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—— Abstract

Having in mind the task of improving the solving methods for Answer Set Programming (ASP),
there are two usual ways to reach this goal: (i) extending state-of-the-art techniques and ASP
solvers, or (ii) designing a new ASP solver from scratch. An alternative to these trends is to
build on top of state-of-the-art solvers, and to apply machine learning techniques for choosing
automatically the “best” available solver on a per-instance basis.

In this paper we pursue this latter direction. We first define a set of cheap-to-compute
syntactic features that characterize several aspects of ASP programs. Then, given the features
of the instances in a training set and the solvers performance on these instances, we apply a
classification method to inductively learn algorithm selection strategies to be applied to a test
set. We report the results of an experiment considering solvers and training and test sets of
instances taken from the ones submitted to the “System Track” of the 3rd ASP competition.
Our analysis shows that, by applying machine learning techniques to ASP solving, it is possible
to obtain very robust performance: our approach can solve a higher number of instances compared
with any solver that entered the 3rd ASP competition.
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1 Introduction

Having in mind the task of improving the robustness, i.e., the ability to perform well across
a wide set of problem domains, and the efficiency, i.e., the quality of solving a high number
of instances, of solving methods for Answer Set Programming (ASP) [13, 27, 30, 26, 14, 3],
it is possible to extend existing state-of-the-art techniques implemented in ASP solvers,
or design from scratch a new ASP system with powerful techniques and heuristics. An
alternative to these trends is to build on top of state-of-the-art solvers, leveraging on a
number of efficient ASP systems, e.g., [36, 22, 24, 10, 28, 21, 36], and applying machine
learning techniques for inductively choosing, among a set of available ones, the “best” solver
on the basis of the characteristics, called features, of the input program. This approach falls
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in the framework of the algorithm selection problem [34]. Related approaches, following
a per-instance selection, have been exploited for solving propositional satisfiability (SAT),
e.g., [40], and Quantified SAT (QSAT), e.g., [32] problems. In ASP, an approach for selecting
the “best” CLASP internal configuration is followed in [9], while another approach that imposes
learned heuristics ordering to SMODELS is [2].

In this paper we pursue this direction, and design a multi-engine approach to ASP
solving. We first define a set of cheap-to-compute syntactic features that describe several
characteristics of ASP programs, paying particular attention to ASP peculiarities. We then
compute such features for the grounded version of all benchmark submitted to the “System
Track” of the 3rd ASP Competition [5] falling in the “NP” and “Beyond NP’ categories of
the competition: this track is well suited for our study given that (¢) contains many ASP
instances, (i) the language specification, ASP-Core, is a common ASP fragment such that
(7i7) many ASP systems can deal with it.

Then, starting from the features of the instances in a training set, and the solvers
performance on these instances, we apply the “Nearest-neighbor” classification method to
inductively learn general algorithm selection strategies to be applied to a test set. We perform
an analyses that consider as test set the instances evaluated to the 3rd ASP competition.

Our experiments show that it is possible to obtain a very robust performance, by solving
a higher number of instances than all the solvers that entered the 3rd ASP competition and
DLV [22].

The paper is structured as follow. Section 2 contains preliminaries about ASP and
classification methods. Section 3 then describes our benchmarks setting, in terms of dataset
and solvers employed. Section 4 defines how features and solvers have been selected, and
presents the classification methods employed. Section 5 shows the performance analysis,
while Section 6 and 7 end the paper with discussion about related work and conclusions,
respectively.

2 Preliminaries

In this section we recall some preliminary notions concerning answer set programming and
machine learning techniques for algorithm selection.

2.1 Answer Set Programming

Answer Set Programming (ASP) [13, 27, 30, 26, 14, 3] is a declarative programming formalism
proposed in the area of non-monotonic reasoning and logic programming. The idea of ASP is
to represent a given computational problem by a logic program whose answer sets correspond
to solutions, and then use a solver to find those solutions [26].

In the following, we recall both the syntax and semantics of ASP. The presented constructs
are included in ASP-Core [5], which is the language specification that was originally introduced
in the 3rd ASP Competition [5] as well as the one employed in our experiments (see Section 3).
Hereafter, we assume the reader is familiar with logic programming conventions, and refer
the reader to [14, 3, 12] for complementary introductory material on ASP, and to [4] for
obtaining the full specification of ASP-Core.

2.1.1 Syntax

A variable or a constant is a term. An atom is p(ti,...,t,), where p is a predicate of arity n
and ty,...,t, are terms. A literal is either a positive literal p or a negative literal not p, where
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p is an atom. A (disjunctive) rule r is of the form:
a; V -V oa, — by, by, not bgy1,---, not by,.

where ay,...,a,,b1,...,b, are atoms. The disjunction a1 V...V a,, is the head of r, while
the conjunction by, ...,bg,not bgy1,...,not by, is the body of r. We denote by H(r) the set
of atoms occurring in the head of r, and we denote by B(r) the set of body literals. A rule
s.t. |[H(r)| =1 (i.e., n =1) is called a normal rule; if the body is empty (i.e., k =m = 0) it

is called a fact (and the :— sign is omitted); if |[H(r)| =0 (i.e., n = 0) is called a constraint.
A rule 7 is safe if each variable appearing in r appears also in some positive body literal of r.

An ASP program P is a finite set of safe rules. A not-free (resp., V-free) program is
called positive (resp., normal). A term, an atom, a literal, a rule, or a program is ground if
no variable appears in it.

2.1.2 Semantics

Given a program P, the Herbrand Universe Up is the set of all constants appearing in P,
and the Herbrand Base Bp is the set of all possible ground atoms which can be constructed
from the predicates appearing in P with the constants of Up. Given a rule r, Ground(r)
denotes the set of rules obtained by applying all possible substitutions from the variables
in r to elements of Up. Similarly, given a program P, the ground instantiation of P is
Ground(P) =, cp Ground(r).

An interpretation for a program P is a subset I of Bp. A ground positive literal A is
true (resp., false) w.r.t. I if A €I (resp., A & I). A ground negative literal not A is true
w.r.t. I if A is false w.r.t. I; otherwise not A is false w.r.t. I.

The answer sets of a program P are defined in two steps using its ground instantiation:
First the answer sets of positive disjunctive programs are defined; then the answer sets of
general programs are defined by a reduction to positive ones and a stability condition.

Let r be a ground rule, the head of r is true w.r.t. I if H(r) NI # (. The body of r is
true w.r.t. I if all body literals of r are true w.r.t. I, otherwise the body of r is false w.r.t. I.
The rule r is satisfied (or true) w.r.t. I if its head is true w.r.t. I or its body is false w.r.t. I.

Given a ground positive program P,, an answer set for P, is a subset-minimal interpretation
A for P, such that every rule r € P, is true w.r.t. A (i.e., there is no other interpretation
I C A that satisfies all the rules of Py).

Given a ground program P, and an interpretation I, the (Gelfond-Lifschitz) reduct [14]
of Py w.r.t. I is the positive program PgI, obtained from P, by (i) deleting all rules r € P,
whose negative body is false w.r.t. I, and (ii) deleting the negative body from the remaining
rules of P,.

An answer set (or stable model) of a general program P is an interpretation I of P such
that I is an answer set of Ground(P)!.

As an example consider the program P = { a Vb:—c., b:—not a,not ¢., a V ¢:—not b.,
k:a., k:b. }and I = {b,k}. The reduct P’ is {aVb:—c., b. k:~a., k:~b.}. I is an answer
set of P!, and for this reason it is also an answer set of P.

2.2 Multinomial classification for Algorithm Selection

With regard to empirically hard problems, there is rarely a best algorithm to solve a given
combinatorial problem, while it is often the case that different algorithms perform well on
different problem instances. Among the approaches for solving this problem, in this work
we rely on a per-instance selection algorithm in which, given a set of features —i.e., numeric
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Table 1 Problems and instances considered, coming from the NP and Beyond NP classes of the
3rd ASP competition.

Problem Class ‘ #Instances
DisjunctiveScheduling NP 10
GraphColouring NP 60
HanoiTower NP 59
KnightTour NP 10
MazeGeneration NP 50
Labyrinth NP 261
MultiContextSystemQuerying | NP 73
Numberlink NP 150
PackingProblem NP 50
SokobanDecision NP 50
Solitaire NP 25
Weight AssignmentTree NP 62
MinimalDiagnosis Beyond NP 551
StrategicCompanies Beyond NP 51

values that represent particular characteristics of a given instance—, it is possible to choose
the best algorithm among a pool of them —in our case, tools to solve ASP instances. In
order to make such a selection in an automatic way, we model the problem using multinomial
classification algorithms, i.e., machine learning techniques that allow automatic classification
of a set of instances, given instance features.

More in detail, in multinomial classification we are given a set of patterns, i.e., input
vectors X = {z;,...2;} with z; € R", and a corresponding set of labels, i.e., output values
Y €{1,...,m}, where Y is composed of values representing the m classes of the multinomial
classification problem. In our modeling, the m classes are m ASP solvers. We think of the
labels as generated by some unknown function f : R™ — {1,...,m} applied to the patterns,
ie, f(z;) =y fori € {1,...,k} and y; € {1,...,m}. Given a set of patterns X and a
corresponding set of labels Y, the task of a multinomial classifier ¢ is to extrapolate f given
X and Y, i.e., construct ¢ from X and Y so that when we are given some x* € X we should
ensure that c(z*) is equals to f(z*). This task is called ¢raining, and the pair (X,Y") is called
the training set.

3 Benchmark data and Settings

In this section we report some information concerning the benchmark settings employed in
this work, which is needed for properly introducing the techniques described in the remainder
of the paper. In particular, we report some data concerning: benchmark problems, instances
and ASP solvers employed, as well as the hardware platform, and the execution settings for
reproducibility of experiments.

3.1 Dataset

The benchmarks considered for the experiments belong to the suite of the 3rd ASP Compe-
tition [5]. This is a large and heterogeneous suite of hard benchmarks, which was already
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employed for evaluating the performance of state-of-the-art ASP solvers, which are encoded in
ASP-Core. That suite includes planning domains, temporal and spatial scheduling problems,
combinatorial puzzles, graph problems, and a number of application domains i.e., database,
information extraction and molecular biology field.! More in detail, we have employed the
encodings used in the System Track of the competition, and all the problem instances made
available (in form of facts) from the contributors of the problem submission stage of the
competition, which are available from the competition website [4]. Note that this is a superset
of the instances actually selected for running (and, thus evaluated in) the competition itself.
Hereafter, with instance we refer to the complete input program (i.e., encoding+facts) to be
fed to a solver for each instance of the problem to be solved.

The techniques presented in this paper are conceived for dealing with propositional
programs, thus we have grounded all the mentioned instances by using GRINGO (v.3.0.3) [11]
to obtain a setup very close to the one of the competition.We considered only computationally-
hard benchmarks, corresponding to all problems belonging to the categories NP and Beyond
NP of the competition. The dataset is summarized in Table 1, which also reports the
complexity classification and the number of available instances for each problem.

3.2 Executables and Hardware Settings

We have run all the ASP solvers in our experiments that entered the System Track of the
3rd ASP Competition [4] with the addition of DLV [22] (which did not participate in the
competition since it is developed by the organizers of the event). In this way we have covered
—to the best of our knowledge— all the state-of-the-art solutions fitting the benchmark settings.
In detail, we have run: CLASP [10], CLASPD [7], CLASPFOLIO [9], IDP [39], CMODELS [24],
SUP [25], SMODELS [36], and several solvers from both the LP2SAT [20] and LP2DIFF [21]
families, namely: LP2GMINISAT, LP2LMINISAT, LP2LGMINISAT, LP2MINISAT, LP2DIFFGZ3,
LP2DIFFLGZ3, LP2DIFFLZ3, and LP2DIFFZ3. More in detail, CLASP is a native ASP solver
relying on conflict-driven nogood learning; CLASPD is an extension of CLASP that is able to
deal with disjunctive logic programs, while CLASPFOLIO exploits machine-learning techniques
in order to choose the best-suited execution options of CLASP; IDP is a finite model generator
for extended first-order logic theories, which is based on MiniSatID [28]; SMODELS is one
of the first robust native ASP solvers that have been made available to the community;
DLV [22] is one of the first systems able to cope with disjunctive programs; CMODELS exploits
a SAT solver as a search engine for enumerating models, and also verifying model minimality
whenever needed; SUP exploits nonclausal constraints, and can be seen as a combination
of the computational ideas behind ¢CMODELS and SMODELS; the LP2SAT family employs
several variants (indicated by the trailing G, L and LG) of a translation strategy to SAT
and resorts on MINISAT [8] for actually computing the answer sets; the LP2DIFF family
translates programs in difference logic over integers [37] and exploit Z3 [6] as underlying
solver (again, G, L and LG indicate different translation strategies). Solvers were run on the
same configuration (i.e., parameter settings) as in the competition.

Concerning the hardware employed and the execution settings, all the experiments were
carried out on CyberSAR [29], a cluster comprised of 50 Intel Xeon E5420 blades equipped
with 64 bit Gnu Scientific Linux 5.5. Unless otherwise specified, the resources granted to the
solvers are 600s of CPU time and 2GB of memory. Time measurements were carried out
using the time command shipped with Gnu Scientific Linux 5.5.

! An exhaustive description of the benchmark problems can be found in [4].
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4 Designing a Multi-Engine ASP Solver

The design of a multi-engine solver involves several steps: (i) design of (syntactic) features
that are both significant for classifying the instances and cheap-to-compute (so that the
classifier can be fast and accurate); (i) selection of solvers that are representative of the state
of the art (to be able to obtain the best possible performance in any considered instance);
and (7i%) selection of the classification algorithm, and fair design of training and test sets, to
obtain a robust and unbiased classifier.

In the following we describe the choices we have made for designing ME-ASP, which is our
multi-engine solver for ground ASP programs.

4.1 Features

We consider syntactic features that are cheap-to-compute, i.e., computable in linear time
in the size of the input, given that in previous work (e.g., [32]) syntactic features have
been profitably used for characterizing (inherently) ground instances. The features that
we compute for each ground program are divided into four groups: problems size, balance,
“proximity to horn” and ASP-based peculiar features. This categorization is borrowed
from [31]. The problem size features are: number of rules r, number of atoms a, ratios
r/a, (r/a)?, (r/a)® and ratios reciprocal a/r, (a/r)* and (a/r)’. The balance features are:
fraction of unary, binary and ternary rules. The “proximity to horn” features are: fraction of
horn rules and number of occurrences in a horn rule for each atom. We have added a number
of ASP peculiar features, namely: number of true and disjunctive facts, fraction of normal
rules and constraints ¢. Also some combinations, e.g., ¢/r, are considered for a total of 52
features.

We were able to ground with GRINGO 1425 instances out of a total of 1462 in less than
600s.2 Our system for extracting features from ground programs can then compute all
features (in less than 600s) for 1371 programs: to have an idea of its performance, it can
compute all features of a ground program of approximately 20MB in about 4s.

4.2 Solvers selection

The target of our selection is to collect a pool of solvers that is representative of the state-of-
the-art solver (SOTA), i.e., considering a problem instance, the oracle that always fares the
best among available solvers. In order to do that, we ran preliminary experiments, and we
report the results (regarding the NP class) in Table 2. Looking at the table, first we notice
that we do not report results related to both cLASPD and CLASPFOLIO. Concerning the
results of CLASPD, we report that —considering the NP class— its performance is subsumed
by the performance of CLASP. Considering the performance of CLASPFOLIO, we exclude such
system from this analysis because we consider it as a yardstick system, i.e., we will compare
its performance against the ones related to ME-ASP.

Looking at Table 2, we can see that only 4 solvers out of 16 are able to solve a noticeable
amount of instances uniquely, namely CLASP, CMODELS, DLV, and 1DP. Concerning Beyond
NP instances, we report that only three solvers are able to cope with such class of problems,
name CLASPD, CMODELS, and DLV. Considering that both ¢cMODELS and DLV are involved
in the previous selection, the pool of engines used in ME-ASP will be composed of 5 solvers,
namely CLASP, CLASPD, CMODELS, DLV, and IDP.

2 The exceptions are 10 and 27 instances of DisjunctiveScheduling and PackingProblem, respectively.
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Table 2 Results of a pool of ASP solvers on the NP instances of the 3rd ASP Competition.
The table is organized as follows: Column “Solver” reports the solver name, column “Solved”
reports the total amount of instances solved with a time limit of 600 seconds, and, finally, in column
“Unique” we report the total amount of instances solved uniquely by the corresponding solver.

Solver Solved | Unique H Solver Solved | Unique
CLASP 445 26 LP2DIFFZ3 307 -
CMODELS 333 6 LP2SAT2GMINISAT 328 -
DLV 241 37 LP2SAT2LGMINISAT 322 -
IDP 419 15 LP2SAT2LMINISAT 324 -
LP2DIFFGZ3 254 - LP2SAT2MINISAT 336 -
LP2DIFFLGZ3 242 - SMODELS 134 -
LP2DIFFLZ3 248 - SUP 311 1

4.3 Classification algorithms and training

The classification method employed in our analysis is Nearest-neighbor (NN), already
considered in [32] in QBF solving: it is a classifier yielding the label of the training instance
which is closer to the given test instance, whereby closeness is evaluated using some proximity
measure, e.g., Euclidean distance; we use the method described in [1] to store the training
instances for fast look-up.

As mentioned in Section 2.2, in order to train the classifier, we have to select a pool of
instances for training purpose, i.e., the training set. Concerning such selection, our aim is
twofold. On the one hand, we want to compose a training set in order to train a robust
model.

As result of the considerations above, we design a training set—Tsl in the following—
composed of the 320 instances solved uniquely —without taking into account the instances
involved in the competition— by the pool of engines selected in Section 4.2. The rational of
this choice is to try to “mask” noisy information during model training.

Our next experiment is devoted to training the classifier, and to assessing its accuracy.
Referring to the notation introduced in Section 2.2, even assuming that a training set is
sufficient to learn f, it is still the case that different sets may yield a different f. The problem
is that the resulting trained classifier may underfit the unknown pattern —i.e., its prediction
is wrong— or overfit —i.e., be very accurate only when the input pattern is in the training
set. Both underfitting and overfitting lead to poor generalization performance, i.e., ¢ fails to
predict f(z*) when z* # z. However, statistical techniques can provide reasonable estimates
of the generalization error. In order to test the generalization performance, we use a technique
known as stratified 10-times 10-fold cross validation to estimate the generalization in terms
of accuracy, i.e., the total amount of correct predictions with respect to the total amount
of patterns. Given a training set (X,Y"), we partition X in subsets X; with ¢ € {1,...10}
such that X = Ugl X; and X; N X; = 0 whenever i # j; we then train c(;y on the patterns
Xy = X'\ X; and corresponding labels Y{;). We repeat the process 10 times, to yield 10
different ¢ and we obtain the global accuracy estimate.

We finally report the accuracy results related to the experiment described above for our
classification method: 92.81%.
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Table 3 Results of the various solvers on the grounded instances evaluated at the 3rd ASP
competition. ME-ASP(NN) has been trained on the TS1 training set.

Solver NP Beyond NP Total
#Solved ‘ Time #Solved ‘ Time #Solved ‘ Time
CLASP 60 | 5132.45 - - - -
CLASPD - - 13 | 2344.00 - -
CMODELS 56 | 5092.43 9 | 2079.79 65 | 7172.22
DLV 37 | 1682.76 15 | 1359.71 52 | 3042.47
IDP 61 | 5010.79 - - - -
ME-ASP (NN) 66 | 4854.78 15 | 3187.31 81 | 8042.09
CLASPFOLIO 62 | 4824.06 - - - -
SOTA 71 | 5403.54 15 | 1221.01 86 | 6624.55

5 Performance analysis

In this section we present the results of the analysis we have performed. We consider the
training sets TS1 introduced in Section 4, composed of uniquely solved instances, and as test
set the successfully grounded instances evaluated at the 3rd ASP Competition (a total of
88 instances): the goal of this analysis is to test the efficiency of our approach on all the
evaluated instances when the model is trained on the whole space of the uniquely solved
instances.

The results are reported in a table structured as follows: the first column reports the
name of a solver, the second, third and fourth columns report the results of each solver on
NP, Beyond NP classes, and on both classes, respectively, in terms of the number of solved
instances within the time limit and sum of their solving times (a sub-column is devoted
to each of these numbers). About the last column, numbers are reported only for ME-ASP
and the engines that have been selected on both classes in Section 4.2 (note that cLASPD
always performs worse than CLASP on NP instances, and CLASPFOLIO can only handle NP
instances).

We report the results obtained by running: ME-ASP with the NN classification method
introduced in Section 4.3, denoted with ME-ASP(NN) the component engines employed by
ME-ASP on each class as explained in Section 4.2, CLASPFOLIO and SOTA, which is the ideal
multi-engine solver (considering the engines employed).

We remind the reader that, for ME-ASP, the number of instances on which ME-ASP is run
is further limited to the ones for which we were able to compute all features, and its timings
include both the time spent for extracting the features from the ground instances, and the
time spent by the classifier.

Results are shown in Table 3. We can see that, on problems of the NP class, ME-ASP(NN)
solves the highest number of instances, 5 more than IDP, 6 more than CLASP and 4 more
than CLASPFOLIO, that we remind the fastest solver in the NP class that entered the System
Track of the competition. On the Beyond NP problems, instead, ME-ASP(NN) and DLV solve
15 instances (DLV having best mean CPU time), followed by cLASPD and CMODELS, which
solve 13 and 9 instances, respectively. It is interesting to report the overall result of CLASPD,
i.e., the overall winner of the System Track of the competition on both NP and Beyond NP
classes: it solves a total of 62 instances (i.e., 52 NP instances and 13 Beyond NP instances),
thus a total of 19 instances less than ME-ASP(NN).
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Summarizing, ME-ASP(NN) is the solver that solves the highest number of instances in
comparison with (i) its engines, (ii) CLASPFOLIO, i.e., the fastest solver in the NP class that
entered the System Track of the competition, and (iii) CLASPD, i.e., the overall winner of the
System Track of the competition. It is further very interesting to note that its performance
is very close to the SOTA solver which, we remind, has the ideal performance that we could
expect in these instances with these engines.

6 Related Work

Starting from the consideration that, on empirically hard problems, there is rarely a “global”
best algorithm, while it is often the case that different algorithms perform well on different
problem instances, Rice [34] defined the algorithm selection problem as the problem of finding
an effective, or good, or best algorithm, based on an abstract model of the problem at hand.
Along this line, several works have been done to tackle combinatorial problems efficiently.
[16, 23] described the concept of “algorithm portfolio” as a general method for combining
existing algorithms into new ones that are unequivocally preferable to any of the component
algorithms. Most related papers to our work are [40, 32| for solving SAT and QSAT problems.
Both [40] and [32] rely on a per-instance analysis, like the one we have performed in this
paper: in [32], which is the work closest to our, the goal is to design a multi-engine solver,
i.e. a tool that can choose among its engines the one which is more likely to yield optimal
results. The approach in [40] has also the ability to compute features on-line, e.g., by running
a solver for an allotted amount of time and looking “internally” to solver statistics, with the
option of changing the solver on-line: this is a per-instance algorithm portfolio approach.
The algorithm portfolio approach is employed also in, e.g., [16] on Constraint Satisfaction
and MIP, [35] on QSAT and [15] on planning problems. The advantage of the algorithm
portfolio over a multi-engine is that it is possible, by combining algorithms, to reach, in each
instance, better performance than the best engine, while this is the bound for a multi-engine
solver. On the other hand, an algorithm portfolio needs internal changes in the code of the
engines, while the multi-engine treats the engines as black-box, thus no internal modification,
even minor, is requested, resulting in higher modularity for this approach: when a new engine
is added, there is just the need to update the model. It has to be noticed that both [32]
and [40] reached very good results, e.g., AQME, the multi-engine solver implementing the
approach in [32] had top performance at the 2007 QBF competition.? [33] extends [32] by
introducing a self-adaptation of the learned selection policies when the approach fails to give
a good prediction.

Other approaches work by designing methods for automatically tuning and configuring
the solver parameters: this approach is followed in, e.g., [19, 18] for solving SAT and MIP
problems, and [38] for planning problems. An overview can be found in [17]. In ASP, the
approach implemented in CLASPFOLIO [9] mixes characteristics of the algorithm portfolio
approach with others more similar to this second trend: it works by selecting the most
promising CLASP internal configuration on the basis of both static and dynamic features of
the input program, the latter obtained by running CLASP for a given amount of time. In
CLASPFOLIO, features are extracted by means of the CLASPRE tool. Thus, like the algorithms
portfolio approaches, it can compute both static and dynamic features, while trying to
automatically configure the “best” CLASP configuration on the basis of the computed features.
An alternative approach is followed in the DORS framework of [2], where in the off-line

3 http:www.qbflib.org/qbfeval.
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learning phase, carried out on representative programs from a given domain, a heuristic
ordering is selected to be then used in SMODELS when solving other programs from the same
domain. The target of this work seems to be real-world problem domains where instances
have similar structures, and heuristic ordering learned in some (possibly small) instances in
the domain can help to improve the performance on other (possibly big) instances.

7 Conclusion

In this paper we have applied machine learning techniques to ASP solving with the goal of
developing a fast and robust multi-engine ASP solver. To this end, we have: (¢) specified a
number of cheap-to-compute syntactic features that allow for accurate classification of ground
ASP programs; (i7) applied a multinomial classification method to learning algorithm selection
strategies; (i7¢) implemented these techniques in our multi-engine solver ME-ASP, which is
available for download at http://www.mat.unical.it/ricca/me-asp. The performance of
ME-ASP was assessed on an experiment, which was conceived for checking efficiency of our
approach, involving training and test sets of instances taken from the ones submitted to the
System Track of the 3rd ASP competition. Our analysis shows that, our multi-engine solver
ME-ASP is very robust and efficient, and outperforms both its component engines and state
of the art solvers.
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