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—— Abstract

We introduce the class of possibilistic nested logic programs. These possibilistic logic programs
allow us to use nested expressions in the bodies and the heads of their rules. By considering a
possibilistic nested logic program as a possibilistic theory, a construction of a possibilistic logic
programing semantics based on answer sets for nested logic programs and the proof theory of
possibilistic logic is defined. We show that this new semantics for possibilistic logic programs
is computable by means of transforming possibilistic nested logic programs into possibilistic dis-
junctive logic programs. The expressiveness of the possibilistic nested logic programs is illustrated
by scenarios from the medical domain. In particular, we exemplify how possibilistic nested logic
programs are expressive enough for capturing medical guidelines which are pervaded of vagueness
and qualitative information.
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1 Introduction

In the literature, one can find different approaches for encoding qualitative information
[12, 18, 20]. A common strategy for capturing qualitative information is by using non-
numerical values. Possibilistic reasoning has shown to be a suitable approach for dealing with
qualitative reasoning [18]. In particular, this feature is based on the fact that the possibilistic
values of a possibilistic knowledge base can be non-numerical values which capture the
uncertainty of a knowledge base.

In the context of possibilistic logic programming, there are few proposals which deal
with non-numerical values which are not totally ordered [14]. However, the expressiveness of
the approach presented in [14] is restricted to disjunctive logic programs. Indeed most of
the logic programming approaches which deal with uncertain information make syntactic
restrictions to their specification languages. By not having syntactic restriction in a symbolic
specification, one can provide a transparent method to capture real data domains. For
instance, there are different ways to interpret a medical guideline for diagnosis (we will
illustrate this in the body of the paper). The presence of more than one disease in an individual
(comorbidity) is common in older people, and some guidelines have expressions supporting
both potential comorbidity and differential diagnosis. For example, the most frequently
used guideline for mental diseases uses a multiple axis system between certain guidelines
for expressing comorbidity [2]. Still, additional diagnostic criteria are needed to assess a
potential dementia disease, which use a different way to express the ambiguity built into
diagnosis of neurological and mental diseases. The uncertainty is reflected in the vocabulary
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used in these guidelines (e.g., possible, probable, unlikely, supportive, etc.). The meaning of
such expressions represents different and sometimes overlapping ranges of possibilities, which,
consequently, cannot be totally ordered when are formalized. However, there are practical
reasons for reusing the vocabulary in the guidelines for expressing the knowledge in formal
reasoning. Firstly, to provide to a clinician explanations of the reasoning and to mirror the
uncertainty of an assessment in the available evidence-based medical knowledge, and secondly,
to allow an expert physician to validate a knowledge base which handles comorbidity. An
example of a possibilistic rule, which captures both uncertainty, ambiguity and a potential
multi-diagnosis, is the following: possible: DLB A AD < visHall A slow A prog A epiMem. (It
is possible that both Alzheimer’s disease and Lewy Body dementia are present based on the
observed symptoms). Another example illuminates how negation as failure can be utilized:
probable: VaD « fn A radVasc A not (ADV DLB) (vascular dementia is probable present
considering the observations and since we do not have reasons to believe that Alzheimer’s
disease or Lewy Body dementia are present).

Against this background, we extended the results presented in [14] and [10] by introducing
the class of possibilistic nested logic programs. These possibilistic logic programs allow us to
use nested expressions in the bodies and the heads of their rules. Given that possibilistic logic
is aziomatizable in the necessity-value case [6], we define the semantics of the possibilistic
nested logic programs by considering the proof theory of possibilistic logic. In particular, by
considering a possibilistic nested logic program as a possibilistic theory, a construction of
a possibilistic logic programing semantics based on answer sets for nested logic programs
[10] and the proof theory of possibilistic logic [6] is defined. It is worth mentioning that the
answer set semantics inference can also be characterized as a logic inference in terms of the
proof theory of intuitionistic logic and intermediate logics [17, 16].

We also show that the new possibilistic semantics generalizes the previous possibilistic
semantics introduced in [13, 14]. In order to define a general method for computing the
possibilistic answer sets of a possibilistic nested program, the idea of equivalence between
possibilistic programs is explored.

The rest of the paper is divided as follows: In the following section, some basic concepts
of nested logic programs and possibilistic logic are introduced. After this, the syntaxis and
semantics of the possibilistic nested logic programs are introduced. In this section, some
properties of the possibilistic nested logic semantics are identified (by lack of space, the
formal proofs are omitted). In the last section, an outline of our conclusions and future work
is presented.

2 Background

In this section, we introduce some basic concepts of Nested Logic Programs [10] and Possibil-
istic Logic [6]. We assume that the reader is familiarized with basic concepts in classical logic
and logic programming semantics, e.g. interpretations, models, etc. A good introductory
treatment of these concepts can be found in [3].

2.1 Nested Logic Programs

The considered language consists of: (i) an enumerable set A of elements called atoms
(denoted by a, b, ¢, ...), (ii) logic connectives A, V, =, not, L, T in which {A, V}, {not, =},
{T,L} are 2-place, 1-place and 0-place connectives respectively and (iii) auziliary symbols
777y, 7.7 We refer to a literal as an atom a or an extended atom —a. We denote by £ the
set of literals built using elements in A.
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Literals, 1 and T are considered elementary formulas, while {V, A, not} formulas (denoted
as A, B, C, ...) are constructed from elementary formulas using the connectives {V, A, not}
arbitrarily nested (strong negation — is allowed to appear only in front of atoms). As probably
noted, we are considering two types of negations in this paper: strong negation — (as it called
by the Answer Set Programming community [3]) and negation as failure not.

Given a finite set of literals £, a nested rule is an expression of the form H < B, where
H and B are either an elementary formula or a {V, A, not} formulas (known as the head and
the body respectively). Some particular cases are facts, of the form H « T (written as H),
and constraints, | < B (written as < B). If no occurrences of not appear in a rule, then
the rule is called a definite nested rule.

A nested logic program P is a finite set of nested rules. If the program does not contain
not, then the program is called a definite nested program.

The semantics for nested programs was introduced in [10]. Like the classic answer set
semantics [7], the semantics for nested logic programs is defined in two steps: first for definite
nested logic programs and after for general nested logic programs (programs which contain
negation as failure).

» Definition 1. [10] Let M be a set of literals. M satisfies a definite nested formula A
(denoted by M = A), recursively as follows:

for elementary A, M EAifAe Mor A=T

MEAABifMEAand M =B

MEAVBifMEAor MEB

» Definition 2. [10] Let P be a definite nested logic program. A set of literals M is closed
under P if, Vr € P such that r = H < B, M = H whenever M = B.

» Definition 3. [10] Let M be a set of literals and P a definite nested logic program. M is
called an answer set for P if M is minimal among the consistent sets of literals closed under
P.

In order to manage the negation as failure in nested logic programs, a syntactic reduction
for nested logic programs was defined.

» Definition 4. [10] The reduction of a nested formula with respect to a set of literals M is
recursively defined as follows:

for elementary A, AM = A

(AABYM = AM A BM

(Av B)M = AM vy pM

1, ifMEAM
(not A)YM = ' =
T, otherwise

(H + B)M = gM + BM

» Definition 5. [10] The reduct of a nested logic program P with respect to a set of literals
M is defined as follows:
PM ={(H+ B |H+«+ Be P}

Please observe that PM is a definite nested logic program. Hence, the following definition
follows from the answer set definition.

» Definition 6. [10] Let P be a nested logic program and M be a set of literals. M is an
answer set of P if it is an answer set of PM.

ICLP’12
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Table 1 Examples of possibilistic rules captured by the syntax of possibilistic nested programs.

Syntax Rule Type

a:aAnotb<+ pAnot(—qVr). possibilistic nested rule
a:aVb<+ cAnot—e. possibilistic disjunctive rule [14]
a:a+ cAnotd. possibilistic normal rule [13]

3 Possibilistic Nested Logic Programs

In this section, the general syntax and semantics for possibilistic nested logic programs will
be presented. We will show that the semantics of the possibilistic nested logic programs
generalizes the logic programming semantics of both the nested logic programs and the
possibilistic disjunctive logic programs (the particular case of possibilistic normal logic
programs is also considered). In order to define a process for computing the possibilistic
answer sets of a possibilistic nested logic program some transformations between possibilistic
programs are formalized.

The syntax of the possibilistic nested logic programs is based on the standard syntax of
nested logic programs.

3.1 Syntax

We start by defining some concepts for managing the possibilistic values of a possibilistic
knowledge base. We want to point out that in the whole document only finite lattices are
considered.

A possibilistic atom is a pair p = (a,q) € A X Q, in which A is a finite set of atoms and
(Q,<) is a lattice. The projection * to a possibilistic atom p is defined as follows: p* = a.
Also given a set of possibilistic atoms S, * over S is defined as follows: S* = {p*|p € S}.

Let (Q, <) be a lattice. A possibilistic nested rule r is of the form:

a: A+ B

in which a € Q and A < B is a nested rule. The projection * for a possibilistic nested
rule is 7* = A <« B. On the other hand, the projection n for a possibilistic nested rule is
n(r) = a. This projection denotes the degree of necessity captured by the certainty level of
the information described by r. A possibilistic nested constraint ¢ is of the form:

TQ: «~— B

in which Tg is the top of the lattice (Q, <) and «+— B is a nested constraint as defined in the
background section. The projection * for a possibilistic nested constraint c is: ¢* = < B.

A possibilistic nested program P is a tuple of the form ((Q, <), N), in which N is a finite
set of possibilistic nested rules and possibilistic nested constraints. The generalization of x*
over P is as follows: P* = {r*|r € N}. If N* is a set of nested definite rules, P is called a
possibilistic nested definite logic program. Different formula combinations lead to different
logic rules as shown in Table 1.

We illustrate a possibilistic nested program with an example from the dementia domain
(simplified due to space reasons). A summary of the clinical guidelines which are used in
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confirmed
probable plausible
possible
supported
open

Figure 1 Graph representation of a lattice.

the dementia example given here can be found in [15] and includes [2]. We use the following

abbreviations:

AD
DLB
VaD
epiMem
fluctCog
i

prog
radVasc
slow
extraPyr
visHall

= Alzheimer’s disease
= Lewy body type of dementia
= Vascular dementia
= Episodic memory dysfunction
= Fluctuating cognition
Focal neurological signs
Progressive course
= Radiology exam shows vascular signs
= Slow, gradual onset
= Extrapyramidal symptoms

= Visual hallucinations

We extract the following labels describing different levels of uncertainty of assessments from
the clinical guidelines: Q := {confirmed, probable, possible, plausible, supported, open}. To de-
scribe their relationships, let < be a partial order such that the following set of relations holds:
{confirmed > probable, probable > possible, confirmed > plausible, plausible > supported,
possible > supported, supported > open}, see Figure 1. Given z,y € Q, the relation z > y
means that y is less certain than z.

» Example 7. The following clauses are included in our possibilistic nested logic program:

Ll o

probable:
probable:
probable:
probable:
probable:

VaD < fn A radVasc A not (ADV DLB)

DLB < extraPyr A visHall A not fn

DLB < fluctCog A visHall A not fn

DLB <+ fluctCog A extraPyr A not fn

VaD N DLB < fn A radVasc A extraPyr A fluctCog
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possible: VaD A DLB + fn A fluctCog

possible: VaD A AD « fn A slow A prog A epiMem
possible: VaD A AD <« radVasc A slow A prog A\ epiMem
possible: DLB A AD «+ fluctCog A slow A prog A\ epiMem
10. possible: DLB A AD + extraPyr A slow N\ prog N\ epiMem
11. possible: DLB A AD <+ visHall A slow A prog A epiMem
12. possible: DLB + fluctCog

13. possible: DLB «+ visHall

14. possible: DLB + extraPyr

15. possible: VaD + fn

16. possible: VaD < radVasc

17. supported: VaD < fluctCog

18. plausible: VaD «+ fn

19. probable: AD « slow A prog A epiMem A not (VaD Vv DLB)

woeNe

A problem in the dementia domain is that a large number of symptoms are overlapping
between diseases. In addition, it is common to have more than one disease causing dementia
in old age and in later stages of the disease progression (comorbidity). Typically, formal
representations do not support this kind of complexity of a differential diagnostic process.
The advantage of applying possibilistic nested rules is that it provides a transparent method
to capture the different ways to interpret a set of findings, including potential comorbidity.
Transparency is highly desirable in a knowledge modeling situation where medical domain
experts are responsible for the content. Our example exemplify this, showing that one of two
possible medical conditions may be present, or both.

3.2 Possibilistic Nested Logic Semantics

In order to define the semantics of the possibilistic nested logic programs, we introduce some
basic concepts with respect to sets of possibilistic atoms.

Given a finite set of atoms A4, a lattice (Q,<) and a the function Cardinality which returns
the cardinality of a set:

PS = {S|S € 22%2 and Vx € A, Cardinality({(z,a)|(z,a) € S}) < 1}

Observe that every S € PS is a set of possibilistic atoms where every atom x € A at most
occurs one time in S.

» Definition 8. [14] Let A be a finite set of atoms and (Q,<) be a lattice. VA, B € PS, we
define

ANB  ={(z,6LB{a, 8})|(z,a) € AN (z,8) € B}.

AUB  ={(z,a)|(z,a) e Aand z ¢ B*} U
{(z,a)|z ¢ A" and (z,a) € B} U
{(z, LUB({e, B})|(z,a) € A and (=, ) € B}.

ACB <= A*C B*, and Vz,0, 3, (z,a) € A A
(z,B) € B then o < 8.

Before moving on, let us define the concept of i-greatest set w.r.t. PS as follows: Given
M € PS, M is an i-greatest set in PS iff AM' € PS such that M T M’'. For instance,
let PS = {{{(a,2),(b,1)},{(a,2),(b,2)}}. One can see that PS has one i-greatest sets:

{(a,2),(b,2)}.
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Similar to the definition of answer set semantics for nested logic programs, the possibilistic
answer set semantics for possibilistic nested logic programs is defined in terms of a syntactic
reduction.

» Definition 9 (Reduction Pys). Let P = ((Q, <), N) be a possibilistic nested logic program,
M be a set of atoms. P reduced by M is the following possibilistic definite nested logic
program:

Py :={a: (A« B)M|a: A<+ B N and M is closed under (A « B)}

Observe that the reduction (A + B)M is according to Definition 4 and Py is a possibilistic
definite nested logic programs.

Now by considering the inference of possibilistic logic (Fpy) and the reduction Py, the
inference relation lI-py, is defined as follows:

» Definition 10. Let P = ((Q, <), N) be a possibilistic nested logic program and M € PS.
We write P lFpy;, M when M* is an answer set of P* and Py« Fpr, M.

Observe that the inference relation IIFpy, is considering the standard definition of answer
sets for nested logic programs (Definition 6). In particular, lI-py, is identifying sets of
possibilistic atoms which satisfy P. However, not all these sets are optimal in the sense of
necessity-values of a possibilistic theory. Hence, in order to define the possibilistic answer
sets of a possibilistic nested logic programs we consider the idea of an i-greatest set.

» Definition 11. Let P = ((Q, <), N) be a possibilistic nested logic program and M be a
set of possibilistic atoms. M is a possibilistic answer set of P iff M is an i-greatest set in PS
such that P lIFpr, M. NSEM(P) denotes the set of possibilistic answer sets of P.

In order to illustrate the definition of answer sets for possibilistic nested logic programs,
let us consider a subset of possibilistic nested rules which were introduced in Example 7.

» Example 12. Let P = ((Q, <), N) be a possibilistic nested logic program in which (Q, <)
is the lattice introduced in Example 7 and N is the following set of possibilistic nested rules:

confirmed :  fn < T

confirmed :  radVasc < T
confirmed :  extraPyr < T
confirmed :  fluctCog <— T

probable : VaD A DLB <+ fn A radVasc N\
extraPyr A fluctCog

posstble : DLB < extraPyr

probable : VaD <+ fn A radVasc A

not (ADV DLB)

In order to infer the answer sets of P, the first step is to find, the answer set of P*. It is not hard
to see that P* has only one answer set which is M = { fn,radVasc,extraPyr,fluctCog, DLB, VaD }.
Now, one can see that Py is:

confirmed :  fn <+ T

confirmed :  radVasc < T
confirmed :  extraPyr < T
confirmed :  fluctCog < T

probable : VaD AN DLB <+ fn A radVasc A
extraPyr A fluctCog
possible : DLB < extraPyr
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Observe that the possibilistic nested rule r = probable : VaD « fn A radVasc A not (ADV
DLB) was removed because (r*) is not closed under M. Now let us consider M; =
{(fn, confirmed), (radVasc, confirmed), (extraPyr, confirmed), (fluctCog, confirmed),
(DLB, probable), (VaD,probable)} and My = {(fn, confirmed), (radVasc,confirmed),
(extraPyr, confirmed), (fluctCog, confirmed), (DLB, possible), (VaD, probable)}.

One can see that Py Fpr, My and Py Fpr, Ms. Since M = My = M5, hence both M7
and My are answer sets of P*. Therefore Pys IIFpr, My and Py IIFpr, My. This means that
both M; and M, are two potential sets to be answer sets of P. Observe that M, T My,
therefore M5 is not an i-greatest set. One can see that M is an i-greatest set, therefore M,
is the unique possibilistic answer set of P.

An obvious property of the logic programming semantics of the possibilistic nested logic
programs is that it generalizes the logic programming semantics of nested logic programs
» Proposition 1. Let P = ((Q, <), N) be a possibilistic nested logic program. If M is a
possibilistic answer set of P then M™* is an answer set of P*.

In the family of possibilistic logic programs, the approach presented in this paper general-
izes the approaches presented in [13] and [14].

Let us formalize the relationship between the nested possibilistic semantics and the
possibilistic stable semantics. The last one was introduced by [13].

» Proposition 2. Let P = ((Q, <), N) be a possibilistic nested logic program such that for all
reN, r=a:Ag— AN NA; A not Ajp1 A--- Anot Ay, Ly« has no extended atoms
and (Q, <) is a total ordered set. If M is a consistent possibilistic answer set of P then M is
a possibilistic stable model according to the definition from [13].

Now, let us show that the possibilistic semantics for possibilistic nested logic programs
generalizes the semantics of possibilistic disjunctive logic programs.
» Proposition 3. Let P = ((Q, <), N) be a possibilistic nested logic program such that for
allr e Nyr=a: AV - VA, & A1 A Aj Anot Ajii A--- A not Ay, in which
A;(0 <4 < n) are literals. If M is a consistent possibilistic answer set of P then M is a
possibilistic answer set according to the definition from [14].

It is known that the answer set semantics for nested logic programs is computable [10].
Indeed, one can find solvers of nested logic programs [19]. On the other hand, the possibilistic
inference of possibilistic logic is complete and sound by a possibilistic extended version of the
classical resolution rule [6]. Hence, it is not difficult to define an algorithm for computing
the possibilistic answer sets of a possibilistic nested logic program.

A common strategy for computing the answer set of a nested logic program is to translate
the nested logic programs into disjunctive ones. Hence, the answer sets of the nested logic
programs are characterized by the answer sets of disjunctive logic programming systems.
This strategy can be also applied for computing the answer sets of possibilistic nested logic
programs via possibilistic disjunctive logic programs.

By lack of space, we omit the details of the transformation of any possibilistic nested
logic program into a possibilistic logic program. The details of this transformation will be
presented in the long version of this paper. In the following theorem, it is assumed that there
is a transformation of any possibilistic nested logic program into a possibilistic disjunctive
logic program.

» Theorem 13. Let P = {(Q,<),N) be a possibilistic nested logic program and P’ a
possibilistic disjunctive logic program obtained by transforming P. If M’ is an answer set of
P’ then M = {(a,a)|(a,a) € M’ and a € M"™ N Lp+} is answer set of P.
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4 Conclusions and Future Work

In the logic programming literature, one can find different approaches for expressing uncertain
information [8, 13, 4, 1, 21, 14, 5]; however, most of them define syntactic restriction to
their specification languages. Against this background, we introduce the class of possibilistic
nested logic programs. The syntax and semantics of these programs generalize previous
works in the paradigm of Answer Set Programming plus Possibilistic Logic (Proposition 2,
Proposition 3). Moreover, our approach generalizes the frame of nested logic programs
(Proposition 1). We show that the semantics of the possibilistic nested programs can be
computed by transforming possibilistic nested logic programs into possibilistic disjunctive
logic programs (Theorem 13).

In the long version of this paper, we will present a process for transforming a possibilistic
nested logic program into a possibilistic disjunctive logic program. In this process, we will
identify the class of possibilistic generalized disjunctive logic programs which is a subclass
(syntactically speaking) of the possibilistic nested logic programs. Let us observe that the
class of possibilistic generalized disjunctive logic programs is a class of possibilistic programs
which is interesting by itself due to this class of logic programs is the possibilistic extension
of the generalized disjunctive logic programs explored in [9].

To the best of our knowledge, the approach presented in this paper is the first work
to attend to manage uncertain information with no-syntactic restrictions in its rules. It is
worth mentioning that the possibilistic nested logic programs combine both non-monotonic
reasoning and reasoning under uncertainty in a single framework.

Since the uncertain information in possibilistic nested logic programs can be captured
by partially ordered sets, the possibilistic nested programs define a suitable approach for
capturing qualitative information. In particular, we have illustrated that possibilistic nested
logic programs are expressive enough for capturing ambiguous and uncertain knowledge
content in medical guidelines. The approach has the potential to provide medical experts,
who are usually not experts in knowledge representation, with a formal framework that is
transparent and intuitive for knowledge modeling.

In our future, we will explore practical algorithms for implementing a solver for possibilistic
nested logic programs. It is worth mentioning that there already exist solvers of nested logic
programs [19]; hence, a solver for nested logic programs can be taken as a starting point for
a solver for possibilistic nested logic programs. The approach described in this paper will
be evaluated in practical knowledge modeling and diagnostic situations involving medical
professionals as part of the ACKTUS project [11].
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