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Abstract. Increasingly large multimedia databases in life sciences, e-
commerce, or monitoring applications cannot be browsed manually, but
require automatic knowledge discovery in databases (KDD) techniques
to detect novel and interesting patterns. Clustering, aims at grouping
similar objects into clusters, separating dissimilar objects. Density-based
clustering has been shown to detect arbitrarily shaped clusters even in
noisy data bases. In high-dimensional data bases, meaningful clusters can
no longer be detected due to the curse of dimensionality. Consequently,
subspace clustering searches for clusters hidden in any subset of the set
of dimensions. Clustering information is very useful for applications like
fraud detection where outliers, i.e. objects which differ from all clusters,
are searched. We propose a density-based subspace clustering model for
outlier detection. We define outliers with respect to maximal and non-
redundant subspace clusters. We demonstrate the quality of our subspace
clustering results in experiments on real world databases and discuss our
outlier model as well as future work.

1 Introduction

Many multimedia applications archive huge amounts of data. In life sciences or
medicine, e-commerce or sensor networks much information is generated auto-
matically. As data base sizes grow, manual analysis is no longer possible.
Knowledge discovery in databases (KDD) aims at detecting novel and in-
teresting patterns which are useful for the user in that they allow building of
knowledge.

1.1 Clustering

Clustering is one of the major KDD tasks. Its goal is grouping of data base
objects such that inter-group similarity is minimized, whereas intra-group sim-
ilarity is maximized. The resulting clustering is a compact representation of
the inherent data structure. As class labels are not known apriori, clustering
is considered an unsupervised learning approach. Examples of major clustering
approaches include partitioning methods which divide the dataset into disjoint
groups of objects. Iteratively, initial clusterings are improved, as e.g. in k-means
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[1]. EM is a similar approach based on multivariate gaussian mixture models
[2]. These approaches require the user to provide a parameter k, the number of
clusters, apriori or rely on heuristics to determine the correct number of clusters.
Moreover, they assume convex cluster shapes and are sensitive to noise. Hier-
archical methods such as BIRCH [3] or CURE [4] construct a decomposition of
the data into clusters either top-down or bottom-up. Grid-based technologies,
e.g. STING [5], or WaveCluster [6], use multi-resolution data space cells. Cells
represent a discretization of the data space which allows for fast detection of
clusters, but clusters cut apart by the grid are lost. For the special case of cat-
egorical data, categorical clustering methods like k-modes [7], CACTUS [8],
ROCK [9], COOLCAT [10], and CLICKS [11] have been developed. Density-
based algorithms define clusters as dense areas in feature space, separated by
sparsely populated ones. Objects are dense if their neighborhood contains at least
a minimum number of objects. A connectivity-notion which reflect the transi-
tive closure of dense neighborhoods assigns similar objects to the same cluster
(DBSCAN [12], DENCLUE [13]). Density-based clustering has been shown to
successfully detect clusters of arbitray shape even in noisy data bases. Unfortu-
nately, all of these clustering methods suffer from the ”curse of dimensionality”,
i.e. with increasing dimensionality, object distances grow more and more similar,
making it eventually impossible to find meaningful clusters [14].

1.2 Subspace clustering

Subspace clustering aims at finding clusters in any subspace of high-dimensional
feature spaces. As opposed to projective clustering, as in ORCLUS [15] or Monte
Carlo projective clustering [16], overlapping clusters in different subspaces are
detected. Grid-based subspace clustering such as CLIQUE discretize the search
space [17]. Monotonicity on the density of cells is used to prune the search space
in a bottom-up algorithm. Grids greatly reduce the computational complexity,
yet clusters which spread across several cells might be missed as mentioned
above. Density-based subspace clustering as in SUBCLU extends the DBSCAN
approach to subspace clustering [18]. The algorithm uses an apriori like scheme
(discussed first in association rule mining [19]) to detect subspace cluster in
a bottom-up fashion. Recent approaches like SCHISM adopt a more complex
density definiton for subspace clusters. As complexity of computation grows,
heuristics and a grid-based discretization for pruning are used. Subspace search
algorithms like RIS search for subspaces which might contain subspace clusters
and are thus considered ”interesting” [20]. The actual clusters are then mined
using any traditional clustering algorithm. As no concrete subspace clusters are
mined, the interestingness value of subspaces does not always reflect the actual
number of clusters contained. As the clustering step is not included, overall
runtimes are infeasible for high-dimensional data sets.



1.3 Outlier detection

Outlier mining is used for fraud detection in a variety of applications such as
credit card fraud detection, data consistency checks, abnormal reactions in phar-
maceutical studies, etc. [21]. Statistical outlier mining measures the deviation
from an assumed distribution model using discordancy tests. A number of in-
put parameters has to be specified by the user such as the number of outliers
[22]. Deviation-based outlier mining assumes implicit redundancy in the data.
By computing series of subsets, deviations from the structure of the previous
subset are detected [23]. However, the order of subsets may influence which out-
liers are actually detected. Distance based outlier mining labels those objects as
outliers whose neighborhood does not contain enough objects or where nearest-
neighbor distances are large [24,25]. In these approaches, choosing the size of
the neighborhood and the number of objects required is often difficult.

Data mining output from algorithms in rule mining or clustering is also used
to detect outliers as those objects which do not fit in with the predominant
patterns. Algorithms like k-means have been adapted to this end, and new ap-
proaches like compact micro-clusters or local outlier factors (ranking approach)
have been proposed [26-30].

2 Subspace outlier mining

2.1 Density-based subspace clusters

Our subspace clustering model extends density-based approaches. In density-
based clustering, clusters are sets of density-connected objects. As illustrated in
Figure 1, an e-neighborhood around each object is defined. If the number of ob-
jects within this neighborhood exceeds a certain threshold minpts, a new cluster
is started and iteratively the objects within successive neighborhoods are picked
up. This is formalized in the notions of density and density — connectedness.

Fig. 1. Density-connected clustering

Objects are defined as dense, if the number of objects in the neighborhood,
that is within a distance of € exceeds a threshold minpts:



Definition 1. Density
An object o in a subspace S is dense with respect to a neighborhood range pa-
rameter € and a minimum points parameter minpts:

dense(0°) < |N.(0%)| > minpts with N.(0°) = {p € DB|dist(0®,p°) < ¢}

Dense objects are connected to one another via transitive inclusion in their
e- neighborhoods.
Definition 2. Density-connectivity.

Two objects 01,09 are density-connected if there is a chain of objects
q1-..qn € DB :q1 = 01,q, = 02 with Vi € {1,...,n—1} ¢; € N.(gi+1), dense(q;)

In subspace clustering, these definitions have to be restricted to the respective
dimensions of the subspace. Density and density-connectedness are defined for
o° instead of o, where 0° denotes the projection of o to the subspace S. Figure

2 denotes two different subspace projections of the same data objects.
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Fig. 2. Subspace projections of an example data set

Using these definitions, we define subspace clusters as density-connected max-
imal sets in any subspace.

Definition 3. Subspace Cluster.

A set of data base objects C C DB in subspace S C d with |S| > 1 and |C] >
manSize is a subspace cluster if

— O density-connected: Yo1,0, € C: 0f,05 density-connected.

— C maximal: Yoi,00 € DB: 0oy € C A of, og density-connected < 09 € C.

— C non-redundant: there is no higher-dimensional cluster containing points
in C.

For reasonable output sizes, subspace clusters are restricted to sets of a certain
minimum size minsize which can be set by the user, and redundant repetitions
of subspace clusters in lower dimensional projections are removed.



2.2 Outlier mining

In high-dimensional spaces, meaningful separation between outliers and clusters
is typically not possible [14]. We therefore propose to study subspace outlier
mining based on density-based subspace clustering approaches. In this sense,
an outlier is an object which cannot be explained by existing subspace cluster
patterns.

As opposed to full space clustering, in subspace clustering a set of local
patterns is mined. An outlier is an object for which there is no density-connected
subspace cluster of minsize which does not overfit in the sense that neither too
few nor too many dimensions are covered. If one or two dimensions are covered
by subspace clusters, hardly any subspace outliers will be detected as any object
is bound to be similar to some cluster in one or two attributes. Likewise, very
high dimensional subspace clusters may indicate overfitting.

Definition 4. Subspace Outlier.

An object o is an outlier with respect to a subspace clustering as in Definition 3, if
it is not density-connected to a relevant, non-overfitting (according to parameters
min and max) subspace cluster:

— 0,C density-connected: 3 0, € C: of,0° density-connected.
— C relevant: |{6 | 6 € C'}| > minsize.
— C not overfitting: min < |S| < mazx.

2.3 Parallel universes in subspace outlier mining

In the presence of heterogeneous attributes sometimes no meaningful distance
function can be found. For example, in an application from the financial domain,
where the focus was on detecting potential money laundering, the challenge is to
detect deviating behavior in transaction data. Deviations have to be compared to
local patterns. Obviously, financial transactions in students and businesspeople
is very different. Consequently, meaningful outlier detection should group cus-
tomers according to the information available before searching for deviations.

The information on customers available contains two very heterogeneous
types of attributes. One, for each customer, address information, customer seg-
ment, etc. are recorded. And second, the actual transactions are stored. There
is no meaningful distance function which could model deviations in terms of
attributes like profession and deviations in terms of money transfers simultane-
ously. These types of information constitute two very distinct models of the same
customer. We consider them two universes in which outliers may be detected.
These universes are not independent; transaction data can only be analyzed for
outliers once the meta data has been group. For example, once a subspace cluster
of bakers in San Francisco has been identified, conspicuous transactions within
in this group may be identified. We thus propose a two-step model:

Definition 5. Parallel Universe Subspace Outlier.

An object o is an outlier with respect to a meta data universe and a specialized
data universe if:



— o0 € C where C is a subspace cluster in the meta data universe.
— 0 is a subspace outlier according to Definition 4 in the specialized data uni-
verse restricted to the objects in C.

Thus, a parallel universe subspace outlier is an object which deviates from the
behavior found in its local pattern.

3 Experiments

We have evaluated our subspace clustering model on several real world data sets,
measuring both quality and coverage. Corresponding roughly to the notions of
precision and recall in classification, these notions describe the purity of clusters
with respect to a class label and the percentage of objects assigned to some clus-
ter. Coverage thus indicates the number of objects which could be termed outliers
according to the above model. This requires further experimental evaluation.
Quality is determined using the entropy, i.e. H(C) = — Zle pi(C) - log(pi(C))
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Fig. 3. Quality on real world data sets

for k class labels in cluster C. Entropy is an information theoretic indicator for
the homogeneity of the data. For readability, we take the inverse entropy and
normalize it to a range of 0% to 100% by dividing by the maximum entropy
log(k). More precisely,

entropy(Cy,...,Cy)

Quality(C) =1 — 3

log

—~

Coverage is the percentage of objects in any subspace cluster. Coverage was
found to be around 80% to 90% in these experiments. As we can see in Figure 3,
the quality of our approach is superior to competing approaches. As discussed



in the related work section, SUBCLU is an extension of DBSCAN to subspace
clustering, whereas SCHISM is a grid-based approach [18,31]. This experiment
demonstrates that our approach indeed detects pure clusters. These preliminary
experiments indicate that our subspace clustering algorithm is capable of detect-
ing pure subspace clusters. Quite interestingly, the coverage ratios indicate that
outliers exist. As about 10% to 20% of the data is not assigned to clusters, rank-
ing of outliers seems a crucial requirement. We plan to investigate this further;
especially with respect to our two-step approach for heterogeneous data.

4 Conclusion

In this work, we present a density-based subspace clustering model for outlier
detecting in heterogeneous data. Density-based subspace clustering detects local
patterns in arbitrary projections of the feature space. Incorporating information
on heterogeneous data is helpful in a number of applications, where distinct
features cannot be compared in a meaningful way. Our preliminary experiments
are very promising in that our approach outperforms existing subspace clustering
algorithms. Moreover, they indicate that outliers may indeed be common in the
data. In future work, we plan to validate this hypothesis on these data sets and
additionally on financial data. Moreover, ranking of outliers may be helpful to
allow users to analyze the most urgent cases first. We also plan to incorporate
expert knowledge on typical cases of money laundering.
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