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CALCULATING THE H∞-NORM OF LARGE SPARSE SYSTEMS VIA
CHANDRASEKHAR ITERATIONS AND EXTRAPOLATION ∗

Younes Chahlaoui1, Kyle A. Gallivan1 and Paul Van Dooren2

Abstract. We describe an algorithm for estimating the H∞-norm of a large linear time invariant
dynamical system described by a discrete time state-space model. The algorithm uses Chandrasekhar
iterations to obtain an estimate of theH∞-norm and then uses extrapolation to improve these estimates.

Résumé. Nous décrivons un algorithme pour estimer la norme H∞ d’un système dynamique linéaire
à temps invariant de grande dimension décrit par un modèle d’espace d’état discret. L’algorithme
emploie des récurrences de Chandrasekhar pour obtenir une estimation de la norme H∞ puis emploie
l’extrapolation pour améliorer ces estimations.

1. Introduction

We consider the computation of the H∞-norm of a p×m real rational transfer function

G(z) := C(zIn −A)−1B + D (1)
of a discrete-time system, where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m, with n À m, p. We start
with ideas developed in [2] to approximate the H∞-norm using the convergence properties of Chandrasekhar
iterations and propose an efficient extrapolation technique to improve those estimates. The performance of the
extrapolation is then illustrated using a number of experiments.

The H∞-norm of a rational transfer function γ∗ := ‖G(z)‖∞ := sup‖u(z)‖`2=1 ‖G(z)u(z)‖`2 is the supremal
`2 norm of the system response y(z) = G(z)u(z) for an arbitrary unit energy input u(z). It is bounded if and
only if G(z) is stable [6] and it can then be evaluated from the frequency response using

‖G(z)‖∞ = max
ω∈[0,2π]

‖G(ejω)‖2.

We therefore assume that the given quadruple {A,B, C, D} is a real and minimal realization of a stable transfer
function G(z). The stability of G(z) implies that all of the eigenvalues of A are strictly inside the unit circle,
and hence that ρ(A) < 1, where ρ(A) is the spectral radius of A. An important result upon which we rely is
the bounded real lemma, which states that γ > ‖G(z)‖∞ if and only if there exists a positive definite solution
P (denoted as P Â 0) to the linear matrix inequality (LMI) [1] :
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H(P ) :=
[

P −AT PA− CT C −AT PB − CT D
−BT PA−DT C γ2Im −BT PB −DT D

]
Â 0. (2)

This suggests that γ∗ could be calculated by starting with an initial large value γ > γ∗ for which the LMI has a
solution and iterate by decreasing γ until the LMI does not have a solution anymore. The condition H(P ) Â 0
implies that the matrix

Rγ := BT PB + DT D − γ2Im

is negative definite and hence invertible. One shows [6] that the condition H(P ) Â 0 is then equivalent to the
existence of a solution P for the discrete-time algebraic Riccati equation (DARE) :

P = AT PA + CT C − (AT PB + CT D)R−1
γ (BT PA + DT C), (3)

together with the condition that −Rγ Â 0. The solution P of (3) can be obtained from the calculation of
an appropriate eigenvalue problem [8]. However, in order to exploit the sparsity of the matrix A to yield an
efficient algorithm for large systems, it was recommended in [2] to solve (3) using an iterative scheme known as
the Chandrasekhar iteration.

The remainder of this paper is organized as follows. The use of the Chandrasekhar recurrences to solve
the DARE parameterized by γ is discussed in Section 2, which is followed by Section 3 on convergence and
extrapolation. In Section 4 we illustrate our extrapolation method using two numerical examples.

2. Chandrasekhar iteration

Efficient algorithms to solve the DARE have been proposed in the literature [6]. The so-called Chandrasekhar
recurrences amount to calculating the solution of the discrete-time Riccati difference equation

Pi+1 = AT PiA + CT C − (AT PiB + CT D)R−1
i (BT PiA + DT C) (4)

where

Ri := BT PiB + DT D − γ2Im,

in an efficient manner. Defining also the matrix

Ki := BT PiA + DT C, (5)

this becomes

Pi+1 = AT PiA + CT C −KT
i R−1

i Ki. (6)

Clearly the difference matrices δPi := Pi+1 − Pi satisfy

δPi+1 = AT δPiA−KT
i+1R

−1
i+1Ki+1 + KT

i R−1
i Ki. (7)

Using (5-7), one obtains the following identity :

[
Ri+1 Ki+1

KT
i+1 δPi+1 + KT

i+1R
−1
i+1Ki+1

]
=

[
BT δPiB + Ri BT δPiA + Ki

AT δPiB + KT
i AT δPiA + KT

i R−1
i Ki

]
. (8)

Notice that the Schur complement with respect to the (2,2) block is equal to δPi+1. Assume now that for each
step i we define the matrices Li, Si and Gi according to

δPi = LT
i Σ2Li, Ri = ST

i Σ1Si, Ki = ST
i Σ1Gi.
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This, of course, implies that the signature of the matrices Ri and δPi remains constant for all i. It is shown
in [6] that this condition is in fact necessary and sufficient for the Riccati difference equation (4) to converge
(see Lemma 3.1 below). An obvious choice is to take P0 = 0, which yields

δP0 = P1 = CT C − CT D(DT D − γ2Im)−1DT C.

It also follows from the LMI (2) that we must take γ2Im −DT D Â 0, which implies

δP0 = CT [I + D(γ2Im −DT D)−1DT ]C Â 0.

We thus have that Σ1 = −Im and Σ2 = Iα, where α ≤ p is the rank of P1. The matrix (8) can then be factored
as

[
Ri+1 Ki+1

KT
i+1 δPi+1 + KT

i+1R
−1
i+1Ki+1

]
=

[
ST

i+1 0
GT

i+1 LT
i+1

] [
Σ1 0
0 Σ2

] [
Si+1 Gi+1

0 Li+1

]
. (9)

One also easily checks the identity

[
BT δPiB + Ri BT δPiA + Ki

AT δPiB + KT
i AT δPiA + KT

i R−1
i Ki

]
=

[
ST

i BT LT
i

GT
i AT LT

i

] [
Σ1 0
0 Σ2

] [
Si Gi

LiB LiA

]
. (10)

It follows from the comparison of (9) and (10) that there exists a pseudo-orthogonal transformation Q satisfying

Σ :=
[

Σ1 0
0 Σ2

]
, QT ΣQ = Σ, (11)

Q

[
Si Gi

LiB LiA

]
=

[
Si+1 Gi+1

0 Li+1

]
.

It is precisely this recurrence that is used to compute at low cost the updates of Si, Gi and Li. The complexity
of the multiplication with Q ∈ Rm+α×m+α can be shown to be roughly 2m(m+α)(m+n) operations [6] and the
matrix products LiA and LiB require the product of α ¿ n rows with matrices A and B, which is acceptable
for large sparse systems. The feedback matrix Fi and closed loop matrix are defined as follows :

Fi := R−1
i Ki, AFi := A−BFi.

Since the matrix Ri is nonsingular, so is Si and it then follows that Fi = S−1
i Gi. This is simpler from a

computational point of view since the matrix Si is already triangular. The closed loop matrix AFi has a
spectral radius ρi := ρ(AFi) which determines essentially the convergence of the Riccati difference equation (4).
So if γ is overestimated then ρi will be smaller than 1, while if γ is underestimated, ρi will become larger or
equal to 1 and eventually the signature Σ will not be constant, since the DARE does not have a symmetric
steady state solution. Since A−BFi is stable and converges to A−BFγ (where Fγ is the feedback corresponding
to the DARE), one can track its spectral radius by the power method applied to A−BFi. One power iteration
step amounts to computing

xk+1 = Axk −BS−1
i (Gixk)

which is quite cheap for sparse matrices A and B. This is precisely used in the extrapolation scheme explained
in the next section, where we also discuss the convergence of the Chandrasekhar recurrence.

3. Convergence and extrapolation

A first important result is due to Hassibi and al. [6] and gives necessary and sufficient conditions for the
Chandrasekhar iteration to converge for γ > γ∗.
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Lemma 3.1. The Chandrasekhar iteration (11), initialized with P0 = 0 and hence with

δP0 = P1 = CT C − CT D(DT D − γ2Im)−1DT C

converges with constant signature matrix, i.e.

lim
i→∞

Li = 0 with Σ =
[ −Im 0

0 Iα

]
,

if and only if γ > γ∗. The closed loop matrix AFγ := A−BFγ then has spectral radius ρ(AFγ ) strictly smaller
than one, and ρ(AFγ

) tends to 1 when γ tends to γ∗.

The Riccati difference equation (4) has many formulations. One useful formulation results from the two-point
boundary value problem (see [4] and the references therein). For our case, we have the following result, e.g.
proven in [2, 6]:

Lemma 3.2. When R̄γ := DT D− γ2Im is nonsingular, the Riccati difference equation (4) can be rewritten as

M1

[
I

Pi+1

]
= M2

[
I
Pi

]
(A−BFi). (12)

where

M1 :=
[

A−BR̄−1
γ DT C 0

−CT C + CT DR̄−1
γ DT C I

]
, M2 :=

[
I BR̄−1

γ BT

0 AT − CT DR̄−1
γ BT

]
.

Convergence will occur when the pencil λM1−M2 (or the matrix M−1
1 M2) has no eigenvalues on the unit circle.

The feedback matrix Fi then converges to a feedback Fγ such that A − BFγ has eigenvalues in the open unit
disc.

Note that the condition of non-singularity of R̄γ is generically true (i.e., it is singular on a set of measure 0).
For γ > γ∗ the matrix R̄γ is guaranteed to be nonsingular since −Rγ Â 0 implies −R̄γ Â BT PiB Â 0.

Now let us assume γ > γ∗ and that P is the steady state solution of (4) for that γ. Then as Pi converges to
P we can suppose that ∆i := P − Pi is small. The following lemma is then proven in [2].

Lemma 3.3. When the Riccati difference equation (4) converges, each iteration corresponds to an approximate
Schur decomposition [

I 0
−Pi I

]
M−1

2 M1

[
I 0
Pi I

]
=

[
AFi X

E21 A−T
Fi

]

where
E21 := ∆iAFγ −A−T

Fγ
∆i −∆iX∆i, AFi := A−BFi,

and clearly the spectrum of AFi converges to that of AFγ (and hence the stable spectrum of M−1
2 M1).

It was shown in [9] that when there exists a positive definite solution P to the DARE (4) then upon conver-
gence we have

∆i+1 ≈ AT
Fi

∆iAFi ,

which indicates again that the Chandrasekhar iteration converges linearly. The following lemma [6] shows that
such a relation also holds for δPi.

Lemma 3.4. Upon convergence, the Chandrasekhar recurrences yield matrices δPi satisfying

δPi+1 = AT
Fi

δPiAFi − (Fi+1 − Fi)T Ri+1(Fi+1 − Fi) ≈ AT
Fi

δPiAFi .



ESAIM: PROCEEDINGS 87

Proof. Using the identities

BT δPiB = Ri+1 −Ri and BT δPiA = Ki+1 −Ki = Ri+1Fi+1 −RiFi

we easily find that

AT
Fi

δPiAFi = AT δPiA− FT
i BT δPiA−AT δPiBFi + FT

i BT δPiBFi

= AT δPiA− FT
i (Ri+1Fi+1 −RiFi)− (FT

i+1Ri+1 − FT
i Ri)Fi + FT

i (Ri+1 −Ri)Fi

= AT δPiA + FT
i RiFi − FT

i+1Ri+1Fi+1 + (Fi+1 − Fi)T Ri+1(Fi+1 − Fi).

The rest follows from comparing this with (7) and from the fact that ‖Fi+1−Fi‖ = O(δ) appears quadratically
in the equation and hence is negligible. ¤

It follows from the above lemma that ‖Li+1‖2 ≈ ‖LiAFi
‖2, which also shows that the corrections Li converge

linearly to 0. It is also important to note that if γ > γ∗ then AFγ is stable and since A − BFi ≈ AFγ we can
estimate ρ(AFγ

) using subspace iteration on A−BFi, i.e.,

QiRi = (A−BFi)Qi−1, QT
i Qi = Ik,

started with an arbitrary k-dimensional orthogonal basis Q0. This can be performed at low cost since A is
sparse and BFi is relatively low rank. Moreover, even if γ ≤ γ∗ and AFγ is unstable, the eigenvalues of
QT

i−1(A− BFi)Qi−1 will be close to the dominant spectrum of A− BFi and according to Lemma 3.3 this will
be close to k eigenvalues of the symplectic pencil as long as ∆i is small.

Figure 1 describes the convergence properties of the Riccati difference equation and the H∞ approximation
algorithm in terms of the spectral radius ρ(AFγ ) as a function of γ. One can define a region of acceptance for
the approximation of γ∗ and the width of this region will depend mainly of a tolerance value associated with
the convergence/divergence decision. As long as the δPi remain reasonably small, so will E21 and the spectrum
of AFi then gives a reasonable approximation of half of the spectrum of the symplectic pencil. This can be used
to detect the symplectic eigenvalues closest to or on the unit circle.

Figure 1. Estimate of φ(γ) := ρ(A−BFγ) as a function of γ
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The above figure is in a sense misleading since for γ < γ∗, there is no convergence and hence Fγ does in fact
not exist. But the matrices A− BFi diverge and the estimate of their norm evaluated by the power iteration,
becomes larger than 1. What is shown in Figure 1 is thus in fact only an estimate. But we can prove the
following property of the true function φ(γ).

Theorem 3.5. The function φ(γ) is a continuous (but not necessarily differentiable) function of γ for γ > γ∗.

Proof. It follows from Lemma 3.3 that φ(γ) = ρ(A−BFγ) where Fγ is the steady state feedback matrix obtained
from the DARE. This is therefore the largest generalized eigenvalue of the symplectic pencil λM1 −M2 inside
the unit circle. But the elements of M1 and M2 are rational functions of γ and its eigenvalues therefore
vary continuously with γ [7]. Also φ(γ) is in general differentiable for almost all γ > γ∗, but it may not be
differentiable in a few isolated points. ¤

Clearly, the convergence/divergence decision plays a crucial role in the choice of the direction of the adaptation
of γ. Recall that for a given initial condition P0, the solution of the discrete-time Riccati equation is given at
each instant i by

Pi = P0 +
i−1∑

k=1

δPk.

For a given tolerance τ , we will say that the discrete-time Riccati equation diverges, if one of the following is
true:

• the spectral radius ρi = ρ(AFi) (estimated by subspace iteration) is larger than 1 + τ
• the ratio ‖δPi+1‖2/‖δPi‖2 = ‖Li+1‖22/‖Li‖22 is larger than (1 + τ)2. Notice that this is similar to the

previous as one has the relation ‖Li+1‖2/‖Li‖2 ≈ ρ(A−BFi),
• the inequality γ2Im −BT PB −DT D Â 0 does not hold.

By monitoring the convergence using one of these criteria, one can decide if at the steady state (or at least
for a large number of steps) we have relative convergence or not and adapt γ in the appropriate direction.

In order for the algorithm to approximate γ∗ to work efficiently there must be an effective method to adapt
the value of γ given the observed behavior of the Riccati difference equation. The simplest method is the
combination of the Chandrasekhar equations with a bisection method to estimate γ∗. A lower bound for
γ∗ = ‖G(z)‖∞ is easily obtained from γlo := ‖G(ejωlo)‖2 for any frequency ωlo, or from any input/output pair
collected over a finite simulation horizon. The idea for estimating γ∗ is to run the Chandrasekhar equations for
a given γ > γlo and check whether or not it converges. If it converges, then γup := γ is an overestimate for γ∗

and we repeat the process for a new value of γ (say (γlo + γup)/2) in the interval [γlo, γup] which is known to
contain γ∗. If divergence is observed then γlo := γ before choosing the next value of γ.

There are several possible avenues to consider to get an effective strategy to update γ to approach γ∗ from
above. All share the need to model, based on data observed while executing the algorithm, how φ(γ) :=
ρ(A−BFγ) evolves with γ. Essentially, this is an attempt to determine the function in Figure 1 for γ > γ∗. We
have found that for each value of γ, ρ(A−BFγ) can be estimated reasonably well with a few subspace iteration
steps. We can therefore estimate the value of the function φ(γ) for several values of γ which can be used to
produce a γ > γ∗ closer to γ∗ via interpolation.

For any of these strategies, once γold → γnew we must make a choice as to how to proceed with the Chan-
drasekhar iteration. The simplest approach is to simply restart the iteration with P0 = 0 and monitor conver-
gence/divergence in preparation for the next update of γ.

4. Algorithm and numerical examples

Our algorithm starts by computing a lower bound γlo obtained from a random simulation for a given input
sequence u(1 : k). The ratio γ0 := ‖y(1 : k)‖2/‖u(1 : k)‖2, where y(1 : k) is the corresponding output sequence,
is clearly a valid lower bound γlo. We double this value recursively until we find a value γup for which the
Chandrasekhar iteration converges. Meanwhile γlo is updated to the last value for which convergence did not
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occur. Then we choose a value of γ in the interval [γlo, γup] and we test convergence of the corresponding
Chandrasekhar iteration. A simple choice is to take the midpoint or a random point in that interval but more
educated guesses could be made. If convergence occurs, γ becomes the new γup; if divergence occurs, γ becomes
the new γlo. When it is too hard to decide convergence or divergence based on a reasonable number of iterations,
we choose another value of γ in the current interval.

During this iteration one narrows the interval [γlo, γup] for the true norm γ∗. But meanwhile we also store
the spectral radius ρ(A − BFγ) for all values of γ where convergence or divergence was easy to decide. Those
values are then used to approximate the function φ(γ) and estimate the value at which it crosses 1. That is our
final estimate of the H∞ norm of the transfer function.

To illustrate this, we present here two numerical experiments based on stable minimal discrete time systems.
Both systems have two inputs and two outputs. The first example was a randomly generated discrete-time
system {A,B, C, D} of state dimension n = 100 and spectral radius ρ(A) = .8. The curved line in that plot is
the largest singular value of G(ejω) as a function of the frequency ω. Figure 3 indicates the estimated values
of φ(γ) = ρ(A−BFγ) at the values of γ where we ran the Chandrasekhar iteration. The full line interpolating
these values is our estimate of φ(γ) and the value at which it crosses 1 is our estimate of γ∗. The true value
for γ∗ is marked by a full square and is 43.42 in this example. We can see from this example that our match is
quite accurate.
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Figure 2. Random example : Frequency plot with levels for γlo and γup and undecided levels (dashed)

The second experiment is for the CD-player model [3], which we discretized using the zero order hold method
of the MATLAB Control Toolbox function C2D. This discretized system {A,B, C,D} has state dimension
n = 120 and spectral radius ρ(A) = .988 (its poles are thus very close to the unit circle). One can see in Figure
4 that there are several levels of γ for which it was unclear to decide if the iteration converged or not, within
a finite number of steps (we chose 20 steps). Those values correspond to the dashed horizontal lines in Figure
4. Nevertheless, the φ(γ) plot based on the decidable Chandrasekhar runs yield a good plot from which we can
estimate γ∗. The true value for γ∗ is marked by a full square again and is 2.50× 105 in this example.

The Chandrasekhar iteration with bisection exploits sparse matrix kernels and low order dense matrices to
achieve efficiency for large problems. For the experiments presented here, MATLAB implementations of the
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Figure 3. Random example : Evolution of φ(γ) as a function of γ
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Figure 4. CD player : Frequency plot with levels for γlo and γup and undecided levels (dashed)

Chandrasekhar iteration without substantial performance tuning was several time faster than other competing
methods like the level set method described in [5], or the MATLAB Control Toolbox function NORM(SYS,inf).
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Figure 5. CD player : Evolution of φ(γ) as a function of γ

5. Conclusion

We have presented an algorithm based on the Chandrasekhar iteration and initial empirical evidence that
it can be used to estimate efficiently ‖G(z)‖∞ for large discrete time linear time invariant dynamical systems.
There is still work to do in order to develop a reliable and efficient method. We are currently investigating
the influence of the structure of the spectrum of A on the behavior of the algorithm particularly relative to
the convergence/divergence decision. We are also investigating an approach that uses the estimate of φ(γ) and
estimates of left and right eigenvectors associated with the dominant eigenspaces of A − BFγ to estimate the
derivative of φ(γ) to produce a new value of γ. Finally, the relationship between the eigenvalues of A − BFi

and eigenvalues on the unit circle of the associated symplectic pencil can be used to estimate a subset of the
unit circle eigenvalues when γ < γ∗. These estimates could be used to develop an update strategy similar to
that used in the level set method [5]. The algorithm is easily adapted to estimate the H∞ norm of a continuous
time system.
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