
Composing Web-service-like
abstract state machines (ASM)

Andreas Friesen and Jens Lemcke

SAP AG, SAP Research at CEC Karlsruhe, Germany
{andreas.friesen, jens.lemcke}@sap.com

Abstract. We ease the design of collaborative business processes respecting de-
sired business goals by the composition algorithm presented in this paper. The
composition of multiple parties’ business processes is always done with a spe-
cific objective in mind. Not only in the positive case, but also if the objective of a
business process can not be fulfilled, all participating business processes need to
be in some expected recovery state.
We propose a composition algorithm solving the task of designing a collabora-
tive business process while respecting a set of primary and recovery goals. In our
model, each business process is described as a finite state machine. The multipli-
cation of all business processes in one single model of possible executions would
lead to an explosion of the number of states. Therefore, our composition algo-
rithm directly interprets the multiple finite state machine (FSM) representations
and creates a collaborative business process without integrating all FSMs into one
single FSM upfront.
Our composition algorithm returns an orchestration of the given business pro-
cesses only in the case that it can be assured that each execution only leads to
an expected primary or recovery goal. In order to prove our concepts, we first
mathematically define the execution of business processes and orchestrations by
providing abstract state machine (ASM) representations for them. Second, we
execute the ASMs in the execution engine CoreASM which shows that the gen-
erated orchestration steers the execution of the business processes as intended.

1 Introduction

A typical service-oriented environment consists of a set of Web services distributed in
some kind of electronic network. Web services can be understood as the abstraction of
a company’s IT system interface. Web service technology, namely WSDL,1 provides a
standardized way to represent acceptable operations for electronic communication with
a business partner’s IT systems.

In a realistic setting, the IT system interface of a company consists of a set of Web
service operations. For simplicity, we assume that these operations are grouped into one
single Web service definition. The Web service operations have to be communicated
with in a specific way according to the internal business process of the company. We
shortly refer to its public part as a company’s business process. The business process
can be understood as a behavioral description of the Web service. It can be formulated

1 http://www.w3.org/TR/wsdl

Dagstuhl Seminar Proceedings 07061
Autonomous and Adaptive Web Services
http://drops.dagstuhl.de/opus/volltexte/2007/1034

2

in a standard way by using a workflow language, such as WSBPEL,2 UML activity
diagrams [1], or an extension of SAWSDL.3

The target of this work is to automatically generate an execution plan for the col-
laborative business process of multiple business partners based on their individual busi-
ness processes. We refer to the execution plan as an orchestration of the individual Web
services. The engine generating the orchestration is called composer. We define the
composition algorithm it performs and the environment it needs to operate, called com-
position system, in this paper. We describe the architecture of the composition system in
the following section. The structure of the Sects 3 to 7 will be based on the architecture.
Section 8 concludes.

2 Architecture

In this section, we describe the implementation of our composition engine. For both the
Web-service-related specifications and the explanation of the composition algorithm,
we use the abstract state machines (ASM) theory [2] throughout the following sections.
For the understanding of the activities carried out by the different modules of the com-
position system, we go through the interrelation of the touched information artifacts in
Sect. 2.1, before we define the steps of its execution in Sect. 2.2.

2.1 Correlation of the information artifacts

The correlations of the involved information artifacts is depicted in Fig. 1 on the facing
page. In the first place, the Web services and their behavior specifications are given
in an appropriate language. The target is to compute an orchestration which directly
interacts with the Web services. Thereby, the orchestration has to fulfill the behavioral
specifications of each business partner.

The Web service interface is abstracted by the ASMs SEND and RECEIVE. The
behavioral specification becomes transformed to an EXECUTE ASM. The composer
computes new ASM rules orchestrating the EXECUTE ASM. The orchestrating rules
and the ASM themselves communicate through a set of shared variables. As an outlook,
all ASMs on the lower part of Fig. 1 on the next page are needed for the transformation
back to the executable Web service orchestration on the upper part of the figure.

Throughout the paper, we instantiate our concepts by using SAWSDL and WSBPEL
for the representation of Web services and orchestration. Our approach is however gen-
eral and not limited to these specific languages. Other appropriate representations can
be used for the real-world artifacts. If one wants to do this, one has to adapt only the
transformations addressed in the following section.

2.2 Process

Figure 2 on the facing page shows the architecture of our composition approach. In the
following, we walk through the single parts of the picture. Where applicable, we link to
the appropriate section for a deeper explanation of the individual components.

2 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel
3 http://www.w3.org/2002/ws/sawsdl/spec/

3

R
ea

l W
or

ld
Fo

rm
al

 A
bs

tra
ct

io
n

Web
service
WSDL

Web
service
WSDL

Execute
ASM

Send
ASM

Receive
ASM

Execute
ASM

Send
ASM

Receive
ASM

Behavioral
Specification

SAWSDL

Behavioral
Specification

SAWSDL

Composition
Result

Copy Rules

Orchestration
WSBPEL

Fig. 1. Artifacts overview.

Repository. The central element of our algorithm is a repository to store the set of
Web services to be composed. The repository assigns a unique ID to each Web service
contained. A repository should only include a single initiator. An initiator is a Web
service whose first action is sending an output message.

Definition 1 (Repository).

Repository := 2ID×WebService

ID . . . set of unique identifiers for Web services in the repository

State
Annotation

Variable
Assignment

Composer

Define
Composition Goal

Transform

Transform Variable
Assignment

Composition
Goal

Copy Rule

Transform WSBPEL

Repository

Web
service

SAWSDL

Fig. 2. Process overview.

The mathematical notion of Web services will be detailed in Sect. 3. Figure 3 on the
next page shows a set of Web services that make up our example repository. We use the
Web services presented in the picture to illustrate the technical descriptions of the rest
of the paper.

4

init

User

requesting

1. transferStudent
(CustomerID, NewSchoolID)

done

7. transferSuccessful
(UpdatedStudentRegistrationInfo)

failed

TransferFailed

init
Old School

requested

failedfound

3. getStudentRegistration
(StudentID, SchoolID)

StudentRegistrationInfo StudentRegistrationInfoNA

done

6. unregisterStudent
(StudentID, SchoolID)

cancelled

tau

init
Head Quarter

requested

failedfound

CustomerRecordNA

done cancelled

tau

2. getCustomerRecord
(CustomerID)

Customer
(contains SchoolID, StudentID)

5. processStudentTransfer
(NewStudentID, NewSchoolID)

init

New School

requested

donefailed

4. registerStudent
(studentRegistrationInfo, NewSchoolID)

UpdatedStudentRegistrationInfo
(contains NewStudentID)

RegistrationDenied

Fig. 3. Exemplary repository. The whole picture represents one Web service repository. Under-
lined text denotes the ID of a Web service. Each graph describes a Web service’s behavior as a
finite state machine. Thereby, ellipses denote states, arrows between states denote state transi-
tions, and arrows leaving or arriving at state transitions denote output or input messages. Text at
messages starting with a capital letter denotes a variable name. Successful, final states are drawn
in bold lines. The “tau”-transitions are virtual transitions. They translate as follows. The pre-state
is a final, unsuccessful state. The transition and its posterior state do not exist.

Define composition goal. The Web services in the repository are the bases to define
a composition goal. A composition goal states the desired and necessary properties of
every possible execution of a composition. A composition is correct if it fulfills the
composition goal. We mathematically define the notion of a composition goal and a
correct composition in Sect. 4. The composition goal is one of the inputs for our main
composition algorithm. The other input is introduced in the following section.

Variable assignments. Web services communicate via a set of variables. In our model,
variables are local to Web services. Thus, they can be globally, uniquely referred to by
stating the tuple of Web service identifier and local variable name.

Definition 2 (Variable).

INwsId,OUTwsId . . . sets of input and output variables of Web service wsId

Variable := { (wsId, v) : wsId ∈ ID, v ∈ (INwsId ∪OUTwsId) }

5

In order to be flexible with respect to data and protocol mediation, we explicitly model
the possible associations between the variables of different Web services as variable as-
signments (VarAss). We use the tuple consisting of a Web service ID and the respective
variable for this definition.

Definition 3 (Variable assignment).

VarAss := { ((wsId1, o), (wsId2, i)) : wsId1, wsId2 ∈ ID,

wsId1 6= wsId2, o ∈ OUTwsId1 , i ∈ INwsId2 }

The following restrictions on repositories and variable assignments complement the
above definitions.

– Each repository must contain exactly one initiator Web service.
– Variable assignments may never assign an output variable of a service to an input

variable of the same service.

Composer. With the Web services available in the repository, a composition goal and
a set of allowed variable assignments, all inputs for the main composition component
are defined. The outcome of the composer is a set of copy rules. A copy rule states
what data are exchanged by which Web service at which point in their execution. These
rules are called orchestration of the given Web services. Our notion of orchestration is
detailed in Sect. 5. The functioning of the composer is detailed in Sect. 6 including an
exemplary run of the composer. The exemplary run of the composer results in a set of
copy rules representing an orchestration. An exemplary execution of this orchestration
is described in Sect. 7.

Internal model and representation languages. So far, we have talked about our inter-
nal mathematical Web service model. The linking to real-world Web service modeling
languages is depicted by the transformation blocks in Fig. 2 on page 3. Their explana-
tion is distributed over the appropriate sections. The linking of our Web service model
to SAWSDL is explained in Sect. 3. We do not give a specific real-world representation
for variable assignments, because there is no standard language for this. Linking the
orchestration to the real-world is done in Sect. 5.

3 Web service model

In this section, we focus on the abstraction we use to formally model the behavior of
Web services. Figure 4 on the next page details the part of our ASM specification re-
garding the Web service abstraction. In the following sections, we go through its single
parts. In Sect. 3.1, we first give an ASM abstraction of operation calls. The operation
calls are denoted by the arrows leading from the SEND and to the RECEIVE blocks in
the figure. Second, we define a mathematical model representing a Web service includ-
ing its behavior in Sect. 3.2. Finally, we give the transformation from the mathemati-
cal model to executable ASM specifications in Sect. 3.3. This step covers the SEND,
RECEIVE and EXECUTE blocks of the figure.

6

Execute

Send

Receive

W
S
D
L

ASM of a component service

Input
vars

Output
vars

States

Effect: status of input vars „processed“

Preconditions:
- status of input vars „initialised“
- State of the control state var

Preconditions:
- status of output vars „undef“
- State of the control state var

Effect: status of output vars „initialised“

Fig. 4. Web service abstraction. This figure details the parts of Fig. 1 on page 3 that are concerned
with abstracting a Web service.

3.1 Operations

Abstract model. In our abstract view, Web services consist of a set of operations.
Each operation is either an input or an output operation. In addition, each opera-
tion communicates a defined set of variables. We represent this view via the ASMs
INVOKEWEBSERVICE and RECEIVEDFROMWEBSERVICE. INVOKEWEBSERVICE
calls the input operation communicating the input variables I of Web service wsId.
RECEIVEDFROMWEBSERVICE returns true if the Web service wsId has responded
with the output operation communicating the output variables O.

INVOKEWEBSERVICE(wsId ∈ ID, I ⊆ INwsId) . . . native implementation

RECEIVEDFROMWEBSERVICE(wsId ∈ ID, O ⊆ OUTwsId) ≡
return received ∈ { true, false } in

. . . native implementation, returning truth value

7

Linking to WSDL. In order to apply our abstract model in the real world, we pro-
vide a linking from WSDL to our Web service abstraction. A Web service description
in WSDL also consists of a set of operations. Each operation transports a set of parts.
Each part corresponds to a variable in our abstraction. In WSDL, operations can be
of different type. 4 One-way operations consist of an input only and correspond to the
input operations in our abstraction (INVOKEWEBSERVICE). Contrarily, notification op-
erations only contain a single output and correspond to an output operation in our model
(RECEIVEDFROMWEBSERVICE). There are two more operation types in WSDL that
include an input, an output and a fault in different orders. A request-response opera-
tion expects an input before it sends an output. Vice-versa, a solicit-response operation
starts with an output to be understood as a request and expects an input as the answer
afterward. Instead of the second message, a fault message can be communicated in both
message types. Our abstraction of Web services is not yet sufficient to correctly model
the request-response and solicit-response message types of WSDL. We describe how
to cover these operation types in the following section by using the states introduced
there.

3.2 Behavioral specification

Abstract model. Since our aim is to use a Web service as a public interface to an
internal business process of a company, it is not sufficient to only represent different,
stand-alone operations of a Web service. A business process is a workflow that consists
of tasks connected via control flow information. In order to represent this additional
information, our abstract view of Web services foresees a possibility to link different
operations to complex flows. For this purpose, we introduce the notion of state to Web
service descriptions. Figure 5 on the following page presents a taxonomy of different
types of states that we use in our Web service model illustrated with some concrete
exemplary states. A Web service must contain exactly one initial state and at least one
successful, final state. In addition, a Web service may make use of arbitrarily many
intermediary and other successful or unsuccessful, final states.

The states of a Web service are used to order its operations. The full definition of
a Web service given below therefore contains a state transition function (ST). A state
transition consists of a pre-state, a set of input (IN) or output variables (OUT) and
a posterior state. A state transition fully defines a Web service operation in our model.
The later description of our composition algorithm relies on the following formalization
of Web services residing in the repository.

4 http://www.w3.org/TR/wsdl

8

Exemplary states

State

FinalIntermediaryInitial

UnsuccessfulSuccessful

Init Requested Found CancelledFailedDone

Fig. 5. Web service states. The upper part of the picture shows a state taxonomy whereas the
lower part presents some exemplary states for illustration. The arrows denote an is-a hierarchy.
The exemplary states correspond to the states of the Old School Web service in Fig. 3 on page 4.

Definition 4 (Web service).

WebService := 〈IN,OUT,S, sinit,Ssuc,Sfail,ST〉
IN,OUT . . . sets of input and output variables

S . . . set of states
sinit ∈ S (initial state)
Sfin := Ssuc ∪ Sfail, Ssuc ∩ Sfail = ∅ (final states)

Ssuc,Sfail ⊂ S (un/successful, final states)
ST = STin ∪ STout (state transition function)
STin : S× (2IN \ { ∅ }) → S (input state transitions)

STout : S× (2OUT \ { ∅ }) → S (output state transitions)

The following restrictions on Web services complement the definition above.

– Each input transition of a Web service must be uniquely identifiable by the set of
variables consumed.

– The state transitions of a Web service must form a directed tree.
– The leave states of a Web service’s state transition graph must be final states.
– Each Web service’s state transition graph must have exactly one root which is its

initial state (sinit).
– There must be no input variable in a Web service that also is an output variable of

the same service.

Currently, we do neither allow loops in a Web service’s behavior, nor the repeated ex-
ecution of a Web service. The current assumption about the valid behavior of a com-
ponent service is very restrictive. Therefore, we consider this to be subject to future
extension.

9

Linking to WSDL. By the states, we are able to express the operation types request-
response and solicit-response of WSDL. We represent a request-response operation by
three state transition where the posterior state of the input operation equals the pre-state
of the output and the fault operation. Correspondingly, we represent a solicit-response
operation by three state transitions where the posterior state of the output operation
equals the pre-state of the input and the fault operation. We use Fig. 3 on page 4 for
illustration. The state transitions bordered by the states init, failed and found in the Old
School Web service could be the representation of a request-response operation. The
state transitions bordered by the states init, failed and done of the User Web service
could be the representation of a solicit-response operation.

Linking to SAWSDL. For demonstrating how our model can represent complex Web
service definitions in the real world, we utilize an extended version of SAWSDL. In ad-
dition to the definitions possible with WSDL, SAWSDL can be used to further annotate
the different components of a Web service description. We suggest an annotation that
adds the pre-state and posterior state information to each single message definition.

3.3 Deriving abstraction of Web services

In the previous sections, we have presented a formal model of Web services. We in-
troduced state transitions that suggest its execution. However, we did not yet formally
define how we expect a Web service definition to be executed. For this purpose, we
provide three control state ASMs (EXECUTE, SEND, RECEIVE, see Fig. 4 on page 6)
in this section that define the execution of a Web service based on its definition given
in the previous sections. The machines of one Web service communicate via specific
states of its variables. We define the state of a variable as follows.

Definition 5 (Variable state).

varState : { (wsID, v) 7→ state : wsId ∈ ID, v ∈ (INwsId ∪OUTwsId),
state ∈ { undef, initialized, processed } }

For each Web service, we define exactly one ASM that performs its state changes
(EXECUTE). All other ASMs (e. g., SEND, RECEIVE) can trigger a state change of a
Web service only indirectly by writing to input variables and by consuming output vari-
ables. We go now through these machines in detail. The figures 1 and 4 provide an
illustration of the interrelation of the different machines.

Advancing a Web service’s state. The EXECUTE machine consists of a set of update
rules changing the state of a Web service depending on its current state and the state
of its variables. Whenever a service behavior contains a state transition whose pre-
state (spre) matches the current state (wsState) of the Web service and all variables
(v1, v2, . . . , v| V |) communicated during this state transition have been initialized, then
its state evolves to the posterior state (spost).

10

EXECUTE(wsId) ≡ do forall (spre, V, spost) ∈ STwsId

if wsState(wsid) = spre and varState(wsId, v1) = initialized and . . .
and varState(wsId, v| V |) = initialized then

wsState(wsId) := spost

where
vx ∈ V, x = 1 .. |V |

Invoking operations. The SEND machine observes the state of the assigned
Web service and forwards input variables to the real Web service implementation
(INVOKEWEBSERVICE). This only happens under the condition that a Web service
has passed an input state transition and all variables (i1, i2, . . . , i| I |) communicated
during this state transition are still initialized. After invoking the Web service imple-
mentation, the variables communicated are marked as being processed. This prevents
the invocation from reoccurring.

SEND(wsId) ≡ do forall { (I, spost) : (spre, I, spost) ∈ STwsId
in }

if wsState(wsid) = spost and varState(wsId, i1) = initialized and . . .
and varState(wsId, i| I |) = initialized then

INVOKEWEBSERVICE(wsId, I)
do forall i ∈ I

varState(wsId, i) := processed

where
ix ∈ I, x = 1 .. | I |

Receiving operation responses. The RECEIVE machine forwards variables received
from a real Web service implementation to our Web service model. The appropriate time
for this is when a Web service execution stands right before an output state transition
(spre), and the Web service implementation has produced the output already. The result
of the receiving is that the variables communicated are marked as initialized. This
prevents the RECEIVE machine from acting again and triggers the EXECUTE machine.

RECEIVE(wsId) ≡ do forall { (spre, O) : (spre, O, spost) ∈ STwsId
out }

if wsState(wsid) = spre and RECEIVEDFROMWEBSERVICE(wsId, O) then
do forall o ∈ O

varState(wsId, o) := initialized

where
ox ∈ O, x = 1 .. |O |

11

4 Goal definition

The objective of this work is to compose a set of business processes represented as a set
of Web services provided in a repository to a collaborative business process represented
as an orchestration of the participating Web services. In this section, we define the
properties a correct composition has to fulfill.

We define the correctness of a composition based on the states that all participating
Web services can potentially reach in the end of the execution of the orchestration. Such
a set of states is called Goal. We differentiate between primary goals (PrimGoal) and
recovery goals (RecGoal). Both types of goals are used to describe the requirements of
a correct composition (CompGoal).

Definition 6 (Correct orchestration). An orchestration is correct if and only if the
orchestration only has the following properties.

– Each execution results in a system state that is part of the composition goal.
– There must be a theoretic execution the leads to a system state defined as one of the

primary goals.

By this definition, we ensure transactionality of the Web services. One thus has the
possibility to specify that either all Web services have to reach a successful state or no
Web service must reaches a successful state. For our student transfer example it would
be bad if the Old School successfully unregisters a student, but the New School fails in
registering the student.

Definition 7 (Composition goal).

CompGoal := 〈PrimGoal,RecGoal〉
PrimGoal ⊆ Goal . . . set of primary goals
RecGoal ⊆ Goal . . . set of recovery goals

Goal := 2{wsId 7→wsState: wsId∈ID, wsState∈(SwsId
fin ∪{ swsId

init }) }

We illustrate the goal definition by giving possible primary and recovery goals for the
Web services of our exemplary repository in Table 1 on the next page.

5 Orchestration model

In this section we describe our formal model of an orchestration. The execution of
an orchestration involves the execution of the ASMs of the participating Web service
(EXECUTE, SEND, RECEIVE). We so far left open the definition of connecting commu-
nicating Web services to each other. Such communication occurs at specific execution
states. In order to keep the association between a Web service and its respective state,
we define the tuple WSState.

Definition 8 (Web service state).

WSState := {wsId 7→ wsState : wsId ∈ ID, wsState ∈ SwsId }

12

No Type User OldSchool HeadQuarter NewSchool
pg1 primary done done done done
rg1 recovery init init init init
rg2 recovery failed init init init
rg3 recovery init failed init init
rg4 recovery failed failed init init
rg5 recovery init cancelled init init
rg6 recovery failed cancelled init init
rg7 recovery init init failed init
rg8 recovery failed init failed init
rg9 recovery init failed failed init
rg10 recovery failed failed failed init
rg11 recovery init cancelled failed init
rg12 recovery failed cancelled failed init
rg13 recovery init init cancelled init
rg14 recovery failed init cancelled init
rg15 recovery init failed cancelled init
rg16 recovery failed failed cancelled init
rg17 recovery init cancelled cancelled init
rg18 recovery failed cancelled cancelled init
rg19 recovery init init init failed
rg20 recovery failed init init failed
rg21 recovery init failed init failed
rg22 recovery failed failed init failed
rg23 recovery init cancelled init failed
rg24 recovery failed cancelled init failed
rg25 recovery init init failed failed
rg26 recovery failed init failed failed
rg27 recovery init failed failed failed
rg28 recovery failed failed failed failed
rg29 recovery init cancelled failed failed
rg30 recovery failed cancelled failed failed
rg31 recovery init init cancelled failed
rg32 recovery failed init cancelled failed
rg33 recovery init failed cancelled failed
rg34 recovery failed failed cancelled failed
rg35 recovery init cancelled cancelled failed
rg36 recovery failed cancelled cancelled failed

Table 1. Exemplary goals. The table shows goals that one might want to define for the Web ser-
vices shown in Fig. 3 on page 4. The recovery goals cover all possible combinations of unsuccess-
ful, final states and thus state transactionality of all Web services as requirement for successful
composition.

13

We model the orchestration of a set of Web services as a set of copy rules that fire at
certain states of the Web service executions. The set of Web services’ states contained
in a copy rule can be understood as part of the rule’s firing condition. In addition, a copy
rule contains a set of variable assignments (VarAss). They are to be interpreted as the
actions to be executed upon the rule’s firing.

Definition 9 (Copy rule).

CopyRule := 〈S, A〉 , S ⊆ WSState, A ⊆ VarAss

Based on the ASM interpretation denoted above, we define the ASM model for a set
of copy rules as follows. In addition to the contents of a rule’s condition and update
described above, we have to take care that a copy rule does not fire twice. Therefore, we
enrich its condition by a check whether all input variables of VarAss are still undefined
(undef) and set their state to initialized in the rule’s updates. This will trigger the
EXECUTE machine of the receiving Web service.

COPY(rules ⊆ CopyRule) ≡ do forall (states, varAss) ∈ rules
if wsState(wsId1) = s1 and . . . and wsState(wsId| states |) = s| states |

and varState(wsIdout1 , o1) = initialized and . . .
and varState(wsIdout| varAss | , o| varAss |) = initialized
and varState(wsIdin1 , i1) = undef and . . .
and varState(wsIdin| varAss | , i| varAss |) = undef then

do forall ((wsIdout, o), (wsIdin, i)) ∈ varAss
varState(wsIdin, i) := initialized

where
(wsIdk, sk) ∈ states, k = 1 .. | states |
((wsIdoutn , on), (wsIdinn , in)), n = 1 .. | varAss |

For illustrating the definition of copy rules, we provide an exemplary copy rule relating
to the repository in Fig. 3 on page 4. The copy rule states that when the User Web service
is in the state requesting and all other Web services are in their initial state (init), then
the content of variable CustomerID of the User Web service is copied to the variable
CustomerID of the Head Quarter Web service. For our orchestration model, the real
copying of the variable content is not relevant. We only care for the changed state of the
variables involved. Thus, the result of the following copy rules is that the state of the
variable CustomerID of the Head Quarter Web service is initialized afterwards.

copyRuleps10 = ({ (U, requesting), (O, init), (H, init), (N, init) },
{ ((U, CustID), (H, CustID)) })

Finally, we define our model of executing an orchestration using the ORCHESTRATE
ASM. This ASM continuously invokes the Web-service-specific ASMs (EXECUTE,
SEND, RECEIVE) and the ASM representation of the copy rules (COPY) in any or-
der. The copy rules that are executed by the COPY machine are defined by the
REACHCOMPGOAL ASM which is the main machine of our composition algorithm.
Its details are given in the following sections.

14

ORCHESTRATE(cg ∈ CompGoal, A ⊆ VarAss) ≡
iterate choose {M : M ≡ SEND(wsId) ∨ M ≡ RECEIVE(wsId)

∨ M ≡ EXECUTE(wsId) ∨ M ≡ COPY(rules), wsId ∈ ids(cg),
rules = REACHCOMPGOAL(cg, A) }

M

Linking to real-world execution. In principle, there are multiple ways to generate
executable code for our orchestration. One could be the translation to a WSBPEL de-
scription. However, since WSBPEL follows a sequential programming paradigm, the
transformation of our copy rules to WSBPEL is not straight forward. We have some
preliminary ideas, but do not give a solution to this here, and leave this issue to future
work. In this paper, we rather propose to directly execute the ASM interpretation of the
copy rules shown above. For this, we utilize all ASM specifications given in this paper.
The managing ASM would be the ORCHESTRATE machine. We will demonstrate an
execution of the orchestration generated for the repository in Fig. 3 on page 4 at the end
of this paper in Sect. 7.

6 Composition algorithm

This section describes the composition algorithm in detail by the a of ASMs. Each
ASM represents a module of the algorithm. The dependencies of the modules are de-
picted in Fig. 6 on the facing page. The figure also groups the modules with respect
to their purpose. Based on the grouping, we structure the content of this section as
follows. Section 6.1 reduces the problem of composing complex Web services to the
composition of smaller units. Section 6.2 explains how our algorithm ensures a correct
composition by properly ordering the composition of the smaller units. The smaller
units are then composed by the core of our composition algorithm. Section 6.3 gives
a high-level overview of the core composition algorithm. After a complete example in
Sect. 6.4, Sect. 6.5 presents the details of the core composition algorithm. The modules
residing in the utility group of the picture are explained upon their first usage.

6.1 Dividing the composition problem

In this section, we show how to break down the composition problem into smaller
pieces. The definition of these pieces bases on the different potential execution paths
through the state transitions of the single Web services in reaching their final states. We
call the set consisting of exactly one potential execution path of each participating Web
service a variant.

Definition 10 (Variant).

Variant := 2{wsId 7→Transs: wsId∈ID, Transs⊆STwsId }

15

Core compositionCorrectnessDividing

 U
til

ity

ReachCompGoal

CalcVariants

ReachGoal

CalcPaths

PickVariants

ReachVariant

Verifying

NextNondetOptions

FireCopyRulesFireExecutes

CalcInputsServed

CreateCopyRule

UpdateOutPools
Create

NewPlanningState

Fig. 6. Implementation modules. Each box represents a module of the implementation, each arrow
denotes a module dependency. The boxes in the back group the modules based on their purpose.

The ASM starting the composition is called REACHCOMPGOAL. The purpose of the
REACHCOMPGOAL machine is to initialize our composition algorithm. First, is iden-
tifies possible Web service executions (CALCVARIANTS) and hands them over to
REACHGOAL. Second, it defines that the composition can only be successful if at least
one primary goal can be achieved by providing the primary goals as the second param-
eter of REACHGOAL. It also ensures that every possible execution of the resulting copy
rules ends in one of the composition goals (CompGoal) by assigning allowedGoals as
the fourth parameter of REACHGOAL. A more detailed examination of the parameters
of REACHGOAL follows in the next section. If it is not possible to generate a cor-
rect orchestration for any of the primary goals, the result is the empty set. Third, since
REACHGOAL is invoked recursively for some kind of simulation that is introduced later
on, we need to keep track of the current state of the simulation and thus introduce the
simulation state (SimState).

Definition 11 (Simulation state).

SimState := 2WSState

The computation is started by calling REACHGOAL with the initial states of all Web
services as a starting point (initialSs).

REACHCOMPGOAL(cg ∈ CompGoal, A ⊆ VarAss) ≡
return copyRules in let

pgs = primaryGoals(cg),
initialSs = {wsId 7→ s : wsId ∈ ids(pg), pg ∈ pgs, s = swsId

init }
allowedGoals = primaryGoals(cg) ∪ recoveryGoals(cg)
vnts =

⋃
goals∈ allowedGoals CALCVARIANTS(goals) in

(fail, copyRules) := REACHGOAL(vnts, pgs, initialSs, allowedGoals, A)

16

The first activity of REACHCOMPGOAL is the calculation of all variants. A variant is
computed as the cross product (crossProduct) of all possible execution paths of the
Web services involved in a goal (g) to reach g.

CALCVARIANTS(g ∈ Goal) ≡
return crossProduct in seq

forall (wsId, s) ∈ g do paths(wsId) := CALCPATHS(STwsId, s)
crossProduct := ×wsId ∈ ids(g) [{wsId } × paths(wsId)]

The possible execution paths to reach a specific state (s) of a Web service (wsId) are
computed as follows. In the end, the paths location will contain a set of paths, where
each path is a set of transition rules. In the beginning, the paths location is initialized
with exactly one path consisting of the one transition that directly leads to the specified
state. Now, those transitions directly leading to an existing transition in a path in paths
are iteratively added to that path. The calculation is performed as long as some paths
grow. Therefore, we store the overall size of all paths (calcSumOfLengths) during the
preceding iteration in oldSumOfLengths.

CALCPATHS(T ⊆ STwsId, s ∈ SwsId) ≡
step

oldSumOfLengths := 0
paths := { { (spre, V, spost) ∈ T : spost = s } }

step while calcSumOfLengths(paths) > oldSumOfLengths do
oldSumOfLengths := calcSumOfLengths(paths)
forall path ∈ paths do

step paths := paths \ { path }
step do forall rule ∈ { (spre, V1, spreex) ∈ T :

(spreex , V2, spostex) ∈ path }
paths := paths ∪ { path ∪ rule }

step result := paths

where
calcSumOfLengths(paths) ≡
| path1 |+ | path2 |+ . . . + | path| paths | |

pathx ∈ paths, x = 1 .. |paths |

17

6.2 Computing correct orchestrations

For one variant, the creation of copy rules can be achieved by our core composition
algorithm (REACHVARIANT) which is explained in the following section. The copy
rules created by REACHVARIANT ensure that the given goal can be reached in this
variant. Due to potential non-deterministic behavior of the participating Web services,
it may happen that the execution of the orchestration leaves one of the Web services’
path along the variant, or even leave the path to its final state that is part of the defined
goal. The result of our composition has to ensure that in such a case an alternative
path is taken that leads to any other desired final state. This is ensured by VERIFYING.
With this high-level understanding, we first go in detail through the implementation of
REACHGOAL. Second, we explain VERIFYING and third, we detail the simulation of
the created copy rules that is part of VERIFYING.

Reach goal. The aim of REACHGOAL is to return copy rules ensuring a correct
orchestration for at least one of the given goals only considering the given vari-
ants (vnts). For this, it first identifies all variants (goalVnt) that lead to the goals
(CALCVARIANTS). Second, it tries to compose each of the variants (REACHVARIANT).
This results in some copy rules (regCopyRules). Third, the algorithm creates copy
rules (altCopyRules) for each non-deterministic branch in the theoretic execution
of regCopyRules (VERIFYING). The created copy rules either provide a correct or-
chestration of that branch, or VERIFYING fails (altFail). If a correct orchestration
could be generated for at least one variant in the end, the corresponding copy rules
(oneVariantCopyRules) are finally returned.

REACHGOAL(vnts ⊆ Variant, mandatGoals ⊆ Goal, ss ∈ SimState,
allowedGoals ⊆ Goal, A ⊆ VarAss) ≡ return (fail, copyRules) in

if mandatGoals = ∅ then fail := false par copyRules := ∅
else

step fail := true par copyRules := ∅ par variantCopyRules := ∅
step do forall goalVnt ∈ PICKVARIANTS(vnts, ss, mandatGoals)

step (regFail, regCopyRules) :=
REACHVARIANT(goalVnt, finState(goalVnt), A)

step if not regFail then
step (altFail, altCopyRules) :=

VERIFYING(vnts, goalVnt, regCopyRules, ss, allowedGoals, A)
step if not altFail then

fail := false
variantCopyRules := variantCopyRules

∪ { filterRules(regCopyRules, altCopyRules) }
step if variantCopyRules 6= ∅ then

choose oneVariantCopyRules ∈ variantCopyRules
copyRules := oneVariantCopyRules

18

where
filterRules(C1, C2) := { c : c1 ∈ C1, c2 ∈ C2,

c =
{

c2, 6 ∃ c1 : states(c1) = states(c2)
c1, otherwise }

finState(vnt ∈ Variant) := { (wsId, s) : (spre, V, spost) ∈ T,
(wsId, T) ∈ vnt, 6 ∃ (spost, V, snext) ∈ T }

For further computation, only those variants (pickedVnts) are considered out of the
given variants (vnts) that pass the given state (ss) and lead to the given goal.

PICKVARIANTS(vnts ⊆ Variant, ss ∈ SimState, goals ⊆ Goal) ≡
return pickedVnts in

pickedVnts := { vnt ∈ vnts : ∀ path ∈ vnt, wsId = id(path),
F = transs(path), (spre1 , V1, spost1) ∈ F, (wsId, spre1) ∈ ss,
(spre2 , V2, spost2) ∈ F, (wsId, spost2) ∈ goal, goal ∈ goals }

Verifying. Through REACHVARIANT in REACHGOAL, we ensure that a composition
can be generated that steers the execution along the specific variant. However, this path
of execution may depend on the non-deterministic behavior of other Web services that
cause a deviation from this path. For this case, VERIFYING ensures that there exists
a successful composition for each non-deterministically deviating path. The result of
VERIFYING is either the set of copy rules that ensure the successful composition, or
a notification of failure if no successful composition exists for all non-deterministic
deviations.

We now detail the functioning of VERIFYING. In order to give the full picture, we
link our description to REACHGOAL where necessary. The overall process is depicted
in Fig. 7 on page 20.

1. First, REACHGOAL tries to reach a variant (REACHVARIANT).
2. Second, VERIFYING simulates the execution of the given copy rules (cr) starting

from the given state ss (NEXTNONDETOPTIONS). The simulation stops at the first
point of non-determinism and returns all different, non-deterministic options that
can occur at the current point of execution (options).

3. Third, our objective implies that there must be a successful composition for each
of the options. The different options are depicted in Fig. 7 by the multiple lines
leaving “2. NO”. Since each option may be reached through different variants
(optionVnts), we need to ensure that there exists a successful composition for at
least one of the variants for each option (optionVnt). Ensuring successful com-
position for a variant exactly is the objective of the ASM REACHGOAL. Such
a call is represented by “3.2. RG” in the figure. In contrast to the initial call of
REACHGOAL, we now only care that one of our allowedGoals can be reached. We
therefore provide allowedGoals as second and fourth parameter of REACHGOAL.
Also, we want to restrict the variants to be considered by REACHGOAL to the
variants relevant for the current option (optionVnts). Finally, we provide the
simulation state of the non-deterministic option (option) as the starting state for

19

REACHGOAL. Please note that the call to REACHGOAL is recursive. This is de-
picted by the labels starting with “3.1.” in Fig. 7. In the case that REACHGOAL was
successful, we collect the copy rules generated (optionCopyRules) in the return
variable copyRules.

4. Fourth, we continue the original simulation up to the next point of non-determinism
deviating from the original variant (vnt).

5. Fifth, each non-determinism found is elaborated as described before. The process
continues for all non-deterministic deviations from the original variant.

The verifying is done when the simulation stagnates (oldss = ss) or the generation
of alternative copy rules fails (globalFail). Stagnation may happen when simulation
reached an allowedGoal. In this case, we return the collected copyRules. In every other
case of stagnation and in any case of failure, we return an empty set of copyRules and a
failure notification (fail).

VERIFYING(vnts ⊆ Variant, vnt ∈ Variant, cr ⊆ CopyRule, ss ∈ SimState,
allowedGoals ⊆ Goal, A ⊆ VarAss) ≡ return (fail, copyRules) in

step
oldss := ∅
globalFail := false

step while oldss 6= ss and not globalFail do
step

oldss := ss
(ss, options) := NEXTNONDETOPTIONS(vnts, vnt, cr, ss)

step if oldss 6= ss then do forall option ∈ options
step optionVnts := PICKVARIANTS(vnts, option, allowedGoals)
step

if optionVnts 6= ∅ then
step (optionUncomposable, optionCopyRules) :=

REACHGOAL(optionVnts, allowedGoals, option, allowedGoals, A)
step

copyRules := copyRules ∪ optionCopyRules
if optionUncomposable then globalFail := true

else globalFail := true
step

if not globalFail and ss ∈ allowedGoals then fail := false
else

fail := true
copyRules := ∅

20

1. RV 5. RG 3.1.3. RG3.1.5. RG3.1.1. RV3.2. RG

.
:

3.1.2. NO

3.1.4. NO

4. NO

2. NO

.
:

1. RV
2. NO
3.1. RG (option 1)
3.1.1. RV
3.1.2. NO
3.1.3. RG
3.1.4. NO
3.1.5. ...
3.2. RG (option 2)
3.3. ...
4. NO
5. RG
6. ...

Fig. 7. Recursive computation of REACHGOAL. The abbreviations represent the modules
REACHVARIANT (RV), NEXTNONDETOPTIONS (NO), and REACHGOAL (RG). A circle or di-
amond next to an abbreviation denotes the simulation state that was the input or the output of
the respective module. The perpendicular line end denotes the initial simulation state. Each circle
denotes a simulation state prior to some non-deterministic options. Each diamond denotes a goal.
A solid line represents copy rules ensuring a correct, partial orchestration from its upper to its
lower simulation state. A dashed line stands for copy rules to be elaborated on. The legend on the
right hand side presents the sequence of module invocations corresponding to the picture.

Simulation. The NEXTNONDETOPTIONS machine performs a simulation of the cur-
rent copy rules in order to determine the next non-determinism in their application on
a real, collaborative Web service execution starting from simulation state ss. This is
achieved by simulating the firing of all EXECUTE machines of all Web services alter-
nated with applying the copy rules (FIRECOPYRULES).

NEXTNONDETOPTIONS(vnts ⊆ Variant, vnt ∈ Variant, cr ⊆ CopyRule,
ss ∈ SimState) ≡ return (ss, options) in

step oldss := ∅ par options := ∅
step (ss, options) := FIREEXECUTES(vnts, vnt, ss, cr, ∅) // start initiator
step while oldss 6= ss and options = ∅ do

oldss := sss
step inputs := FIRECOPYRULES(ss, cr) // these should be deterministic
step (ss, options) := FIREEXECUTES(vnts, vnt, ss, cr, inputs)

The main task when simulating the application of copy rules is to identify the inputs
that are served by the copy rules applicable in the current simulation state (ss).

FIRECOPYRULES(ss ∈ SimState, cr ⊆ CopyRule) ≡ return inputs in
inputs := { (wsIdin, i) : ((wsIdout, o), (wsIdin, i))

∈ assignments(copyRule), ss = states(copyRule), copyRule ∈ cr }

21

During simulating the EXECUTE rules of all Web services, we identify non-
deterministic options as follows. First, we advance the simulation state for all input
transitions with all inputs served. Second, we examine all the states (S in ndStates) for
each Web service with non-deterministic branches that can be directly reached at the
current state of simulation (ss) and that do not appear in the transitions (T) of the current
variant (vnt). Third, we collect the states of the Web services without non-determinism
(detStates). Fourth, we calculate all non-deterministic deviations from the current vari-
ant (vnt) by creating the cross product of the states in ndStates and detStates. Finally, we
calculate the simulation state (ss) for each Web service that has to be evaluated by the
verification after the non-deterministic options were checked. We set the next state to
the directly following simulation state (spost) of the current variant (vnt) if there are no
active transition alternatives directly following the current simulation state. A transition
is active in the following cases.

– It is an output transition.
– It is an input transition and all of its input variables can be served.

FIREEXECUTES(vnts ⊆ Variant, vnt ∈ Variant, ss ∈ SimState,
cr ⊆ CopyRule, inputs ⊆ Variable) ≡ return (ss, options) in

step ss := { (wsId, s) : (wsId, sss) ∈ ss, (wsId, T) ∈ vnt, t ∈ T,

t = (sss, V, spost),

s =
{

spost, V ⊆ INwsId, ∀ i ∈ V : (wsId, i) ∈ inputs
sss, otherwise

}

step
ndStates := { (wsId, S) : (wsId, sss) ∈ ss, (wsId, T) ∈ vnt,

tvnt ∈ T, tnd ∈ STwsId,

tvnt = (sss, Ovnt, spostvnt
), tnd = (sss, Ond, spostnd

),
spostvnt

6= spostnd
, spostnd

∈ S, Ovnt, Ond ∈ OUTwsId }
detStates := { (wsId, S) : (wsId, sss) ∈ ss, (wsId, T) ∈ vnt,

tvnt ∈ T, tvnt = (sss, Vvnt, spostvnt
),

[Vvnt ∈ INwsId, sss ∈ S] ∨ [Vvnt ∈ OUTwsId, 6 ∃ tnd ∈ STwsId,

tnd = (sss, Ond, spostnd
), spostvnt

6= spostnd
, spostvnt

∈ S] }
step

options := ×(wsId, S) ∈ (ndStates ∪ detStates) [{wsId } × S]
ss := { (wsId, s) : (wsId, sss) ∈ ss, (wsId, T) ∈ vnt, t ∈ T,

t = (sss, V, spost), s =
{

spost, V ⊆ OUTwsId

sss, otherwise
}

22

6.3 Core composition algorithm overview

In this section, we give a high-level explanation of our core composition algorithm.
Our core composition algorithm works iteratively from the final states of each Web
service to their initial states. Therefore, we need to keep track of the current state of the
backchaining and thus introduce the planning state (PlState).

Definition 12 (Planning state).

PlState := 2WSState×{ IN,OUT }

The composition algorithm takes the following inputs.

– A variant of the possible Web service executions, i. e. a specific execution path for
each participating Web service.

– An initial planning state, derived from the given goal.
– A set of possible variable assignments.

The general idea of the composition is to create copy rules for matching outputs and
inputs of different Web services in the current planning state (ps) and to add them to the
set copyRules (CREATECOPYRULE). After this has been done, the planning state will
proceed toward the initial states of the Web services (CREATENEWPLANNINGSTATE)
and the algorithm reiterates. The composition of a variant is aborted if no valid compo-
sition could be achieved (fail), the planning state consists of only initial states (done)
or the composition came to a dead end, i. e., the planning state remained the same for
two iterations. The latter case may occur if not all output variables of a service are con-
sumed by other services. During composition, such a Web service’s planning state will
not proceed any further toward its initial state.

For the creation of the copy rules in the current planning state as highlighted above,
some preliminary calculations have to be performed. First, we identify all output vari-
ables of all Web services that are available for this variant (outPool). Second, we iden-
tify all input transitions of all Web services that directly lead to the current planning
state (adjInTrans). Note that for one Web service there is exactly one such transition,
because the calculation bases on a variant. Third, we match all inputs of the identified
input transitions with available outputs (CALCINPUTSSERVED). The correspondences
for this matching are taken from the given, possible variable assignments (A). After cre-
ating the copy rules, we update the outPool locations in order to only contain all output
variables that will be consumed at a later stage of the composition.

We formally define this behavior below. In the following section, we present the
advertised high-level steps in more detail.

23

REACHVARIANT(vnt ∈ Variant, g ∈ Goal, A ⊆ VarAss) ≡
return (fail, copyRules) ∈

step
oldps := ∅
fail := false
copyRules := ∅
ps := { (wsId, s, m) ∈ PlState : (wsId, s) ∈ g,

m =

OUT, hasAdjacentOutTrans(wsId, s)
IN, hasAdjacentInTrans(wsId, s)
undef, s = swsdl

init

}

forall wsId ∈ ids(ps) do outPool(wsId) := { o ∈ O : (spre, O, spost)
∈ Rules, (wsId, Rules) ∈ vnt, O ⊆ OUTwsId }

step while not fail and not done(ps) and not ps = oldps do
oldps := ps
step do forall wsId ∈ ids(ps)

adjInTrans(wsId) := { (spre, I, spost1) ∈ Rules :
(spost1 , O, spost2) ∈ Rules, I ∈ INwsId, (wsId, Rules) ∈ vnt,
(wsId, spost2 , IN) ∈ ps ∨ (wsId, spost1 , IN) ∈ ps }

step (fail, currAss) :=
CALCINPUTSSERVED(ids(ps), A, adjInTrans, outPool)

step if not fail then
copyRules :=

copyRules ∪ {CREATECOPYRULE(ps, currAss, adjInTrans) }
step outPool := UPDATEOUTPOOLS(vnt, ps, currAss, A, outPool)
step ps :=

CREATENEWPLANNINGSTATE(vnt, ps, adjInTrans, outPool)

where
done(ps ∈ PlState) ≡ ∀ (wsId, s, m) ∈ ps : s = swsId

init ∨
[∃ (swsId

init , V, s) ∈ STwsId, m = IN, V ⊆ OUTwsId]
hasAdjacentOutTrans(wsId, spost) := ∃ (spre, O, spost) ∈ STwsId

out

hasAdjacentInTrans(wsId, spost) := ∃ (spre, I, spost) ∈ STwsId
in

6.4 Composition example

In this section, we demonstrate the functioning of our composition algorithm based on
the example provided earlier. We walk through the ASMs and present their results. We
start with the first call of REACHVARIANT triggered by REACHCOMPGOAL. The result
is a set of copy rules that may lead the orchestration of the exemplary Web services to

24

the primary goal pg1 as defined above.

copyRulepg1 = ({ (U, requesting), (O, found), (H, found), (N, done) },
{ ((N, UpdRegInfo), (U, UpdRegInfo)),

((H, Customer), (O, StudID)),
((H, Customer), (O, SchoolID)),
((N, NewStudID), (H, NewStudID)),
((U, NewSchoolID), (H, NewSchoolID)) })

copyRuleps8 = ({ (U, requesting), (O, found), (H, found), (N, init) },
{ ((O, StudRegInfo), (N, StudRegInfo)),

((U, NewSchoolID), (N, NewSchoolID)) })
copyRuleps9 = ({ (U, requesting), (O, init), (H, found), (N, init) },

{ ((H, Customer), (O, StudID)),
((H, Customer), (O, SchoolID)) })

copyRuleps10 = ({ (U, requesting), (O, init), (H, init), (N, init) },
{ ((U, CustID), (H, CustID)) })

Now, we simulate the execution of the copy rules above. We find out that the first
non-determinism occurs in Web service H after executing copyRuleps10 . The option is
{ (U, requesting), (O, init), (H, failed), (N, init) }. Subsequently, the reachable,
allowed goals are the following.

allowedGoal1 = rg8 = { (U, failed), (O, init), (H, failed), (N, init) }
allowedGoal2 = rg10 = { (U, failed), (O, failed), (H, failed), (N, init) }
allowedGoal3 = rg12 = { (U, failed), (O, cancelled), (H, failed), (N, init) }
allowedGoal4 = rg26 = { (U, failed), (O, init), (H, failed), (N, failed) }
allowedGoal5 = rg28 = { (U, failed), (O, failed), (H, failed), (N, failed) }
allowedGoal6 = rg30 = { (U, failed), (O, cancelled), (H, failed), (N, failed) }

For a successful composition, it is required that at least one variant for each of the
options can be successfully composed. Since the behavior of each Web service is rep-
resented as a tree in our example, the number of goals directly determines the number
of variants. For our case, this means that at least one of the allowed goals must be suc-
cessfully composable. Our algorithm finds out that composition might be possible only
for rg8. We present the resulting copy rules below.

copyRulerg8 = ({ (U, requesting), (O, init), (H, failed), (N, init) },
{ ((H, Fail), (U, Fail)) })

copyRuleps12 = ({ (U, requesting), (O, init), (H, init), (N, init) },
{ ((U, CustID), (H, CustID)) })

The simulation of the copy rules above reveals no more non-determinism. Thus, we
can continue our simulation of the original copy rules. The next non-deterministic op-

25

tion we find is { (U, requesting), (O, failed), (H, found), (N, init) }. The allowed,
reachable goals are given below.

allowedGoal7 = rg16 = { (U, failed), (O, failed), (H, cancelled), (N, init) }
allowedGoal8 = rg34 = { (U, failed), (O, failed), (H, cancelled), (N, failed) }

From the goals above, only rg16 can be reached. We give the respective copy rules
below.

copyRulerg16 = ({ (U, requesting), (O, failed), (H, found), (N, init) },
{ ((O, Fail), (U, Fail)) })

copyRuleps14 = ({ (U, requesting), (O, init), (H, found), (N, init) },
{ ((H, Customer), (O, SchoolID)),

((H, Customer), (O, StudID)) })
copyRuleps15 = ({ (U, requesting), (O, init), (H, init), (N, init) },

{ ((U, CustID), (H, CustID)) })

From simulating the copy rules above, we find out that there is
no more non-determinism. Thus, we continue the simulation of
the original copy rules and find the last non-deterministic option
({ (U, requesting), (O, found), (H, found), (N, failed) }). We give the only
reachable, allowed goal and the copy rules resulting from its composition below. The
copy rules for this option do not contain any new non-determinism.

allowedGoal9 = rg36 = { (U, failed), (O, cancelled), (H, cancelled), (N, failed) }

copyRulerg36 = ({ (U, requesting), (O, found), (H, found), (N, failed) },
{ ((N, Fail), (U, Fail)) })

copyRuleps17 = ({ (U, requesting), (O, found), (H, found), (N, init) },
{ ((O, StudRegInfo), (N, StudRegInfo)),

((U, NewSchoolID), (N, NewSchoolID)) })
copyRuleps18 = ({ (U, requesting), (O, init), (H, found), (N, init) },

{ ((H, Customer), (O, SchoolID)),
((H, Customer), (O, StudID)) })

copyRuleps19 = ({ (U, requesting), (O, init), (H, init), (N, init) },
{ ((U, CustID), (H, CustID)) })

At this stage our algorithm has ensured that the primary goal for the example (pg1)
could be reached and there exist deterministic resolutions for each non-deterministic
deviation from the intended execution path to an allowed recovery goal. Therefore we
can claim that the example is successfully composable. The copy rules our algorithm
returns contain the copy rules for reaching the primary goal and all non-deterministic
deviations from the intended path, i. e. all copy rules shown in this section.

26

6.5 Core composition algorithm details

In this section, we go in detail through the individual steps of the core composition
algorithm as presented in Sect. 6.3 on page 22. Each of these steps is presented as an
ASM.

Input and output assignments. The matching of input variables in adjInTrans and
output variables in the different outPools is specified in CALCINPUTSSERVED. First,
we build the subset of all possible variable assignments (A) that can be assigned in
the current planning state (currAss). Second, we check whether all input transitions
(adjInTrans) of all Web services can be served by the currAss. If this is not the case,
the composition of this variant has failed. This is because the outPools can only shrink
during the iterations of REACHVARIANT. Thus, input variables that cannot be served
right away, cannot be served at any time during composition.

CALCINPUTSSERVED(services ⊆ ID, A ⊆ VarAss, adjInTrans, outPool) ≡
return (fail, currAss) in

step currAss := { ((wsIdout, o), (wsIdin, i)) ∈ A : i ∈ I,
(sprein , I, spostin) ∈ adjInTrans(wsIdin), o ∈ outPool(wsIdout) }

step
if 6 ∃ ((wsIdout1 , o1), (wsIdin1 , i1)) ∈ A :

((wsIdout2 , o2), (wsIdin1 , i1)) ∈ A :
wsIdout1 6= wsIdout2 ∨ o1 6= o2 then

do forall wsIdin ∈ services
let unservedVars = { i : (spre, I, spost) ∈ adjInTrans(wsIdin),

i ∈ I, ((wsIdout, o), (wsIdin, i)) /∈ currAss } in
if unservedVars 6= ∅ then fail := true

else fail := true

Copy rule creation. A copy rule contains information about all variable assignments
that are possible in the current planning state (ps). The first component of a copy rule
contains the states of all involved Web services that are a prerequisite for the copy rule
to be applied in an execution. This is calculated as follows. The line numbers refer to
CREATECOPYRULE below.

– Lines 3 and 4 ensure that only states for involved Web services are collected.
– If a Web service acts as the source of a variable assignment, its state must be its

current planning state (sp). This is, because the Web service must be in the state fol-
lowing the output transition in order to have this output available during execution
(line 5).

– If a Web service acts as the target of a variable assignment, its state must be the
state preceding the input transition served (line 6).

The second component of a copy rule consists of the currAss themselves.

27

CREATECOPYRULE(ps ∈ PlState, currAss ⊆ VarAss, adjInTrans) ≡
return (states, currAss) in

let states = { (wsId, s) ∈ WSState : (wsId, sps, m) ∈ ps,
([adjInTrans(wsId) = ∅ ∧ s = sps]
∨ [(spre, I, spost) ∈ adjInTrans(wsId) ∧ s = spre]) } in

skip

Adjust output pools. The output pools are used to keep track of available output vari-
ables for the variable assignments and to determine whether each output variable has
at least been assigned once to another Web service during composition. Therefore, we
remove an output variable from the output pool, only if no Web service (wsIdany) relies
on it in any of its input transitions ((spre, I, spost)) with respect to possible variable
assignments (A) on the way back from the current planning state (s) to the initial state
(path). Only if no output variables of an output rule appear in a Web service’s output
pool, the planning state can proceed over such an output transition rule as explained in
the following section.

UPDATEOUTPOOLS(vnt ∈ Variant, ps ∈ PlState, currAss ⊆ VarAss,
A ⊆ VarAss, outPool) ≡ return outPool in

do forall { (wsIdout, o) : ((wsIdout, o), (wsIdin, i)) ∈ currAss }
let futureUse = { i ∈ I : ((wsIdout, o), (wsIdin, i)) ∈ A, (spre, I, spost)

∈ path, path ∈ CALCPATHS(T, s), (wsIdany, T) ∈ vnt,
(wsIdany, s, m) ∈ ps, ((wsIdout, o), (wsIdin, i))
/∈ currAss } in

if futureUse = ∅ then outPool(wsIdout) := outPool(wsIdout) \ { o }

Subsequent planning state. At the end of an iteration of REACHVARIANT, the new
planning state is calculated based on the current planning state (ps) as defined in
CREATENEWPLANNINGSTATE. We differentiate the following cases which correspond
to the alternatives for allocating variable s in CREATENEWPLANNINGSTATE below.

1. The planning state for a Web service in output mode whose all outputs of its adja-
cent output transition are not members of any Web services’ outPool proceeds one
step toward the initial state. The rationale for this is that a Web service must already
have reached the state after an output in order that the output can be accessed by
other Web services.

2. The planning state for a Web service in output mode where some of the outputs of
its adjacent output transition are members of any Web service’s outPool remains
at the current planning state.

3. The planning state for a Web service in input mode proceeds one step toward the
initial state.

4. If the planning state for a Web service represents its initial state, it remains as it is.

28

CREATENEWPLANNINGSTATE(vnt ∈ Variant, ps ∈ PlState, adjInTrans,
outPool) ≡ return newPs in

step do forall wsId ∈ ids(ps)
adjOutTrans(wsId) := { (spre, O, spost) ∈ Rules : (wsId, Rules)

∈ vnt, (wsId, spost, OUT) ∈ ps, O ∈ OUTwsId }
step newPs := { (wsId, s, m) : (wsId, sps, mps) ∈ ps,

(s, m) =



(sps, IN) : (spre, O, spost) ∈ adjOutTrans(wsId),
O ∩ outPool(wsId) = ∅

(sps, OUT) : (spre, O, spost) ∈ adjOutTrans(wsId),
O ∩ outPool(wsId) 6= ∅

(spre, OUT) : (spre, I, spost) ∈ adjInTrans(wsId)
(sps, mps) : adjInTrans(wsId) = ∅,

adjOutTrans(wsId) = ∅
}

7 Executing exemplary orchestration

In Sect. 6.4 on page 23, we have shown how our composition algorithm derives copy
rules steering each possible execution of the orchestration to a desired successful or
unsuccessful goal. With this information, we are now able to instantiate the ASM
machines that carry out the execution of the Web services and the copy rules de-
fined in Sect. 3.3 on page 9 and Sect. 5 on page 11. Instead of connecting the ASMs
INVOKEWEBSERVICE and RECEIVEDFROMWEBSERVICE to real Web service imple-
mentations, we generate output messages for each such call for demonstration purposes.
In addition, every firing of the COPY machine generates a textual output as well.

The above mentioned ASMs are directly feed into the CoreASM5 system [3] which
is used for their execution. At each point of an non-deterministic reaction of any Web
service, our implementation comes up with a message box letting the user perform
the choice. The result of this execution is listed in Fig. 8 on the facing page and thus
exemplarily shows the correctness of the generated copy rules.

8 Conclusion and Outlook

In this paper, we have described a composition algorithm that generates correct Web
service compositions respecting user-defined primary and recovery business process
composition goals. We believe, primary and recovery goals are an essential property
of collaborative business processes which is not addressed by most work in the area
of process composition [4]. This notion was inspired by the approach of Pistore and
others, e. g. [5], who use model checking on a combined FSM of all business processes
involved which leads to a state explosion for realistic examples. We hope to bypass
this problem by analyzing the business process descriptions directly and restricting the
business processes to loop-free trees in the beginning.

5 http://www.coreasm.org/

29

--
execute User: requesting
--
copy ps10: {HeadQuarter.CustomerID} := initialized
--
execute HeadQuarter: requested
--
send HeadQuarter: {HeadQuarter.CustomerID} := processed
--
receive HeadQuarter: {HeadQuarter.Customer} := initialized
--
execute HeadQuarter: found
--
copy ps9: {OldSchool.getStudRegDataSchoolID,
OldSchool.getStudRegDataStudentID} := initialized
--
execute OldSchool: requested
--
send OldSchool: {OldSchool.getStudRegDataSchoolID,
OldSchool.getStudRegDataStudentID} := processed
--
receive OldSchool: {OldSchool.StudentRegistrationInfo} :=
initialized
--
execute OldSchool: found
--
copy ps8: {NewSchool.StudentRegistrationInfo,
NewSchool.NewSchoolID} := initialized
--
execute NewSchool: requested
--
send NewSchool: {NewSchool.StudentRegistrationInfo,
NewSchool.NewSchoolID} := processed
--
receive NewSchool:
{NewSchool.UpdatedStudentRegistrationInfo} :=
initialized
--
execute NewSchool: done
--
copy pg1: {HeadQuarter.NewStudentID,
User.UpdatedStudentRegistrationInfo,
HeadQuarter.NewSchoolID, OldSchool.unregStudentStudentID,
OldSchool.unregStudentSchoolID} := initialized
--
execute User: done
execute HeadQuarter: done
execute OldSchool: done
--
send User: {User.UpdatedStudentRegistrationInfo} :=
processed send HeadQuarter: {HeadQuarter.NewStudentID,
HeadQuarter.NewSchoolID} := processed send OldSchool:
{OldSchool.unregStudentStudentID,
OldSchool.unregStudentSchoolID} := processed
--

Fig. 8. Exemplary execution of an orchestration.

30

There are four aspects we plan to work on in the future. First, the mathematically
founded definition of our algorithm should allow us to formally prove important prop-
erties of our algorithm, e. g. that the orchestrations generated are always correct with
respect to our correctness definition. Second, we will finalize our initial ideas on a trans-
lation from copy rules to WSBPEL. Third, we will extend our composition algorithm
for the handling of arbitrary acyclic graphs. We will also have a look into loop handling.
And fourth, we will complete the implementation of the composition system which will
allow us to compare its execution time to the performance of related approaches.

References

1. Object Management Group: UML v. 2.0 specification. OMG (2003)
2. Börger, E., Stärk, R.: Abstract State Machines. A Method for High-Level System Design and

Analysis. Springer, Berlin, Heidelberg (2003)
3. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution engine. In:

12th Int’l Workshop on Abstract State Machines, Paris, France (March 2005)
4. Rao, J., Su, X.: A survey of automated web service composition methods. In Cardoso, J.,

Sheth, A.P., eds.: SWSWPC. Volume 3387 of Lecture Notes in Computer Science., Springer
(2004) 43–54

5. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services
by planning at the knowledge level. In Kaelbling, L.P., Saffiotti, A., eds.: IJCAI, Professional
Book Center (2005) 1252–1259

