
Algorithmic Meta Theorems for Circuit Classes of
Constant and Logarithmic Depth
Michael Elberfeld, Andreas Jakoby, and Till Tantau

Institut für Theoretische Informatik, Universität zu Lübeck
D-23538 Lübeck, Germany
{elberfeld,jakoby,tantau}@tcs.uni-luebeck.de

Abstract
An algorithmic meta theorem for a logic and a class C of structures states that all problems ex-
pressible in this logic can be solved efficiently for inputs from C. The prime example is Courcelle’s
Theorem, which states that monadic second-order (mso) definable problems are linear-time solv-
able on graphs of bounded tree width. We contribute new algorithmic meta theorems, which state
that mso-definable problems are (a) solvable by uniform constant-depth circuit families (AC0 for
decision problems and TC0 for counting problems) when restricted to input structures of bounded
tree depth and (b) solvable by uniform logarithmic-depth circuit families (NC1 for decision prob-
lems and #NC1 for counting problems) when a tree decomposition of bounded width in term
representation is part of the input. Applications of our theorems include a TC0-completeness
proof for the unary version of integer linear programming with a fixed number of equations and
extensions of a recent result that counting the number of accepting paths of a visible pushdown
automaton lies in #NC1. Our main technical contributions are a new tree automata model for
unordered, unranked, labeled trees; a method for representing the tree automata’s computations
algebraically using convolution circuits; and a lemma on computing balanced width-3 tree de-
compositions of trees in TC0, which encapsulates most of the technical difficulties surrounding
earlier results connecting tree automata and NC1.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases algorithmic meta theorem, monadic second-order logic, circuit complex-
ity, tree width, tree depth

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.66

1 Introduction

Courcelle’s Theorem [6] states that every monadic second-order (mso) definable problem can
be decided in linear time on graphs of bounded tree width. Since many important graph
properties are expressible in this logic, Courcelle’s Theorem yields a unified framework for
showing that numerous problems on graphs of bounded tree width are solvable in linear
time. Recently we showed that both Courcelle’s Theorem as well as its later extensions [1]
also hold when “linear time” is replaced by “logarithmic space” [9], making the power of
mso-definability available for the study of logarithmic space.

The present paper furthers this line of research and transfers the idea of unified mso-based
problem definitions to circuit classes inside logarithmic space. During the course of this paper
we identify mso-based algorithmic meta theorems that place problems in the circuit classes
AC0, GapAC0, TC0, NC1, and #NC1. The classes AC0, GapAC0, and TC0 are defined via
Boolean (AC0), arithmetic (GapAC0), and threshold (TC0) circuit families of constant depth
and unbounded fan-in. The classes NC1 and #NC1 are defined via Boolean and arithmetic

© M. Elberfeld, A. Jakoby, and T. Tantau;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 66–77

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.66
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


M. Elberfeld, A. Jakoby, and T. Tantau 67

circuits, respectively, of logarithmic depth and bounded fan-in. All our results concerning
circuit classes hold for a strict form of uniformity, namely dlogtime-uniformity.

The inputs for Courcelle’s Theorem are graphs of bounded tree width and many mso-
definable problems on such graphs are complete for logarithmic space, including even the
question of whether the graph has a certain tree width [9], but also the reachability problem
for trees. Thus, algorithmic meta theorems that place problems inside subclasses of L either
need to restrict the logic or the kinds of inputs allowed. In the present paper, we consider
the latter case: For the constant-depth circuit classes, we only allow input graphs that have
bounded tree depth (a restriction of bounded tree width). For the logarithmic-depth circuit
classes we allow arbitrary graphs of bounded tree width as input, but require that the graphs
are accompanied by tree decompositions in term representation.

Bounded Tree Depth Structures and Constant-Depth Circuits Our first contribution is
a set of meta theorems that place problems in constant-depth circuit classes. The inputs for
these theorems are structures that have bounded tree depth, a measure on graphs that was
introduced by Nešetřil and Ossona de Mendez [16] to quantify the similarity of graphs to
star graphs (in opposition to tree width, which quantifies the similarity of graphs to trees).
Characterizations of when a class C of graphs has bounded tree depth include: (a) All graphs
in C have a tree decomposition of both bounded width and depth; or alternatively (b) all
graphs in C have bounded longest path length. The tree depth of a logical structure is the
tree depth of its Gaifman graph.

I Theorem 1 (Decision Using Boolean Constant-Depth Circuits). For every mso-formula φ
over some signature τ and every d ∈ N, there is a dlogtime-uniform AC0-circuit family
that, on input of an arbitrary τ -structure S, outputs 1 if, and only if, the tree depth of S is
at most d and S |= φ holds.

As an example application, consider the problem of deciding whether a graph has a
perfect matching. The complexity of this mso-definable problem has been studied in detail
and its complexity varies in dependence of the class of graphs under consideration. By the
above theorem, deciding whether a graph of bounded tree depth has a perfect matching lies
in AC0. In contrast, it is known that the same problem for graphs of bounded tree width is
L-complete [7, 9].

Instead of just deciding whether a formula is satisfied by a logical structure, when the
formula has a free second-order variable, we can try to count the number of assignments
of sets to the free variable that make the formula true. Moreover, if we count the number
of solutions with respect to the sizes of these sets, this leads to cardinality versions of
Courcelle’s Theorem. These cardinality versions allow a much broader range of applications
than the decision version and we will show how both known results from the literature and
also new results can be proved in an elegant manner using these versions. To formulate
the cardinality versions, we need a bit of terminology: Let φ(X1, . . . , X`, Y1, . . . , Yk) be an
mso-formula with two sets of free set variables, namely the Xi and the Yj , and let S be a
logical structure with universe S. The solution histogram of φ and S, denoted by hist(S, φ),
is an `-dimensional integer array that tells us “how many solutions of a certain size exist”.
In detail, let s = (s1, . . . , s`) ∈ {0, . . . , |S|}` be an index vector that prescribes sizes for
the sets that are substituted for the Xi. Then hist(S, φ)[s] equals the number of subsets
S1, . . . , S`, S

′
1, . . . , S

′
k ⊆ S with |S1| = s1, . . . , |S`| = s` and S |= φ(S1, . . . , S`, S

′
1, . . . , S

′
k). In

other words, we count how often φ can be satisfied when the sets assigned to the Xi-variables
have certain sizes, but impose no restrictions on the sizes of the Yj . As a first example, let

STACS’12



68 Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth

φdom(X1) = ∀x
(
X1(x) ∨ ∃y(X1(y) ∧ E(y, x))

)
, which expresses that X1 is a dominating set

in a graph with edge relation E. Then hist(G, φdom)[s1] is the number of dominating sets
of size s1 in the graph G. As a second example, let φmatching(Y1) be the formula expressing
that Y1 is an edge set that is a perfect matching in G. Then, since ` = 0, the histogram
hist(G, φmatching) is just a scalar value that tells us how many perfect matchings G has.

In order to represent a histogram h using a single number num(h) ∈ N, imagine h to be
stored in computer memory with a word size large enough so that each of its entries fits
into one memory cell (choosing the word size as k|S| will suffice). Then num(h) is the single
number representing the whole of the memory contents (a formal definition of num(h) will
be given later). In particular, the bits of any single entry of h can easily be obtained from
the bits of num(h).

I Theorem 2 (Histogram Computation Using Arithmetic Constant-Depth Circuits). For every
mso-formula φ(X1, . . . , X`, Y1, . . . , Yk) over some signature τ and every d ∈ N, there is a
dlogtime-uniform GapAC0-circuit family that, on input of a τ -structure S of tree depth at
most d, outputs num(hist(S, φ)).

By Theorem 1 we can check in AC0 whether an input structure S has tree depth d

and, if not, we could output an error value like −1. Applying Theorem 2 to the formula
hist(G, φmatching) shows that counting the number of perfect matchings in graphs of bounded
tree depths lies in GapAC0. Since GapAC0 is contained in FTC0, the functional version of
the class TC0 of constant-depth circuits with threshold gates, computing a particular bit of
the number num(hist(S, φ)) can be done using a TC0-circuit:

I Corollary 3. For every mso-formula φ(X1, . . . , X`, Y1, . . . , Yk) over some signature τ and
every d ∈ N, there is a dlogtime-uniform TC0-circuit family that, on input of a τ -structure
S of tree depth at most d, an `-dimensional index s, and a bit position i, outputs the ith bit
of hist(S, φ)[s].

We cannot hope to place the computation of solution histograms in any complexity
class smaller than FTC0 since the TC0-complete problem majority is easily expressible
using an mso-formula and the histogram: Turning a string s into a logical structure
S = ({1, . . . , |s|}, PS

1 ) in the usual manner by setting i ∈ PS
1 ⇔ s[i] = 1, for the mso-

formula φ(X1) = ∀x(X1(x) → P1(x)) more than half of the input bits are 1 if, and only
if, hist(S, φ)

[
b|s|/2c + 1

]
> 0. In Section 3 we use extensions of this idea to prove the

TC0-completeness of the unary version of integer linear programming with a constant number
of equations.

Bounded Tree Width, Term Representations, and Logarithmic-Depth Circuits Our sec-
ond contribution are algorithmic meta theorems for NC1 and its arithmetic companion class
#NC1. For these theorems the input structure is equipped with a tree decomposition of
bounded width (no longer of bounded depth, though) given in term representation. The
term representation of a tree like is the string [ [ ] [ [ ] [ ] ] ], which exhibits the tree’s
ancestor relation.

I Theorem 4 (Decision Using Boolean Logarithmic-Depth Circuits). For every mso-formula φ
over some signature τ and every w ∈ N, there is a dlogtime-uniform NC1-circuit family that,
on input of a τ -structure S along with a width-w tree decomposition in term representation
for S, decides whether S |= φ holds.

As an example application, consider the problem of deciding the language accepted by
a tree automaton. It is well known that every such language lies in NC1 [15]. The above



M. Elberfeld, A. Jakoby, and T. Tantau 69

theorem allows us to reprove this fact succinctly: an mso-formula can easily check (using
existential second-order quantifiers) whether there is an assignment of states to the nodes of
the tree that is locally consistent and that makes the automaton accept.

I Theorem 5 (Histogram Computation Using Arithmetic Logarithmic-Depth Circuits). For
every mso-formula φ(X1, . . . , X`, Y1, . . . , Yk) over some signature τ and every w ∈ N, there
is a dlogtime-uniform #NC1-circuit family that, on input of a τ -structure S along with a
width-w tree decomposition in term representation for S, outputs num(hist(S, φ)).

An application of this theorem is to count the number of accepting paths of nondetermin-
istic visible pushdown automata.

Technical Contributions The proofs of the algorithmic meta theorems for constant-depth
circuits rest on two new technical tools. First, we introduce a new model of automata, which
we call multiset automata, that exactly captures the mso-definable problems on unordered
unranked labeled trees. Standard automata-theoretic approaches to proving meta theorems
cannot be applied in the context of constant-depth circuits: all known approaches include
preprocessing steps that enlarge the depth of the input trees by at least a logarithmic
factor, making them infeasible for simulation by constant-depth circuits. Second, we develop
algebraic representations of the computations of multiset automata using arithmetic circuits
that keep track of the number of ways in which states can be reached.

In the context of research on logarithmic-depth circuits, trees in term representation
are a natural form of input. In many papers (including the present), a central problem is
that a logarithmic-depth circuit cannot work on the term representation directly when it
has large depth. The standard approach is to recursively divide the tree into parts smaller
by some constant factor, but doing so uniformly is an involved problem. We present a new
algorithm for dealing with trees of arbitrary depth: It takes a tree T as input and outputs
a width-3 tree decomposition of T that is perfectly balanced and, hence, has logarithmic
depth. The bags of this decomposition form a hierarchical separation of T into subtrees
along which a recursive algorithm can work. A key property of our construction is that it
can be performed in TC0.

Related Work Algorithmic meta theorems for monadic second-order logic have been studied
intensively from the perspective of achieving a low runtime (see [12] for an overview), but
there is less work on meta theorems that lead to exact classifications in complexity theoretic
terms. Two exceptions are Wanke’s paper [18], which shows that all problems that are
captured by Courcelle’s Theorem are in LOGCFL, and our paper [9], which places these
problems further down into L.

Tree automata-based techniques are routinely used to prove time- and space-efficient
variants of Courcelle’s Theorem [1, 9]. The problem of deciding whether a fixed tree
automaton accepts a given tree in term representation lies in NC1 both in the ranked [15]
and the unranked case [11].

Buss [3] used pebbling-based strategies to evaluate Boolean sentences in uniform NC1. His
method was later adopted to evaluate arithmetic sentences [2] and, more recently, to prove
that the number of accepting computations of nondeterministic visible pushdown automata
can be counted in #NC1 [13].

Organization of This Paper After discussing the logical, graph theoretic and complexity
theoretic background of our work in Section 2, in Sections 3 and 4 we sketch the proofs and

STACS’12



70 Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth

applications of the algorithmic meta theorems for constant-depth and logarithmic-depth
circuits, respectively. Due to lack of space, formal proofs are omitted from the present
conference paper; they can be found in its technical report version [10].

2 Background

A detailed review of the notations on logic, graphs, tree decompositions, and complexity
classes that we use in the present paper can be found in our technical report [10]. In the
following, we just point out less common notations that we will use: For a graph G, we
write V (G) for its vertex set and E(G) ⊆ V (G) × V (G) for its edge set. We consider
trees as special cases of directed graphs, where edges point from the root towards the
leaves, but call their vertices nodes. A tree decomposition is a pair (TD, BD) where TD is
a tree and BD is a labeling function BD : V (TD) → P(V (G)), where P(X) is the power
set of X, that satisfies standard connectedness and edge covering conditions. The closure
clos(T ) of a directed tree T is the graph with vertex set V (clos(T )) = V (T ) and edge set
E(clos(T )) = {(v, w) ∈ V (T ) × V (T ) | there is a v-to-w or a w-to-v path in T}. The tree
depth [16] of a connected graph G, denoted by td(G), is 1 plus the minimum depth of a
rooted tree T with V (G) = V (T ) and E(G) ⊆ E(clos(T )). The tree depth of a graph with
components C1, . . . ,Cm is maxi∈{1,...,m} td(Ci). The tree width and tree depth of a logical
structure are those of its Gaifman graph. The longest path length lpl(G) of a graph is the
length of the longest path in the graph. Nešetřil and Ossona de Mendez [17] showed that
lpl(G) ≤ 2td(G) − 2 holds for each undirected graph G.

3 Algorithmic Meta Theorems For Constant-Depth Circuit Classes

In the present section we prove the algorithmic meta theorems that relate monadic second-
order properties of graphs of bounded tree depth to constant-depth circuit classes (Theorems 1
and 2 from the introduction). The route toward proving them is the following: (1) First, we
show how a tree decomposition of a logical structure of bounded tree depth can be computed
using first-order reductions. Once available, we show how to adjust the original mso-formula
to an equivalent formula for the computed tree. This first step allows us to replace the task
of computing solution histograms for structures of any signature by the more manageable
problem of computing solution histograms for trees. (2) Second, we introduce the notion of
multiset automata for unordered unranked labeled trees, prove standard closure properties
for these automata, and show that they capture exactly the mso-definable properties of
unordered unranked labeled trees. This turns the problem of deciding formulas into the
problem of evaluating multiset automata. (3) After that we explain how to reduce computing
the number of ways in which multiset tree automata accept an input tree to evaluating
arithmetic circuits of constant depth. In the course of this step, we address the problem
of how histograms can be encoded as numbers. As we will see, by using an appropriate
encoding, we may assume that our formulas φ are all of the form φ(X1, . . . , Xk), that is, we
may assume that no variables Yi are present. This is why the lemmas and theorems of the
present section are all formulated without references to any Yj . (4) At the end, we apply the
algorithmic meta theorems to concrete problems. We show, in particular, that the unary
version of integer linear programming with a constant number of equations is complete for
TC0.



M. Elberfeld, A. Jakoby, and T. Tantau 71

Turning Tree-Depth-Bounded Structures into Depth-Bounded Tree Structures The first
step toward our goal of proving Theorems 1 and 2 is to compute tree decompositions of
bounded width and depth for input structures of bounded tree depth using first-order
reductions.

I Lemma 6. Let τ be a signature and d ∈ N. There is a first-order computable function that,
on input of the encoding code(S) of a τ -structure S, outputs either (a) a tree decomposition
D of S of width at most 2d − 3 and depth at most 2d − 1, or (b) “no” and td(S) > d holds
in this case.

The following lemma uses a first-order reduction to transform the task of computing
histograms for input structure of any signature to the task of computing histograms for tree
structures. For the formulation of the lemma, we use the following terminology: An s-tree
structure is a structure T = (V,ET, P T

1 , . . . , P
T
s ) over the signature τs-tree = {E2, P 1

1 , . . . , P
1
s }

where (V,ET ) is a directed tree.

I Lemma 7. Let φ(X1, . . . , X`) be an mso-formula over some signature τ and w ∈ N.
There is an s ∈ N, a mso-formula ψ(X1, . . . , X`) over τs-tree, and a first-order computable
function that, on input of any τ -structure S with universe S and a width-w tree decomposition
D = (TD, BD) for S, produces an s-tree structure T , such that (a) the depth of T equals the
depth of TD plus 1, and (b) for all indices i ∈ {0, . . . , |S|}` we have hist(S, φ)[i] = hist(T , ψ)[i]
and all other entries in the array hist(T , ψ) are 0.

Lemma 6 and Lemma 7 together provide a transformation from evaluating mso-formulas on
logical structures of bounded tree depth to evaluating them on s-tree structures of bounded
depth.

Turning Formulas on Tree Structures into Tree Automata The trees underlying the s-
tree structures that are produced by Lemma 7 do not impose an order on sibling nodes
and nodes may have an unbounded number of children. Such trees, with the s unary
predicates represented by binary strings, are known as unordered, unranked labeled trees
in the literature [14]. “Unordered” means that there is no total order on sibling nodes
and “unranked” stands for unbounded degree. In this section we introduce a new notion of
automata that is appropriate for unordered labeled trees and prove that it exactly captures
the mso-definable properties of unordered labeled trees, resulting in a theorem which can
be seen as an extension of the classical Büchi–Elgot–Trakhtenbrot Theorem. Moreover, the
translation between mso-formula and automata will preserve the sizes and number of solutions,
thereby establishing a reduction from computing solution histograms for mso-formulas on
s-tree structures to evaluating tree automata.

Tree-automata-based proofs of time and space efficient variants of Courcelle’s Theorem
transform input structures into trees where the underlying tree has bounded degree. Then,
in these proofs mso-formulas on bounded degree trees are transformed into the classical tree
automata for ranked labeled trees that were developed in the 1970’s. Adopting this strategy
and transforming s-tree structures with unbounded degree into tree structures of bounded
degree would come at the cost of increasing the depth of the tree by at least a logarithmic
factor and this would imply vertical data dependencies in the tree that we cannot hope to
handle with constant-depth circuits. Due to this reason, we need an automaton model that
does not force us to change the topology of the tree. For a similar reason, we cannot use some
order on the children and translate to the tree automata for ordered unranked trees that
are studied in the context of xml processing [11]; here the horizontal data dependencies on

STACS’12



72 Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth

sibling subtrees are too high. In fact, such automata are able to decide any regular property
on the ordered children of a node and, thus, cannot be simulated by constant-depth circuits.

The only automaton model from the literature that does not introduce dependencies
between nodes that cannot be handled by constant-depth circuits is due to Libkin [14] who
defined counting unranked tree automata, which are equivalent to mso on unordered trees.
The transition functions of these automata are defined in terms of Boolean functions: they
allow us to assign a state q′ to a node with symbol σ if a Boolean function δ(σ, q′), which
depends on the number of occurrences of states at the children, evaluates to 1. However, it
is unclear (at least to us) how these automata could be used to compute solution histograms
since we need to relate the states assigned to the subtrees of a node with the state that is
assigned to the whole tree in a transparent way, without “hiding it inside a Boolean function.”

In this section, we develop multiset automata as a notion that exactly captures the
mso-definable properties of unordered labeled trees (unranked or ranked) and that allows us
to control the assignment of states to the children of a node such that we can later establish
a cardinality-preserving transformation into arithmetic circuits.

A multiset M on a universe U is a function #M : U → N that assigns a multiplicity to
each element of U . We write Pω(U) for the class of all multisets on U and we write Pm(U)
for the class of all multisets on U where each element has multiplicity at most m. Given a
number m ∈ N, let M |m be #M |m

(e) = min{#M (e),m} for e ∈ U . We call M |m the capped
version of M to multiplicity m.

I Definition 8 (Multiset Automata). A nondeterministic (bottom-up) multiset automaton is a
tuple A = (Σ, Q,Qa,∆) consisting of an alphabet Σ, a state set Q, a set Qa ⊆ Q of accepting
states, and a state transition relation ∆ ⊆ Σ × Pm(Q) ×Q for some constant multiplicity
bound m. The automaton is deterministic if for every σ ∈ Σ and every M ∈ Pm(Q) there
is exactly one q ∈ Q with (σ,M, q) ∈ ∆; in this case we can view ∆ as a state transition
function δ : Σ× Pm(Q)→ Q.

I Definition 9 (Computation of a Multiset Automaton). Let (T, l) be a labeled tree, where
l : V (T )→ Σ is the labelling function, and let A = (Σ, Q,Qa,∆) be a multiset automaton.
A computation of A on (T, l) is a partial assignment q : V (T )→ Q such that for every node
n ∈ V (T ) for which q(n) is defined, we have that (a) the value q(c) is defined for each child c
of n in T and (b) for the multisetM = {q(c) | c is a child of n} we have (l(n),M |m, q(n)) ∈ ∆.
A computation is accepting, if q(r) ∈ Qa holds for the root node r of T . The tree language
L(A) contains all labeled trees accepted by A.

Given an s-tree structure T = (V,ET, P T
1 , . . . , P

T
s ) and sets S1, . . . , S` ⊆ V , let us write

T (T , S1, . . . , S`) for the labeled tree whose node set is V , whose edge set is ET , and whose
labeling function maps each node v ∈ V to the bitstring l1 . . . lsx1 . . . x` ∈ {0, 1}s+` with
li = 1⇔ v ∈ P T

i and xi = 1⇔ v ∈ Si. We write T (T ) in case ` = 0.

I Theorem 10. Let s, ` ∈ N.
1. For every mso-formula φ(X1, . . . , X`) over τs-tree there is a multiset automaton A with

alphabet {0, 1}s+`, such that for all s-tree structures T with universe V and S1, . . . , S` ⊆ V
we have T |= φ(S1, . . . , S`) if, and only if, A accepts T (T , S1, . . . , S`).

2. For every multiset automaton A with alphabet {0, 1}s+` there is an mso-formula φ(X1, . . . , X`)
over τs-tree, such that for all s-tree structures T with universe V and S1, . . . , S` ⊆ V we
have T |= φ(S1, . . . , S`) if, and only if, A accepts T (T , S1, . . . , S`).

Our proof of the theorem follows Arnborg et al. [1], but modified to unranked trees rather
than ranked trees and multiset automata rather than usual tree automata. It entails proofs



M. Elberfeld, A. Jakoby, and T. Tantau 73

of standard closure properties: The class of tree languages accepted by multiset automata
is closed under intersection, union, complement, and for every nondeterministic multiset
automaton there is a deterministic automaton accepting the same tree language.

From Automaton Evaluation to Arithmetic Circuit Evaluation Theorem 10 shows that in
order to decide whether a given mso-formula is true for a given tree, we can instead evaluate
a multiset automaton. Since any logical structure of bounded tree depth can be transformed
into a labeled tree of constant depth, we have all the ingredients together to prove Theorem 1
from the introduction.

Instead of just deciding formulas, in the remaining part of this section we turn our
attention to the more challenging problem of computing the solution histograms. Our aim
will be to replace the evaluation of automata by the evaluation of convolution circuits, see
Lemma 11, such that the circuits’s outputs are the sought solution histograms. Then we
reduce the evaluation of convolution circuits to the evaluation of arithmetic circuits. Since
arithmetic circuits of constant depth can be evaluated in GapAC0, we get Theorem 2.

Theorem 10 establishes a link between formulas and multiset automata that is “solution-
preserving” in the sense that there is a one-to-one correspondence between satisfying as-
signments to the free variables of the formulas and labelings of the trees that make an
automaton A accept. In order to talk more easily about the number of such labelings, we
recall the notion of multicolorings from [9]: Given a set S, a multicoloring of S is a tuple
(S1, . . . , S`) of subsets Sj ⊆ S for j ∈ {1, . . . , `}. Given a set X of multicolorings of S, let
hist(X) denote the [|S| + 1]`-array whose entry at index i = (i1, . . . , i`) is the number of
multicolorings (S1, . . . , S`) ∈ X with |S1| = i1, . . . , |S`| = i`. Given a multiset automaton
A = ({0, 1}s+`, Q,Qa,∆) and an s-tree structure T with universe V , let us write SA(T , P )
for the set of tuples (S1, . . . , S`) with Si ⊆ V for which A reaches a state q ∈ P at the root of
T (T , S1, . . . , S`). Clearly, SA(T , P ) is a set of multicolorings of V . In particular, for the au-
tomaton A constructed in Theorem 10 for a formula φ we have hist(T , φ) = hist(SA(T , Qa)).
This means that “all” we have to do is to devise a way of computing hist(SA(T , Qa)) for a
given automaton A and a tree T .

For the computation of hist(SA(T , Qa)) we use convolution circuits, which are similar
to arithmetic circuits, only instead of numbers whole histogram arrays are passed between
gates. The basic gates of a convolution circuit are addition gates (which just add the
arrays componentwise), subtraction gates (if there are no subtraction gates, the circuit is
called positive), and convolution gates. The convolution C = A ∗ B of two arrays A and
B is defined by C[k] =

∑
i∈[r]`,j∈[s]` with k=i+j A[i]B[j]. The addition of two histograms

corresponds exactly to combining two disjoint sets of solutions for the same tree, while the
convolution of the histograms corresponds to combining the solutions of two sibling subtrees.

The construction of convolution circuits for a ranked automata is already described in
[9] for the logspace setting. For the unranked automata considered in the present section,
the construction needs to be more involved: For a node of a tree with a large number of
children, the difficult part is to combine the histograms of all of these children so that they
correspond to some particular capped version of the multiset of states reached at the children.
The details of the recursive construction that achieves this can be found in our technical
report [10]. The main result established is the following, where val(C) is the output of C:

I Lemma 11. Let A = ({0, 1}s+`, Q,Qa, δ) be a deterministic multiset automaton with
multiplicity bound m ∈ N. Then there is a first-order computable function that maps every
s-tree structure T = (V, P T

1 , . . . , P
T
s ) to a convolution circuit C such that (a) val(C) =

hist(SA(T , Qa)), (b) the depth of C is bounded by a function that depends on A and linearly

STACS’12



74 Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth

on the depth of T , and (c) the fan-in of C is bounded by a function that depends on A and
linearly on the degree of T . Furthermore, if the degree of T is bounded by m, then C is
positive.

The final problem is to move from convolution circuits to arithmetic circuits. This is
quite easy to achieve: For a vector b = (b1, . . . , b`) of large bases and an `-dimensional
histogram h, set numb(h) =

∑
(i1,...,i`)∈{0,...,|S|}` h[i1, . . . , i`]bi1

1 · · · b
i`

` . Then numb(A ∗B) =
numb(A) ·numb(B). Thus, if we replace all constants c in the circuit C from the above lemma
by numb(c) and replace all convolution gates by multiplication gates, we get the arithmetic
circuit claimed in Theorem 2.

Application: Placing Problems in Constant-Depth Circuit Classes The algorithmic meta
theorems developed in this section allow putting problems into the uniform circuit classes AC0,
GapAC0 and TC0 by using direct mso-based definitions of problems on structures of bounded
tree depth or reductions to mso-definable problems on bounded tree depth structures.

I Theorem 12. For every d ∈ N, the language {(G, s) | G has tree depth at most d and at
least s perfect matchings} is TC0-complete under AC0-reductions.

I Theorem 13. For each ` ∈ N, the problem `-integer-linear-programming, the version
of integer linear programming where there are at most ` equations and the input numbers are
given in unary, is complete for TC0 under AC0-reductions.

4 Algorithmic Meta Theorems For Logarithmic-Depth Circuit Classes

In the present section we prove Theorems 4 and 5, which involve circuits of logarithmic
depth rather than constant depth as in the previous section. The inputs now consist of (an
encoding of) a logical structures S together with a tree decomposition D of S, where TD is
given in term representation. The proofs follow along the same lines as those of Theorems 1
and 2, which involved the following steps: (1) Compute a tree decomposition of the input
structure and move from formulas on the input structures to formulas on trees, (2) move
from formulas on trees to the evaluation of tree automata, (3) move from the evaluation of
tree automata to convolution circuits and from convolution circuits to arithmetic circuits.
Clearly, computing a tree decomposition is no longer necessary since it is already part of
the input. All of the other steps are also possible when the tree depth is no longer constant,
the resulting circuits then simply have arbitrary depth. Since it is known that tree automata
can be evaluated in NC1 on trees given in term representation [15, 11], Theorem 4 follows
(almost) immediately from our previous arguments.

The main obstacle in proving Theorem 5 is that one can evaluate arithmetic formulas of
arbitrary depth in #NC1 [2, 5], but evaluating arithmetic circuits can be done in #NC1 only if
the circuit has logarithmic depth (evaluating arithmetic circuits of arbitrary depth is already
FP-hard when we cap the numbers to enforce the outputs to have only polynomial length,
which they need not have in general). This means that, at some point in the course of the
proof of Theorem 5, we need to move from trees or circuits of arbitrary depth to logarithmic
depth. Previous papers, such as [13], have faced a similar obstacle, namely evaluating tree-like
structures of arbitrary depth whose nodes perform a complicated algebraic operation on the
values of their children. In these papers, the approach was to somehow extend the ideas used
in the proof that evaluating arithmetic formulas can be done in #NC1 [2, 5] to more general
algebraic structures.



M. Elberfeld, A. Jakoby, and T. Tantau 75

Our approach to tackling this problem is different and may be of independent interest.
Rather than trying to adapt algorithms to the convolution computations that would be
needed in our setting, we attack the problem at a much earlier stage: We balance the tree
decomposition. Since all of our later algorithms do not increase the depth of the considered
trees, we get the desired arithmetic circuits of logarithmic depth. In detail, we show how a
balanced width-3 tree decomposition of an arbitrary tree can be computed using constant-
depth threshold circuits. The construction has two key properties. First, it is based on the
classical tree contraction method, which is used a lot in the context of parallel random access
machines, but which hitherto was not used in the context of NC1. Using it will allow us to
compute a balanced tree decomposition even in TC0 and not only in NC1. Second, the tree
decomposition we compute does not have the property that the nodes of each bag form a
balanced separator of some part of the tree. Normally, recursive NC1 algorithms find sets of
nodes that in each step split up the tree into components that are smaller than the current
tree by a certain factor. This is not the case for the sets of nodes in our bags: While we can
ensure that the whole tree is balanced and, hence, has logarithmic depth, we cannot ensure
that the elements of any individual bag split the tree in some balanced way. Naturally, a lot
of bags will have this balancing property (otherwise no tree decomposition of logarithmic
depth would result), but we cannot say anything about where these balancing bags will
lie. It seems that this more global approach (just find a tree decomposition of logarithmic
depth) instead of the traditional local approach (find a balancing separator for each subtree
recursively) allows us to lower the circuit complexity to a constant depth.

In the following, we first review term representations and, then, sketch the proof of
Theorem 4. After that, we describe the technical result on how a width-3 tree decomposition
of any tree can be computed in FTC0; and then use this result to prove Theorem 5. At the
end of this section, we sketch applications of the established meta theorems.

Background on Term and Ancestor Representations of Trees Up to now, the details of
how tree decompositions are encoded as strings was not important; indeed, in the context of
constant tree depth almost any encoding of the input graph and of tree decompositions will
do since they can easily be transformed into one another. In the context of logarithmic-depth
circuits, however, it is well known that it is crucial that the “ancestor relation” of the tree (for
directed trees, this is exactly the transitive closure) is made accessible to the circuits, rather
than just a pointer-structure or an adjacency matrix. There are two different ways of encoding
this relation: Explicitly as a list of pairs or implicitly as a bracket structure. The two represen-
tations can be transformed into one another using TC0-circuits and we will use both of them.

Decision by Logarithmic-Depth Circuits for Term Representations As mentioned earlier,
the proof machinery established in Section 3 allows us already to prove Theorem 4 from
the introduction. The only obstacle is that in all intermediate steps we do not only need to
compute trees, but also their term representations. This is straightforward to achieve, see
our technical report for details [10].

Computing Width-3 Tree Decompositions of Trees in Constant Depth We show that
using only TC0-circuits, for every tree T given in term representation we can compute a
width-3 tree decomposition (TD, BD) of T (regarded as a graph) such that TD is a perfectly
balanced binary tree (and, hence, has logarithmic depth):

I Theorem 14. There is a dlogtime-uniform FTC0-circuit family that on input of a term
representation of a tree T outputs a term representation of a width-3 tree decomposition
(S,B) of T where S is a balanced binary tree.

STACS’12



76 Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth

The proof idea is surprisingly simple: As was already implicitly observed by Buss [4],
the trees resulting from the different stages of the classical tree contraction method can be
computed in TC0. During a tree contraction step, for a leaf n, one considers its sibling s, its
parent p, and its grandparent g. We call c = (n, s, p, g) a contraction tuple and associate a
set I(c) of nodes with it that covers all nodes that have been “contracted away” inside this
tuple. Our two key observations are the following: (a) For every two contraction tuples c
and c′, the sets I(c) and I(c′) are either disjoint or one is contained in the other. From this
we can derive that the contraction tuples can be arranged in a tree of logarithmic depth. (b)
If we attach the bag {n, s, p, g} to each node (n, s, p, g) of this “tree of contraction tuples,”
we get a width-3 tree decomposition of the original tree.

Computing Histograms by Logarithmic-Depth Circuits for Term Representations Recall
that our goal for the present section is to prove Theorem 5, that our line of proof was to do
the same sequence of transformations as we did in Section 3 for constant depth circuits, and
that the missing building block was a procedure to turn an arbitrary tree decomposition into
a tree decomposition of logarithmic depth. Theorem 14 provides us with the tools to build
this missing block.

Application: Placing Problems in Logarithmic-Depth Circuit Classes We discuss some
examples of how to use the algorithmic meta theorems for logarithmic-depth circuit classes
to put decision and counting problems into NC1 and #NC1, respectively. A simple example
is the problem of evaluating Boolean sentences that are given as terms, a problem well known
to lie in dlogtime-uniform NC1 [3, 2].

Buss [3] extended his NC1-approach for the evaluation of Boolean sentences to also cover
the membership problem for parenthesis languages. Later researchers adapted this approach
to show that larger classes of context-free languages can be decided in NC1, with the most
general one being the result of Dymond [8] that languages recognizable by visible pushdown
automata are in NC1. Besides deciding whether a string is accepted by a fixed vpa, recently
the problem of counting the number of accepting computation paths of nondeterministic
vpas was studied in the context of logarithmic-depth circuits and shown to be complete for
#NC1 by Krebs, Limaye, and Mahajan [13]. Theorems 4 and 5 can be used to reprove that
these decision and counting problems are in NC1 and #NC1, respectively [10].

5 Conclusion

In the present paper we transferred the idea of unifying the study of computational problems
by using mso-based problem definitions and tree decompositions to circuit complexity classes
inside logarithmic space, leading to algorithmic meta theorems for Boolean and arithmetic
circuit classes of constant and logarithmic depth. Regarding constant-depth circuits, we
discussed how to put the problem of solving a linear equation system that contains a constant
number of equations whose coefficient are given in unary into TC0. The most general
application for logarithmic-depth circuits showed an alternative proof of a recent result that
one can count the number of accepting paths of visible pushdown automata in #NC1.

A natural direction of further research would be to try and use our theorems for logarithmic-
depth circuits to simulate some generalization of visible pushdown automata where the height
of the stack at different positions in time can be computed in advance; say, in NC1 instead of
FTC0. Another direction would be to find algorithmic meta theorems that unify problems
lying in other complexity classes around logarithmic space. Such research would need to



M. Elberfeld, A. Jakoby, and T. Tantau 77

address all three dimensions of algorithmic meta theorems: (a) the considered logic, (b) the
considered class of input structures, and (c) the considered complexity class. We may go from
mso to more expressive or less expressive logics (like, for example, mso on graphs where we
can only quantify over vertex sets). Or we may consider other classes of structures that are
more or less restrictive than bounded tree width (like, for example, bounded clique width).

References
1 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable

graphs. J. Algorithm, 12(2):308–340, 1991.
2 S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for

formula evaluation. SIAM J. Comput., 21(4):755–780, 1992.
3 Samuel R. Buss. The boolean formula value problem is in ALOGTIME. In Proceedings of

STOC 1987, pages 123–131. ACM, 1987.
4 Samuel R. Buss. Algorithms for boolean formula evaluation and for tree contraction. In

Peter Clote and Jan Krajíček, editors, Arithmetic, Proof Theory, and Computational Com-
plexity, pages 95–115. Oxford University Press, 1993.

5 Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer. Nondeterministic
NC1 computation. J. Comput. Syst. Sci., 57(2):200–212, 1998.

6 Brouno Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Seman-
tics, pages 193–242. Elsevier and MIT Press, 1990.

7 Bireswar Das, Samir Datta, and Prajakta Nimbhorkar. Log-space algorithms for paths and
matchings in k-trees. In Proceedings of STACS 2010, volume 5 of LIPIcs, pages 215–226.
Schloss Dagstuhl LZI, 2010.

8 Patrick Dymond. Input-driven languages are in logn depth. Information Processing Letters,
26(5):247–250, 1988.

9 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of
Bodlaender and Courcelle. In Proceedings of FOCS 2010, pages 143–152, 2010.

10 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Algorithmic meta theorems for circuit
classes of constant and logarithmic depth. Technical Report ECCC-TR11-128, 2011.

11 Georg Gottlob, Christoph Koch, Reinhard Pichler, and Luc Segoufin. The complexity of
XPath query evaluation and XML typing. J. ACM, 52(2):284–335, 2005.

12 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. In Model
Theoretic Methods in Finite Combinatorics, volume 558 of Contemporary Mathematics,
pages 181–206. American Mathematical Society, 2011.

13 Andreas Krebs, Nutan Limaye, and Meena Mahajan. Counting paths in VPA is complete
for #NC1. In Proceedings of COCOON 2010, volume 6196 of LNCS, pages 44–53. Springer,
2010.

14 Leonid Libkin. Logics for unranked trees: An overview. Logical Methods in Computer
Science, 2(3), 2006.

15 Markus Lohrey. On the parallel complexity of tree automata. In Proceedings of RTA 2001,
volume 2051 of LNCS, pages 201–215. Springer, 2001.

16 Jaroslav Nešetřil and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. Eur. J. Combin., 27(6):1022—1041, 2006.

17 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion
I. Decompositions. Eur. J. Combin., 29(3):760–776, 2008.

18 Egon Wanke. Bounded tree-width and LOGCFL. J. Algorithm, 16(3):470–491, 1994.

STACS’12


	Introduction
	Background
	Algorithmic Meta Theorems For Constant-Depth Circuit Classes
	Algorithmic Meta Theorems For Logarithmic-Depth Circuit Classes
	Conclusion

