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TOWARDS STRESSES AND STRAINS IN THE RESPIRATORY SYSTEM
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Abstract. This paper is concerned with coupled problems in the human respiratory system with
emphasis on mechanical ventilation. We focus on the modeling aspects of pulmonary alveoli and the
lower airways against the background of acute lung diseases. In this connection occurring stresses and
strains are of substantial interest.

For the first generations of the bronchial tree, a geometry based on human computer tomography
scans obtained from in-vivo experiments is employed. The deformability of airway walls is taken
into account to study airflow structures and airway wall stresses for a number of different scenarios.
Therefore we carried out fluid-structure interaction (FSI) simulations under transient incompressible
flow conditions. Both models for healthy and diseased lungs are studied under normal breathing as
well as under mechanical ventilation.

Our alveolar model is based on three-dimensional artificial random geometries generated with the
help of a new labyrinthine algorithm ensuring preservation of overall minimal mean pathlength. A
polyconvex hyperelastic material model incorporating general histologic information is employed to
realistically describe alveolar parenchymal tissue properties. The influence of surface-active agents
(the so-called surfactant) on the overall mechanical behavior of pulmonary alveoli is investigated. For
this purpose an adsorption-limited model relating surface stresses to the interfacial concentration of
surfactant is used.

Introduction

Mechanical ventilation of the human lung plays a significant role in medicine, especially in case of patients
with acute lung diseases such as ALI (acute lung injury) and ARDS (acute respiratory distress syndrome)
where it is known to be a vital supportive therapy. Improper methods of ventilation, however, can cause
mechanical overstraining of parenchymal tissue resulting in additional inflammatory injuries. This complication
is commonly called ventilator-induced lung injury (VILI) and is responsible for a significant increase in mortality
rate.

Since up to now it is unclear how to improve ventilation strategies in order to prevent VILI and thereby
minimize mortality, we want to bring a little more light into some of the involved phenomena.

In the following, we will focus on the numerical modeling of the respiratory system. VILI mainly occurs in
the respiratory zone of the lung, thus a detailed alveolar model is developed. Since it is computationally not
feasible to study the entire pulmonary system from the trachea down to the alveoli, investigations are restricted
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to parts of it. Our idea is to establish a realistic 3-dimensional model of a part of the bronchial tree which
is linked to the alveoli by means of simplified models representing the unresolved parts of the lung. Since the
coupling of the models is still under development, we will present the separate models of lower airways and
alveoli in this paper.

The work described here was done on the basis of the research finite element program BACI covering a wide
range of applications in computational mechanics, like e.g. multi-field and multi-scale problems, structural and
fluid dynamics, material modeling and finite element technology.

The reminder of this paper is organized as follows.
The second chapter deals with fluid-structure interaction (FSI) simulations of unsteady incompressible airflow

in an airway model of the first four generations based on computer tomography (CT) scans. After a short
overview on the governing equations, our computational models and solution techniques, we present the results
of our studies regarding models of healthy and diseased lungs under normal breathing and mechanical ventilation.

In the subsequent chapter we introduce our model of pulmonary alveoli. A novel approach of generating
artificial random geometries is presented along with a constitutive model accounting for realistic soft tissue
behavior. The incorporation of surface stresses due to surfactant into the alveolar model enables the investigation
of interfacial phenomena in the lungs.

Finally, the paper closes with a short summary and outlook to our future work.

1. Fluid Flow in the Lower Airways

We are interested in airflow structures and stress distributions in airway walls of mechanically ventilated
patients, particularly those with acute lung diseases as ALI or ARDS. The exposure of the studied parts of the
bronchial tree as well as the effect of airflow on lower unresolved parts of the lung – e.g. the respiratory zone –
are of increasing importance when investigating VILI phenomena.

Most existing numerical analyses in the respiratory system were performed with idealized geometries such
as the Weibel- [1] or Horsfield- [2] models. We have found severe differences in flow characteristics between
artificial and real geometries of the bronchial tree. We compared airflow patterns in planar and non-planar
Weibel geometries with an azimuthal angle of 90 degrees to those obtained for a CT geometry. We found that
airflow structures were significantly different for the studied cases. Secondary airflow intensities were higher in
the CT geometry compared to the Weibel models as illustrated in Figs. 1 and 2. In this paper we therefore
investigate flow in a CT-based geometry of the first four generations of lower airways. The CT scans are obtained
from in-vivo experiments of patients under normal breathing and mechanical ventilation.

Remarkably, almost all existing studies disregard the influence of airway wall flexibility on flow structures. In
this study we try to get a first insight in fluid-structure interaction effects in the first generations of the bronchial

Figure 1. Secondary airflow intensities in the inplane (left) and offplane (right) Weibel model.
Tubes are numbered in ascending order starting with the trachea
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Figure 2. Secondary airflow intensities in the CT scan based geometry. Tubes are numbered
in ascending order starting with the trachea

tree. Despite the fact that the employed boundary conditions are initially sometimes non-physiological, the
adopted model will help understanding some involved phenomena in VILI.

1.1. Governing Equations

We assume an incompressible Newtonian fluid under laminar and transient flow conditions. The underlying
governing equation is the Navier Stokes equation formulated on time dependent domains.

∂u

∂t

∣

∣

∣

∣

χ

+
(

u − uG
)

· ∇u − 2ν∇ · ε(u) + ∇p = fF in ΩF (1)

∇ · u = 0 in ΩF (2)

where u is the velocity vector, uG is the grid velocity vector, p is the pressure and fF is the body force vector.
A superimposed F refers to the fluid domain and ∇ denotes the nabla operator. The parameter ν = µ/ρF

is the kinematic viscosity with viscosity µ and fluid density ρF . The kinematic pressure is represented by p
where p̄ = p ρF is the physical pressure within the fluid field. The balance of linear momentum (1) refers to a
deforming arbitrary Lagrangean Eulerian (ALE) frame of reference denoted by χ where the geometrical location
of a mesh point is obtained from the unique mapping x = ϕ(χ, t), cf. e.g. [3].

The stress tensor of a Newtonian fluid is given by

σF = −p̄ I + 2µε(u) (3)

with the compatibility condition

ε(u) =
1

2

(

∇u + ∇uT
)

(4)

where ε is the rate of deformation tensor. The initial and boundary conditions are
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u = û on ΓF

D

σ · n = ĥ
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are the prescribed velocities and tractions.



ESAIM: PROCEEDINGS 101

Figure 3. FSI coupling: the domain is decomposed into a fluid part ΩF and a solid part ΩS

with a common interface Γ where displacement and traction continuity has to be fulfilled

The governing nonlinear equation in the solid domain is the linear momentum equation given by

ρSd̈ = ∇0 · (F · S) + ρSfS in ΩS (6)

where d are the displacements, S is the second Piola-Kirchhoff stress tensor and F is the deformation gradient.
Superimposed dots denote material time derivatives and the superimposed S refers to the solid domain. ρS and
f

S represent the density and body force, respectively.
The initial and boundary conditions are

d(t = 0) = d0 in ΩS

ḋ(t = 0) = ḋ0 in ΩS

d = d̂ on ΓS

D

S · n = ĥ
S

on ΓS

N, (7)

where ΓS
D

and ΓS
N

denote the Dirichlet and Neumann partition of the structural boundary, respectively, with

ΓS
D

⋂

ΓS
N

= ∅. d̂ and ĥ
S

are the prescribed displacements and tractions.
Within this paper, we will account for geometrical nonlinearities but we will assume the material to be linear

elastic. Since we expect only small strains and due to lack of experimental data, this assumption seems to be
fair for first studies. In line with [4] we assume that human lungs are stress-free under load-free conditions.

1.2. Partitioned Solution Approach for Fluid-Structure Interaction

A partitioned solution approach is used based on a domain decomposition that separates the fluid and the
solid, confer also Fig. 3. The ”wet” surface of the solid acts hereby as a natural coupling interface Γ across
which displacement and traction continuity at all discrete time steps have to be fulfilled:

dΓ(t) · n = rΓ(t) · n and uΓ(t) · n = uG
Γ (t) · n =

∂rΓ(t)

∂t

∣

∣

∣

∣

χ

· n (8)

σS
Γ(t) · n = σF

Γ (t) · n (9)

where r are the displacements of the fluid mesh and n is the unit normal on the interface. Satisfying the
kinematic continuity leads to mass conservation at Γ, satisfying the dynamic continuity yields conservation of
linear momentum, and energy conservation finally requires to simultaneously satisfy both continuity equations.

The coupled problem is solved using a Dirichlet-Neumann partitioning between fluid and structure. Forces
generated by fluid pressure and friction are exerted on the structural interface as Neumann boundary conditions,
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whereas structural displacements at Γ are transferred into velocities and used as a Dirichlet condition of the
fluid. The solution of the problem fulfilling both (8) and (9) is found by means of an iterative approach. The
algorithmic framework of the partitioned FSI analysis is discussed in detail elsewhere, cf. e.g. [5], [6], [7], [8],
[9], [10] and [11].

1.3. Computational Model

In the fluid domain, we use linear tetrahedral elements with GLS stabilization (cf. [12], [13] and [14]). The
airways are discretized with 7-parameter triangular shell elements (cf. [15], [16]). We refined the mesh from
110,000 up to 520,000 fluid elements and 50,000 to 295,000 shell elements, respectively, until the calculated
mass flow rate was within a tolerance of 1%.

Time integration is done with a one-step-theta method with fixed-point iteration and θ = 2/3. For the fluid,
we employ a generalized minimal residual (GMRES) iterative solver with ILU-preconditioning.

We study normal breathing under moderate activity conditions with a tidal volume of 2l and a breathing cycle
of 4s, i.e. 2s inspiration and 2s expiration. Moreover, we consider mechanical ventilation where experimental
data from the respirator is available, see Fig. 4.

A pressure-time history can be applied at the outlets such that the desired tidal volume is obtained. For the
case of normal breathing, the pressure-time history at the outlets would be sinusoidal, negative at inspiration
and positive at expiration as it occurs in “reality”. The advantage is that inspiration and expiration can be
handled quite naturally within one computation. The difficulty is to calibrate the boundary conditions such
that the desired tidal volume is obtained which is an iterative procedure.

To investigate airflow in the diseased lung, non-uniform boundary conditions are assumed. For that purpose,
we set the pressure outlet boundary conditions consistently twice and three-times higher on the left lobe of the
lung as compared to the right lobe. This should model a higher stiffness resulting from collapsed or highly
damaged parts of lower airway generations as a first approach.

1.4. Results

In the following a selection of first results of our investigations is presented based on a number of simplifying
assumptions. Refined models better representing the physiological situation are currently under development,
confer section 3.

1.4.1. Normal Breathing – Healthy Lung

At inspiration the flow in the right bronchus exhibits a skew pattern towards the inner wall, whereas the left
main bronchus shows an M-shape, see Fig. 5. The flow pattern is similar in the entire breathing cycle with more
or less uniform secondary flow intensities except at the transition from inspiration to expiration. The overall
stress distribution at inspiratory peak flow is shown on the left hand side of Fig. 6. Stresses are highest in the

Figure 4. Pressure-time and flow-time history of the respirator for the mechanically ventilated lung
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Figure 5. Total flow structures at different cross sections for the healthy lung under normal
beathing (left) and the diseased lung under mechanical ventilation (right)

trachea as well as at bifurcation points, e.g. the carina. Due to the imposed boundary conditions, velocity and
stress distributions as well as normalized mass flow through the outlets are uniform as can be seen in Figs. 6
and 7.

For pure computational fluid dynamics (CFD) simulations differences regarding secondary flow pattern can
be observed between FSI and pure CFD simulations (cf. [17]). The largest deviations occur in the fourth
generation and range around 17% at selected cross sections.

1.4.2. Mechanical Ventilation – Healthy Lung

Airflow patterns under mechanical ventilation quantitatively differ from normal breathing because of the
shorter inspiration time, the different pressure-time history curve and the smaller tidal volume. Despite the
different breathing patterns, the principal flow structure is qualitatively quite similar in the trachea and the
main bronchi. However, flow patterns after generation 2 are different particularly with respect to secondary
flow. General airflow characteristics can be seen in Fig. 8 where the distribution of pressure and velocity along
with some streamlines are displayed. The stress distribution of the healthy lung under mechanical ventilation
is shown in the middle of Fig. 6. Again, due to the imposed boundary conditions, stress distributions as well
as normalized mass flow through the outlets are uniform as can also be seen in Fig. 7.

Airflow during expiration differs significantly from inspiratory flow in contrast to normal breathing. At the
end of the expiration, the pressure is set almost instantly to the positive endexpiratory pressure (PEEP) value
of the ventilator. This results in a high peak flow rate right at the beginning of the expiration, see Fig. 4. The
peak flow at this time is more than twice as high as the maximum peak flow rate under inspiration. The flow
at the beginning of expiration is unsteady with a significant increase in secondary flow intensity. At the middle
of the expiration cycle, airflow becomes quasi-steady and stresses in the airway walls as well as secondary flow
intensities decrease again. The bulk of the inspirated tidal air volume is already expirated at that time.



104 ESAIM: PROCEEDINGS

Figure 6. Principal tensile stress distribution at inspiratory peak flow rate in the airways of
the healthy lung under normal breathing (left) and mechanical ventilation (middle) and in the
diseased lung under mechanical ventilation (right)

Figure 7. Normalized flow distribution at the outlets under normal breathing and mechanical
ventilation for the healthy and diseased lung

1.4.3. Mechanical Ventilation – Diseased Lung

Airflow structures obtained for diseased lungs differ significantly from those for healthy lungs in inspiration
as well as in expiration. Flow and stress distributions are no longer uniform because of the different imposed
pressure outlet boundary conditions. Only 30% of the tidal air volume enters the diseased part of the lung, i.e.
the left lobe. The normalized mass flow calculated at every outlet of the airway model is shown in Fig. 7.
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Figure 8. Pressure distribution (left) and streamlines (right) for mechanical ventilation of the
healthy lung in inspiration. Colors from blue to red indicate increasing pressure and velocity,
respectively

Figure 9. Deformation of the healthy (left) compared to the diseased (right) lung. Colors
from blue to red indicate increasing absolute displacements

In Fig. 5 the differences in airflow structures of the healthy and diseased lung in terms of discrete velocity
profiles during inspiratory flow are visualized.

The secondary flow structures are not only quite different from the healthy lung but they also deviate from
the results for diseased lungs obtained in [17] where the airway walls were assumed to be rigid and nonmoving.
Thus FSI-forces are significantly larger in simulations of the diseased lung and the influence of airway wall
flexibility on the flow should therefore not be neglected. Overall deformations of the bronchial model for the
diseased compared to the healthy lung are shown in Fig. 9.

In general airway wall stresses are larger in diseased than in healthy lungs as can be seen in Fig. 6. In the
diseased lung stresses are more pronounced in the less ventilated parts due to higher secondary flow intensities



106 ESAIM: PROCEEDINGS

(especially close to the walls) found there. The highest stresses occur at the beginning of expiration. We have
modified the expiration curves of the respirator and decreased the pressure less abruptly resulting in a significant
reduction of airway wall stresses. This finding is especially interesting with respect to our long-term goal of
proposing protective ventilation strategies allowing minimization of VILI.

2. Modeling of Pulmonary Alveoli

VILI mainly occurs at the alveolar level of the lungs in terms of primary mechanical and secondary in-
flammatory injuries. Primary injuries are consequences of alveolar overexpansion or frequent recruitment and
derecruitment inducing high shear stresses. Since mechanical stimulation of cells can result in the release of
proinflammatory mediators – a phenomenon commonly called mechanotransduction – secondary inflammatory
injuries directly follow and can spread over to other organs resulting in multi-organ failure. According to [18]
it is therefore crucial to understand alveolar dynamic behavior in order to investigate mechanisms of VILI.

Subsequently our model of pulmonary alveoli will be presented. Due to the complexity and largeness of
involved problems parallel computation and the employment of efficient solvers is sorely needed. More details
on related issues can be found in [19].

2.1. Labyrinthine Algorithm

Since currently no real geometries of pulmonary alveoli are available for simulations due to too low resolutions
of conventional imaging techniques, we are interested in finding ways to artificially generate them with the help
of a labyrinthine algorithm as introduced in [20]. This concept is based on the assumption that a minimal mean
acinar pathlength is essential in ensuring optimal gas exchange.

In general a labyrinthine algorithm enables the generation of a spatial network of cells by progressively
affiliating cells to a given arbitrarily located starting cell following certain connection rules. Point of origin is
an a priori defined assemblage of identical space-filling and initially closed base cells. By successively opening
faces connections of all cells to the starting cell are established. It is automatically guaranteed that each cell is
passed only once except in case of branching cells and detours are precluded.

If a cell is affiliated in the course of the labyrinth creation, it is stored in a queue. In every step, the cell
located in front of the queue is set active and thus can create a path to a new cell by randomly choosing one
of its neighboring cells that are not already passed. Afterwards, the active cell and the just affiliated new cell
are moved to the end of the queue. If, however, the active cell has no unpassed neighbors in the beginning or
at the end of the step, it is deleted from the queue. The procedure is repeated until the queue is worn out.

The conventional algorithm is restricted to very simple geometries, i.e. square and cubic cells, hence acinar
geometries are locally fairly unrealistic. A more authentic shape for alveolar ducts and alveoli is the so-
called tetrakaidecahedron or truncated octahedron. We developed a new variant of the algorithm applicable
to tetrakaidecahedral base cells. For these complex geometries also multiple diagonal connections of cells are
possible. In order to enforce a minimal mean pathlength it has to be explicitly verified that the pathway to the
randomly chosen new cell via the currently active cell is an optimal one. If no shorter pathlength via other cells
in the queue exists, then the new cell can be connected to the active cell. Otherwise another possible new cell
has to be selected from the range of neighbors. In case that either no other neighboring cell is at hand or no
other adjacent cell can be affiliated optimally, the subsequent cell in the queue is set active. The generality of the
introduced approach with respect to varying cell numbers or starting points can be shown. Examples of created
labyrinthine pathways through alveolar assemblages of different sizes are depicted in Fig. 10. Predicted mean
longitudinal pathlength compares well with experimental data obtained from rubber silicone casts of human
lungs.

An example of a corresponding geometry of alveolar ensembles can be found in Fig. 11, where a calculated
displacement distribution for an assemblage of 91 alveoli under hydrostatic pressure is shown. For a more
detailed presentation we refer to [21].
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Figure 10. Connections of centers of tetrakaidecahedral cells in different alveolar ensembles
based on the novel labyrinthine algorithm. Colors characterize the distance to the starting cell

Figure 11. Alveolar ensemble under hydrostatic pressure. Connections between alveoli are
established with the help of the novel labyrinthine algorithm. Colors from blue to red indicate
increasing absolute displacements

2.2. Organization and Modeling of Alveolar Parenchymal Tissue

Alveolar tissue is composed of interstitial cells and the so-called extracellular matrix (ECM) consisting of
connective tissue fiber networks and an amorphous ground substance made up mainly of proteoglycans. Since
the contribution of interstitial cells to parenchymal mechanics seems to be marginal according to [22], we focus
on modeling the behavior of the ECM.

Under the assumption of hyperelasticity, we can describe the mechanical behavior of the ECM via a potential,
the so-called strain-energy density function W relating the second Piola-Kirchhoff stress tensor S to the right
Cauchy-Green strain tensor C as follows

S = 2
∂W

∂C
. (10)

The strain-energy function used in the following is based on [23], [24] and [25]. W is composed of functions
for the matrix including ground substance and elastin fibers and for the collagen fiber families, each fulfilling the
principles of objectivity and material symmetry as well as the requirements of polyconvexity and the stress-free
reference state.

For the ground substance, a modification of the isotropic neo-Hookean material model is used

Wgs = c

(

I1

I
1

3

3

− 3

)

c > 0 (11)
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with c representing a shear-modulus-like parameter and I1 and I3 being the first and third invariants of the
right Cauchy-Green tensor.

Additionally, a penalty function is employed for the enforcement of incompressibility

Wpen = ǫ

(

Iγ
3

+
1

Iγ
3

− 2

)

ǫ > 0, γ > 1 (12)

with ǫ and γ as penalty parameters.
The orientation of the collagen fibers varies according to an orientation density distribution. A general

structural tensor H is introduced

H = κI + (1 − 3κ)a ⊗ a (13)

with a as prescribed fiber direction and κ as a parameter derived from the orientation density distribution
function ρ(θ)

κ =
1

4

∫ Π

0

ρ(θ)sin3(θ)dθ. (14)

Fiber orientation in alveolar tissue seems to be rather random, hence lung parenchyma can be treated as a
homogeneous, isotropic continuum following [26]. In that case κ is equal to 1

3
.

A new invariant K of the right Cauchy-Green tensor is defined by

K = tr (CH) (15)

where tr(.) denotes the trace of a tensor. The strain-energy function of the non-linear collagen fiber network
then reads

Wfib =

{

k1

2k2

[

exp
[

k2 (K − 1)2
]

− 1
]

for K ≥ 1

0 for K < 1
(16)

with k1 ≥ 0 as a stress-like parameter and k2 > 0 as a dimensionless parameter.
Finally, our strain-energy density function takes the following form

W = Wgs + Wfib + Wpen. (17)

We obtain the corresponding second Piola-Kirchhoff stress tensor and the fourth order constitutive tensor by
determining the first and second derivatives of the strain-energy density function W (C) with respect to C.

Unfortunately only very few experimental data are published regarding the mechanical behavior of alveolar
tissue. To the authors’ knowledge, no material parameters for single alveolar walls are derivable since up to
now only parenchyma was tested (see for example [27], [28], [29]). Therefore we fitted the material model to
experimental data published in [30] for lung tissue sheets. Consequently, current parameters model a homoge-
nized continuum of alveolar tissue and air rather than a single alveolar interseptum. The parameters found for
ground substance and fiber function are c = 1kPa, k1 = 13.5kPa and k2 = 76.5, the penalty parameters were
chosen to be ǫ = 10kPa and γ = 1.0.

2.3. Modeling of Interfacial Phenomena due to Surfactant

Pulmonary alveoli are covered by a thin, continuous liquid lining with a monomolecular layer of surface
active agents (the so-called surfactant) on top of it. It is widely believed that the resulting interfacial phenomena
contribute significantly to the lungs’ retraction force. That is why taking into account surface stresses appearing
in the liquid lining of alveoli is of significant importance.

For our model of pulmonary alveoli we are not primarily interested in the liquid lining itself but rather
in its influence on the overall mechanical behavior. Therefore we do not model the aqueous hypophase and
the surfactant layer explicitly but consider the resulting surface phenomena in the interfacial structural finite
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surfactant

tissue

hypophase
enriched node

Figure 12. Left: Actual configuration. Right: Simplified FE model

element (FE) nodes of the alveolar walls by enriching them with corresponding internal force and tangent
stiffness terms (cf. Fig. 12).

The infinitesimal internal work done by the surface stress γ reads

dWsurf = γ(S)dS (18)

with dS being the infinitesimal change in interfacial area. Consequently we obtain for the overall work

Wsurf =

∫ S

S0

γ(S∗)dS∗. (19)

The variation of the overall work with respect to the nodal displacements d then takes the following form

δWsurf =

(

∂

∂d

(
∫ S

S0

γ(S∗)dS∗

)

)T

δd =

(

∂

∂S

(
∫ S

S0

γ(S∗)dS∗

)

∂S

∂d

)T

δd. (20)

Using
d

dx

∫ x

a

f(t)dt = f(x) (21)

yields

δWsurf = γ(S)

(

∂S

∂d

)T

δd = fT
surfδd. (22)

with the internal force vector

fsurf = γ(S)
∂S

∂d
. (23)

The consistent tangent stiffness matrix derived by linearization of (23) therefore reads

Ksurf = γ(S)
∂

∂d

(

∂S

∂d

)T

+
∂γ(S)

∂d

(

∂S

∂d

)T

. (24)

For details refer also to [31] where, however, an additional surface stress element was introduced in contrast to
the above mentioned concept of enriching the interfacial structural nodes.

Unlike e.g. water with its constant surface tension, surfactant exhibits a dynamically varying surface stress
γ depending on the interfacial concentration of surfactant molecules. We use the adsorption-limited surfactant
model developed in [32] to capture this dynamic behavior.
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It is noteworthy that no scaling techniques as in [33], where a single explicit function for γ is used, are
necessary, since the employed surfactant model itself delivers the corresponding surface stress depending on
both input parameter and dynamic data.

For illustrative purposes, we have plotted the course of γ for different frequencies, amplitudes of area change
and model parameters if interfacial area is changed sinusoidally in Figs. 13 and 14.
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Figure 13. Dynamic behavior of surfactant model for different model parameters m2 and
γmin (cf. [32]) known to vary in acute lung diseases
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Figure 14. Dynamic behavior of surfactant model for different sinusoidal amplitudes and
different frequencies

The dynamic surfactant model is particularly advantageous since experimental data for step-wise reconstitu-
tion of native surfactant are published in [34] and [35]. Thus with knowledge of the composition of surfactant
in diseased states, e.g. in case of ALI/ARDS as reported in [36] and [37], qualitative predictions for the altered
behavior of surfactant under cyclic loading are conceivable.

First results of simulations with single alveolar models based on the presented approach of coupling interfacial
and structural dynamics are presented in Fig. 15. Clearly, interfacial phenomena play a significant role for the
overall mechanical behavior of pulmonary alveoli as can be seen in the differences of overall displacements
during sinusoidal hydrostatic loading. The comparison of the results for surfactant and water demonstrates the
efficiency of surfactant in decreasing the surface tension of the aqueous hypophase, thereby reducing work of
breathing and stabilizing alveoli at low lung volumes. Since interfacial phenomena play a more distinct role for
geometries exhibiting a larger curvature, the changes in stiffness are more pronounced for the smaller alveoli
shown in the bottom of Fig. 15. Therefore differences between species have to be taken into account when e.g.
comparing experimental data.
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Figure 15. Single tetrakaidecahedra loaded by hydrostatic sinusoidally varying pressure on
the interior surface. Colors from blue to red indicate increasing absolute displacements under
maximum load. From left to right: tissue, tissue covered by surfactant film on the interior
surface, tissue covered by water film on the interior surface. Top: Characteristic geometric
size comparable to human alveoli. Bottom: Characteristic geometric size comparable to small
animals like e.g. hamsters

3. Summary and Outlook

In the present paper, several aspects of modeling the human respiratory system were addressed. The de-
veloped approach is not only valuable for analyzing mechanisms of VILI but might also be employed for the
prediction of gas exchange and dispersive aerosol transport e.g. in case of inhaled aerosol drugs.

The respiratory system is a highly heterogeneous structure comprising multiple spatial length scales. Since it
is neither reasonable nor computationally feasible to simulate the lung on the whole, investigations are restricted
to certain interesting parts of it.

Our investigations of airflow and airway wall stresses in the bronchial tree are based on a human CT-scan
airway model of the first four generations. For this purpose a partitioned FSI method for incompressible New-
tonian fluids under transient flow conditions and geometrically nonlinear structures was applied. We considered
normal breathing conditions as well as mechanical ventilation in models of healthy and diseased lungs. Airflow
under normal breathing conditions is steady except in the transition from inspiration to expiration. By contrast,
airflow under mechanical ventilation is unsteady during the whole breathing cycle due to the given respirator
settings. We found that results obtained with FSI and pure CFD simulations are qualitatively similar in case of
the healthy lung whereas significant differences can be shown for the diseased lung. Apart from that, stresses
are larger in the diseased lung and can be influenced by the choice of ventilation parameters.

The introduced model for pulmonary alveoli comprises the generation of three-dimensional artificial geome-
tries based on tetrakaidecahedral cells. For the sake of ensuring optimal mean pathlength – a feature of great
importance regarding effective gas transport in the lungs – a labyrinthine algorithm for complex geometries is
employed. A polyconvex hyperelastic material model incorporating general histologic information is applied to
describe the behavior of parenchymal lung tissue. Surface stresses stemming from the alveolar liquid lining are
considered by enriching interfacial structural nodes of the finite element model. For that purpose, a dynamic
adsorption-limited surfactant model is applied. It could be shown that interfacial phenomena influence the
overall mechanical behavior of alveoli significantly. Due to different sizes and curvatures of mammalian alveoli,
the intensity of this effect is species dependent.
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Since currently no reliable material parameters are available for both airway and alveolar tissue, the next
step is to perform own experiments. In case of alveolar walls properties will be determined through an inverse
analysis taking into account the morphology of the tested tissue sheet as described in [38].

Besides, we currently employ rather non-physiological boundary conditions for both alveolar and airway
models. Therefore, only qualitative predictions regarding stresses and flow patterns can be made at present.
In order to investigate mechanical ventilation and VILI in particular, the presented models have to be coupled
in the future. In fact, the alveolar model can serve as a boundary condition for the airway model and vice
versa. First steps concerning this matter are already presented in [39] where the impedance of lower unresolved
lung parts is taken into account in airway simulations. Furthermore, we currently develop dynamic multi-scale
approaches for modeling coupled problems in the lung, see e.g. [40]. By combining available information on all
involved scales, a realistic lung model will be developed that enables the quantitative evaluation of different
ventilation strategies with respect to VILI.
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