide ChIP-chip experiments, that class of measures cannot
give any statistically significant indication about the relation between
complexity and function. A serious limitation due to the widespread use
of the technology.
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1 Background

A mathematical theory able to capture the notion of information embodied in a
biological system and to describe its complexity is a long sough-after goal, i.e.,
[5, 30]. Recently, Robert Hazen et al. [19] have stressed again the need for such
a theory via two important related questions: (1) “What actually is meant by
biological complexity?” and (2) “How might that complexity be quantified?”.

In the past, several related theoretic methodologies, all revolving around
classic notions of sequence complexity, have been proposed in an attempt to
find satisfactory answers to the above questions. We limit ourselves to mention
some of them, referring the reader to [3, 5, 18, 19] for an in-depth presentation of
the state of the art. Gell-Mann [15, 16] gives a crisp formulation of part of the
problem and suggests a mathematical solution. Standish [27] discusses biological
complexity in terms of Universal Turing machines. Adami and Cerf [4] propose
a solution to their particular formulation of the problem by using the concept of
entropy in finite ensembles. Galas et al. [14] devise a class of measures to quantify
the contextual nature of the information in sets of “objects”. That new class is
based on a generalization to “objects” of Kolmogorov sequence complexity [22].

All of the above contributions to this area seem to have an inherent limitation:
the underlying theories ignore the “meaning or function” of a sequence and
they attempt to assess its complexity by establishing the existence of concise
encodings for the sequence. More in general, although the literature on the above
subject is extensive, it seems to be lacking a focus on the relationship between
information and function. Concentrating on biopolymers, Szostak [28] outlines a
new measure that, departing from previous proposals, quantifies the complexity
of a system in terms of the information it needs to acquire in order to develop the
ability to perform a given function. That measure is motivated by an experiment
conducted by Carothers et al. [8] and it is formalized in [19]. It is referred to
as Functional Information (FI for short) and, for convenience of the reader, we
define it and briefly mention next the way it has been derived.

1.1 Functional Information

Let Σ be an alphabet and let Σ∗ be the corresponding free monoid. Fix a finite
subset U of Σ∗, where each sequence has finite length, and a measurable function
F , where the measure is defined over U . U is referred to as sequence space (with
respect to function F ). Let Nk be the number of sequences in U that has a value
of the measure at least k. Then, FI(k) = − log2

Nk

|U | .

Carothers et al. analyze the distribution of functional RNA aptamers in a
random population, providing data on a specific example. They identify 11 dis-
tinct classes of GTP-binding RNAs, which are distinguished from each other
both by nucleotide sequences and secondary structures. The study shows that
GTP binding activity to a target molecule requires more complex structural so-
lutions, which, in turn, decrease in sequence space according to an exponential
law. They also point out that there exists a good correlation between the growth
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of (an ad hoc defined) Shannon entropy of the secondary structure of the selected
RNA aptamers and their GTP binding affinity. That is, the higher the binding
affinity of the RNA aptamer, the higher the entropy of its secondary structure.
Figure 1 provides an example. An analogous result can be obtained by using
Kolmogorov complexity instead of entropy [23]. The latter is approximated via
grammar-based data compression.

Szostak outlined the “desiderata” of a function able to capture biological
complexity as one that would establish a relationship between “information con-
tent” and biological activity and that should quantify the amount of information
necessary to specify a sequence whose activity exceeds a given threshold. Exem-
plifying via the experiment by Carothers et al., such a function would establish
the number of “functional bits” needed for an RNA aptamer to acquire a given
level of a specific function: binding affinity with GTP. Among the goals of the
measure outlined by Szostak, there is also its use for the identification of common
laws, as well differences, governing the general endeavor of “function acquisition”
by an aptamer.

Hazen et al. present a mathematical formalization of FI, reported at the
beginning of this section, and they also identify properties of a generic system
that are brought to light when one uses FI to measure its complexity. Two sym-
bolic systems, in which quantification of FI is actually possible, are discussed:
alphanumeric sequences and Avida artificial life genomes. This latter is a virtual
world populated by digital organism, i.e., computer programs, that self-replicate,
mutate, and adapt by natural selection. Analysis of these two systems in terms
of FI reveals several characteristics that are important in understanding the be-
havior of systems composed of many interacting agents. First, letter sequences
and Avida genomes both display that highly functional configurations comprise
only a small fraction of all possible sequences, exhibiting an exponential decay
property in sequence space analogous to the one displayed by aptamers in the ex-
periment by Carothers at al.. Second, extensive experimentation with the ability
of Avida genomes to acquire function, e.g., the ability to perform a given num-
ber of arithmetic/logic operation, shows that several discrete classes of functional
configurations exist, a situation that yields to distinctive step features in plots of
information versus function. That is, a stepped behavior of FI. Figure 2 provides
an example. It is worth pointing out that such a stepped behavior is absent in
Avida genomes that perform statistically random functions. Finally, Hazen et
al. present an intuitive discussion indicating that the results by Carothers et al.
imply that RNA binding activity, when described by FI, also satisfies both the
exponential decay and the stepped property.

Hazen et al. stress that FI may point to key and unifying factors in the
origin and emergence of biocomplexity and hence it could be a good candidate to
measure biological complexity. However, to date, the only “biological function”
that has been described via FI is RNA binding activity. Moreover, the research
by Hazen et al. poses, very naturally, several open problems. We mention that
it is open whether the stepped behavior of FI in the functional Avida genomes
is a feature of FI or an idiosyncrasy of that particular system. Second, and
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Fig. 1. (Adapted from [8]) A remarkable correspondence between the affinities of the
optimized aptamers and the intricacy of their secondary structures. The sequences
shown have been optimized for GTP binding. The four simple stem-loop aptamers are
relatively weak binders, the five internal bulge-loop aptamers are better binders than
the previous one, and the remaining two aptamers are more complex, with three stems
and two internal bulge-loops, and they are the best binders. More formally, the figure
points out the existence of a good correlation between the growth of (an ad hoc defined)
Shannon entropy of the secondary structure of the selected RNA aptamers and their
GTP binding affinity. The intricacy of the secondary structure of the aptamers can
also be formalized by using other complexity measures, e.g. Kolmogorov complexity.
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Fig. 2. (Adapted from [19]) The distribution of function of 300-line Avida genomes
within a randomly generated sequence space of 107 genomes. The abscissa indicates
the degree of function E, i.e. the number of times a not/and (NAND) operation is
executed by the genome. The ordinate gives the values of FI (in bits). Notice that the
curve has “steps” in it, indicating that increase in function is not a smooth process.
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most important, the definition of FI is strikingly similar to the classic one of
self-information [12], a random variable of which entropy is the expectation. In
addition, the only experiment involving biological function shows a good degree
of correlation between the growth of FI and the growth of information measures
related to entropy and Kolmogorov complexity. Although one can easily come
up with artificial systems in which such a correlation is lost, it remains open to
establish the novelty of FI, with respect to more classic measures of information,
via a meaningful biological function.

1.2 Protein-DNA Interaction

We concentrate on protein-DNA interaction, i.e., the biological function consist-
ing of a protein binding in a particular area of a genome, to shed further light on
FI. In very broad terms, our experiments show that protein-DNA interaction has
the same exponential decay property in sequence space and the same stepped
behavior of FI as RNA binding affinity and Avida genomes. Therefore, we add
the second biological function to the collection of the ones described by FI that
exhibits key features of the measure. We also study its relation with classic no-
tions of sequence complexity, namely, entropy and Kolmogorov complexity, as
approximated by data compression [17], and our experiments establish that it is
genuinely a novel measure of complexity. We also establish an anti-correlation
between the growth of the classic complexity measures and the level of function
achieved by a genomic region with respect to the binding of proteins. As dis-
cussed later, this fact puts on solid ground a heuristic on which motif discovery
algorithms are designed. We point out that we have also considered measures
that are based on linguistic complexity [6, 21] and classic notions of combina-
torics on words [13]. Unfortunately, they do not seem to be well suited for the
task because of the nature of the data we consider, rather than the function, as
illustrated later.

2 Experimental Methodology

We concentrate on genome-wide studies on protein-DNA interaction, with par-
ticular attention to chromatin remodelers in the model organism Drosophila
melanogaster. In particular, we use 14 ChIP-on-chip experiments, taken from
Schuettengruber et al. [26] and the modENCODE project [9]. For each experi-
ment, we extract genomic regions of high enrichment via statistical procedures
that assign a score to each region. Only scores that provide a small percentage of
false positives are considered. Moreover, in order to ensure that our experimen-
tal results are not an artefact of the technology or of the statistical procedures
employed for the processing of the ChIP-on-chip data, we use the Galaxy peak
score [10] for the Schuettengruber dataset and the modENCODE peak score for
the remaining datasets [1]. In both cases, we take the value of the peak score
given to a genomic region as the measure of protein-DNA interaction. In con-
clusion, each of our 14 datasets is composed of a set of sequences, where each
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sequence has a score assigned to it. It is worth pointing out that, for conciseness,
we use only one dataset to highlight our results.

3 Results

3.1 Functional Information

For each dataset, we compute FI by setting the sequence space equal to the
number of DNA aptamers that have an enrichment factor at least equal to a
given minimum score, i.e. nine for the datasets in which we have used the Galaxy
peak score. For instance, in Figure 3, the number of sequences exceeding that
score is histogrammed. In all of the 14 datasets, we find that such a number
exhibits an exponential decay in sequence space. In some cases, the decay is
more pronounced than in others. For instance, in Figure 3, it is visible towards
the end of the peak score abscissa. Notice that such a behavior of protein-DNA
interaction exhibited by our experiments is analogous to the one of RNA binding
activity reported by Charoters et al.. Moreover, FI exhibits a stepped behavior
in most of our experiments. This result is consistent with the analogous ones
reported in [19]. Figure 4 provides an example and illustrates the method used
to reach that conclusion.
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Fig. 3. A histogram of the number of sequences having at least an enrichment factor
k, k ≥ 9, in protein-DNA interaction for the protein GAF, as measured by the Galaxy
peak score. The decrease of that number increases with peak score and, towards the
end, it has an exponential decay behavior.
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Fig. 4. A stepped behaviour of FI for Protein-DNA interaction, again for the GAF
protein. In order to better highlight such a behavior, the graph reports, for each in-
teger i > 9, the difference between the value of FI at i and at i − 1. That is, it gives
the increment in FI, as a function of the measurable activity. In agreement with Fig-
ure 3, functional information grows slowly and smoothly at first and then at a more
pronounced pace and with two discontinuities.

3.2 Sequence Complexity

We use data compression to compute sequence complexity (SC, for short). As
already mentioned, data compression can be seen as an approximation of two
related measures of complexity: entropy and Kolmogorov complexity. For our
experiments, we use XM [7] and Gencompress [11], two of the best compression
methods available for DNA sequences. We have also used Arithmetic Codes [31]
(AC for short), which are rather weak general compression routines, since they
build simple models of the data. Although the results we have obtained follow
the same general trend with all three compressors, the ones obtained with AC

are the best and we take them as reference. For each sequence, we take the com-
pression ratio as a quantification of its complexity and we refer to this measure
as SC-CR. In all of our experiments, we find that the “ability” of a genomic
area to “interact” with a protein decreases with its lack of redundancy. Figure 5
provides an example. Such a fact is established with the use of Spearman rank
correlation test, according to the implementation in the statistical computing
environment R [2]. The mentioned result is in agreement with the rule of thumb
governing the design of motif discovery algorithms for the identification of bind-
ing sites in genomic sequences, e.g., [24], but, prior to our experiments, it had
not been assessed and measured on a genomic scale. Indeed, binding sites im-
ply the existence of motifs which, in turn, are an indication of redundancy. The
motif discovery algorithms use the following strategy: turn all of the mentioned
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implications around and exploit the redundancy in a sequence to identify motifs
that may turn out to be genuine binding sites. The high degree of correlation
between enrichment levels, signaling the presence of true binding events, and the
level of redundancy of the corresponding functions state that turning the stated
implications around has a very good chance of success on ChIP-on-chip data.

We have also considered combinatorial measures, related to linguistic com-
plexity [20, 29]. In particular, one introduced by De Luca and Varricchio [25] in
the realm of formal language theory. It is interesting to report that the ChIP-
on-chip sequences extracted as outlined in section 2 are not well suited to be
processed by this type of measures. Indeed, the higher the peak score in a ge-
nomic area, as established for instance by Galaxy, the longer the sequence. That
is, there is an excellent correlation between the peak values and the sequence
lengths. Since, in any of our datasets, the sequence lengths are quite different,
while measures of linguistic complexity depend on a fixed dictionary, one has
that longer sequences get a richer dictionary simply because they have more
subsequences in them. Again, there is a high correlation between the richness
of the dictionary and sequence length. Therefore, one would expect a high cor-
relation between the linguistic complexity values and the peak scores, as well
as FI, which is due to the length of the sequences. In fact, in order to avoid
this problem, measures of linguistic complexity are used on sequences of equal
length in bioinformatics applications [?]. The extension of linguistic complexity
measures to bioinformatics applications involving sequences of arbitrary length
is open.

3.3 FI and Sequence Complexity

In our experiments, we find that FI is in most cases highly anti-correlated (again
with use of Spearman rank test) with SC-CR. Figure 6 provides an example. Such
an anti-correlation indicates that as the ability of a biosequence to perform a
function grows, it is not necessarily true that the complexity of its “combinatorial
structure” must grow as well. Such a finding complements quite well the one by
Carothers et al. and it is a distinctive feature both of the biological function and
of the methods that are in use to quantify it. Indeed, the higher the peak score,
the higher the density of binding sites of the given protein and, again, the higher
the presence of motifs. This latter fact implies redundancy in the genomic region
of interest, as already discussed at the end of section 3.2.

4 Conclusions

Our experiments contribute to the establishment of FI as a genuinely novel
measure of complexity in the realm of biosequences. Moreover, we also highlight
a correspondence between the combinatorial richness of a genomic region and
its ability to “interact” with a protein. Indeed, motif discovery algorithms are
based on the rule of thumb that binding sites imply the presence of motifs which,
in turn, imply the presence of redundancy in a biosequence. Our experiments

9



5 10 15 20 25 30 35

1

1.5

2

2.5

3

3.5

4

4.5

5
GAF

Peak Score

S
C
-
C
R

Fig. 5. A plot of the “ability” of a genomic area to “interact” with protein GAF
(measured by the Galaxy peak score) and its combinatorial richness (measured by
SC-CR). The anti-correlation is evident from the plot. The Spearman rank correlation
test returns a value of −0.7568949. The Kendall’s robust line regression is also shown.
Interestingly, the “power of interaction” of a genomic area with GAF decreases with
its combinatorial richness, a behavior common to all of the 14 protein-DNA interaction
data we have used for our experiments.
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Fig. 6. The relation between FI and the Average SC-CR. Those latter values have been
obtained by taking, for each group of sequences with the same value of FI, the average
over the corresponding values of SC-CR. The anti-correlation is evident from the plot.
The Spearman rank correlation test returns a value of −0.9830604. The Kendall’s
robust line regression is also shown. Interestingly, as the level of function grows, the
average combinatorial richness of the corresponding sequences decreases, a behavior
common to all of the 14 protein-DNA interaction data we have used for our experiments.
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provide the first quantitative, genome-wide, positive assessment of that praxis
in the design of motif discovery algorithms.
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