
Power-aware Computing Systems

Dagstuhl Seminar 07041
January 21st to January 26th 2007

Luca Benini1, Naehyuck Chang2, Uli Kremer3, Christian W. Probst4

1 Università di Bologna, DEIS
Viale Risorgimento 2, 40136 Bologna, Italy

lbenini@deis.unibo.it
2 Seoul National University, School of Computer Science and Engineering

Silim Dong, Kwanak Gu, Seoul, 151-742, Korea
naehyuck@snu.ac.kr

3 Rutgers University, Dept.of Computer Science
96 Frelinghuysen Road, NJ 08854 Piscataway, USA

uli@cs.rutgers.edu
4 Technical University of Denmark, Informatics and Mathematical Modelling

Richard Petersens Plads, 2800 Kongens Lyngby, Denmark
probst@imm.dtu.dk

Abstract. This paper summarizes the objectives and structure of a
seminar with the same title, held from January 21st to January 26th
at Schloss Dagstuhl, Germany. The seminar started from the results of
the preceding Dagstuhl seminar 05141 on the same topic, and tried to
identify emerging trends in three areas—low-power design and reliability,
, and power estimation and simulation. The outcome of these discussions
is also contained in this article.

1 Introduction

The program of the Dagstuhl seminar 07041 on Power-aware Computing Systems
featured presentations of about 25 participating researchers from academia and
industry. They were chosen to represent major areas in targeting the energy con-
sumption of a computing system—Applications, Compilers, Virtual-execution
Environments, Operating Systems, and Hardware.

In order to continue the work of the predecessor Dagstuhl seminar held in
2005, the results of that seminar [1] were discussed, with the aim of developing
a vision of challenges, problems, and research activities in some of the key areas
identified in 2005. The first part of the seminar was dedicated to lively discussions
that led to the identification of three areas that were considered being most
interesting. As a result, three groups were formed to further identify challenges
and opportunities. The results of these groups are presented in this report. In
addition, abstracts of the presentations as well as work-in-progress papers are
published in these proceedings.

Dagstuhl Seminar Proceedings 07041
Power-aware Computing Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1123



2 L. Benini, N. Chang, U. Kremer, C.W. Probst

The remainder of this section summarizes the starting point of the discus-
sion by giving an overview of the results of the seminar in 2005. It is followed
by a presentation of the results of the working groups on low-power design and
reliability (Section 2), (Section 3), and power estimation and simulation (Sec-
tion 4). Finally, Section 5 concludes this report. More information on the seminar
described in this report and its predecessor in 2005 can be found in [2,3].

1.1 Where does the Power go?

Rapidly increasing chip densities and processor speeds have made energy dis-
sipation a leading concern in computer design. The problem raised by energy
consumption is especially severe for a whole class of computing devices which
has recently become almost ubiquitously available—mobile devices like note-
books, PDAs, or mobile phones. On the one hand, these are only equipped with
a very limited power supply, so any computation on such a device should be
especially careful about resource usage. Even worse, the battery technology for
these devices has not kept pace with advances in processor technology and the
growing complexity of software. On the other hand, cooling mechanisms become
more and more important.

The predecessor of the current seminar, held in 2005 [2], developed a classifi-
cation of the obstacles, and therefore research directions, with respect to power
consumption seen for different classes of devices, ranging from very low power
devices, over handheld devices, to servers and work stations. In a next step the
seminar identified the impact different levels of dealing with power concerns can
have.

These discussions resulted in the matrix shown in Figure 1 that ranks how
much different areas (Computation, Communication and I/O, Storage, Other)
of different classes of systems (Very Low Power, Systems on a Chip, General
Purpose Computing) contribute to the total system power consumption.

This matrix was then used to identify the impact that we expect different
levels to have, as well as techniques provided by and problems to be solved in
each of the levels. The remainder of this part gives a (very condensed) description
of the discussion results. For a more detailed description please refer to [1].

Logic, Circuit, and Technology. On the hardware level, leakage power was identi-
fied as the major problem. One solution would be to increase the gate threshold
voltage, which results in lower leakage power, but also shrinks the acceptable
range of supply voltage. To compensate for this, one would need ever thinner gate
oxides—which results in increased gate leakage. So using current technologies,
scaling as usual will not do the trick. At the same time new device architectures
are needed. However, from the perspective of the logic, circuit, and technology
level, it is questionable whether more parallelism is going to reduce the overall
energy consumption. While extra parallelism allows to reduce the supply volt-
age for the same performance and in this way to reduce power/energy, it also
introduces extra transistors (more leakage) and extra and longer wires (more
capacitive coupling, noise issues).



Power-aware Computing Systems 3

Architectures and Micro-Architectures. The common trend in (micro-) architec-
ture design is to have numerous small, potentially heterogeneous/special-purpose
cores, dominated by communication across cores. In order to allow an energy-
efficient usage of a given architecture, it should expose any non-uniformity to
allow its exploitation by the software system running on top. There is an urgent
need to develop APIs and instruction set architectures that allow systems to ex-
press and control variability in the architecture and application. This would re-
quire a holistic approach that encompasses I/O, storage, and compute resources.
The main open issue on the architecture level is parallelism and how to extract
it efficiently. This might require re-architecting the CPU, storage hierarchies,
and more. Increases in parallelism might also call for rethinking the hardware
support and hardware/software coordination.

Compilers, Virtual-Execution Environment, Operating Systems and Middleware.
This layer is especially well suited to predict and determine the current and fu-
ture behavior of programs and tasks by using just-in-time compilation to reshape
program behavior at run time. Components on this level can pass information up
and down to lower and higher levels. In general, these components could process
implicit and explicit application-level constraints. The challenge, however, is to
define and enable interactions across different layers. By systematically design-
ing all layers of complete systems, each layer can be designed such that it can
make assumptions on the behavior of other layers and will be able to influence

Communication
Storage

I/O
Computation Other

2 3
General Server

DRAM/DISK
3 1

Power Supply
Purpose

Work 1 1
Computing

Station
2

WLAN/LCD GPU/CPU
3

Receive 2 1 1 -
SoC for

1 2
Digital Duplex 3

RF/LCD CPU
-

Conver-
no Commu- 2

gence
nication

1 1
specialized HW

-

2

Very Low Power may be 1 for 1 3 -

non-RF hardware

Fig. 1. Contribution of different areas to the power consumption of classes of
devices, ranging from very low power devices like sensors, over hand-held devices,
to work stations and servers. The areas are sorted according to their importance
from 1 (most important) to 3 (least important).



4 L. Benini, N. Chang, U. Kremer, C.W. Probst

the overall system behavior. The ultimate goal is to develop a holistic solution
that can deal with the variability of the resource requirements and execution
constraints of the application as well as of the features and resources of the
target system.

Applications and Algorithms. Generally speaking the optimization potential
increases with the abstraction level, making it advantageous to optimize at
the system and algorithmic level. There are two possible approaches to enable
those optimizations—either by acquiring application knowledge or by developing
domain-specific systems and algorithmic-evaluation frameworks. General evalua-
tion frameworks would allow to identify the critical consumers in a system design,
and target them to reduce their power consumption. Currently these models are
often hard to obtain from industry or even unavailable, e.g. for some analogue
components whose behavior is hard to describe. However, to enable evaluation
frameworks we will need domain-specific power-optimization technologies that
cover the system and implementation levels. In addition we need an interdisci-
plinary engineering approach to co-design hardware, software, and applications
of power-aware computing systems.

2 Low-power Design and Reliability

This working group started by identifying the most important failure types, with
respect to both permanent and temporary failures (Figure 2). All these of course
pose significant reliability issues, with the permanent failures probably being po-
tentially more severe, as the hardware itself is damaged over time. An important
point here is, that the effect of many of these errors is accelerated at higher
temperatures, meaning that any technique that reduces temperature can poten-
tially help. In contrast, transient errors (usually) do not damage the hardware,
but still influence the overall functioning of systems. However, the correlation
between low-power techniques and transient errors is less clear, meaning that
the impact of these techniques on transient errors is more complicated than for
permanent failures.

The main result of this working group was that low-power techniques and
reliability-aware design should be studied together, in order to realize synergy
that these techniques can have on reliability.

Beside hardware aspects, this working group also discussed reliability-aware
design at the software level. Here, some algorithms may tolerate “faulty” data,

Permanent Failures Temporary Failures

TDDB Time-dependent Dielectric Breakdown SEU Single Event Upset

NBTI Negative Bias Temperature Instability Power Supply Noise

HCI Hot Carrier Degradation Crosstalk

EM Electro Migration Substrate Noise

Fig. 2. Permanent and temporary failures



Power-aware Computing Systems 5

Low Power Permanent Errors Transient Errors
Technique TDDB NBTI HCI EM SEU PN CT SN

VDD scaling ++ ++ ++ ++ – – – ?

Multiple Vt ++ ++ ++ ++ +/- N/A ++ ?

Clock gating ? ? ++ ? – ? ? ?

Power gating ? ++ ? ++ ? ? ? ?

MLV ++ ? ? ? ? ? ? ?

RBB ? ? ? ? ? ? ? ?

Transistor scaling ? ? ? ? ? ? ? ?

Fig. 3. The impact of low-power techniques on permanent and transient errors.
“++” stands for a reduction of an error type by a certain technique, “–” for an
increase.

and still produce correct results, although at lower “quality”. The discussion
here centered around how to develop systems that allow to influence how much
quality reduction an end user is willing to tolerate, and how to specify both user
requirements and system capabilities. Interestingly, similar issues re-appeared in
the two other working groups.

3 Parallelism

The current trend towards multi-core architectures is expected to continue for the
foreseeable future, and seems a promising way of overcoming the leakage power
bottleneck. The working group on parallelism identified three main challenges.
With respect to chip-level parallelism, the trade-off between (the reduction of)
power consumption and chip reliability is of high importance (and related to
the first working group). This is especially the case for chip-parallel systems in
nano-scale technology.

The second challenge, identified in the first seminar on this topic, is how to
specify application requirements and system capabilities, such that software can
be best mapped onto the system. The main question with respect to parallel
systems is, how much power resource management we are able (or want) to hide
from the programmer, especially as programming parallel systems is already
difficult. This is especially important for developing scalable and power-efficient
programs in heterogeneous environments.

Heterogeneous environments also where at the center of the working group’s
third focus, namely how to map processes with respect to processing and com-
munication onto highly specialized, heterogeneous components. Due to process
variation, this mapping problem has both static and dynamic aspects. If applica-
tions are able to specify requirements, then systems need to map the application
and system resources such that these requirements are fulfilled. The working
group also discussed how this assignment could be performed by a virtualization
layer.



6 L. Benini, N. Chang, U. Kremer, C.W. Probst

4 Power Estimation and Simulation

One issue that repeatedly came up in the initial discussion round was predictabil-
ity of techniques and their evaluation. While many tools exist on various levels, it
is unclear how to get a unified simulation and estimation framework that allows
for an integrated approach with the possibility to use different granularity for dif-
ferent system parts. At the same time it is close to impossible to integrate all dif-
ferent levels—from gates and circuits to software architectures—in a single tool.
Instead, this working group investigated how to design a tool chain by standard-
izing the quantities and information of relevance to power and performance anal-
ysis, that can be extracted from a design (hardware or executable benchmark)
by a tool, along with a measure of accuracy of these tool-reported estimates.
For example, in addition to, or including its standard parameters, a tool might
take as input a standardized tuple of (ambient temperature, cycle time), and
might report as its output the tuple (50E−3, 1%), corresponding, for example,
to a power estimation report (averaged over some time window) of 50 mW and
an associated accuracy of that value to be within 1% of hardware. This value
could correspond to either, say, the reported leakage power of a temperature-
aware leakage estimation tool, which ignores the supplied cycle time parameter,
or to the reported average power consumption for some window of time on
an instruction-set simulator, with the simulated processor’s cycle time as given.
These are simple illustrative examples of the potential uses of the interface. Such

Level Relevant Optimizations Properties

Transaction Level Communication optimiza-
tion

dynamic power, leakage
power

Behavioral Level Architectural optimiza-
tion

dynamic power, leakage
power

Register Transfer Level Structural optimization dynamic power, leakage
power

Gate Level Logic optimization dynamic power, leakage
(sub-threshold, gate Ion,
gate Ioff)

Transistor Level Transistor sizing dynamic power, leakage
(sub-threshold, gate Ion,
gate Ioff , short circuit)

Layout Level Interaction with litho-
graphic process, and
techniques such as OPC
and RET; Technology
parameters provided by
fab

dynamic power, leakage
(sub-threshold, gate Ion,
gate Ioff, short circuit),
losses due to device/ lay-
out structure effects

Fig. 4. Abstraction layers, and examples of the associated possible optimizations
and relevant system properties.



Power-aware Computing Systems 7

an interface, alongside the standardization of configuration parameters that can
be provided to a tool (e.g., operating voltage, ambient temperature), enables the
composition of tools conforming to the interface, into a system-level framework.

Figure 4 shows an overview over the contra-variant measures of abstraction
and accuracy of simulation and estimation aspects, along with examples for
properties of interest as well as relevant optimizations at the different levels.
Some initial results of this working group can be found in an article in this
proceedings.

5 Conclusion

The second Dagstuhl seminar on Power-aware Computing Systems picked up the
discussion results of its predecessor [1], and continued the discussion of challenges
in the area. We think that the results, partly described in this report, partly
described in the papers published as part of the seminar proceedings, are suited
to give the involved communities ideas for future challenges.

We would like to thank all participants of the seminar for making it a fruitful
and inspiring event—and especially Dagstuhl’s wonderful staff, for their support
both before and during the seminar.

References

1. Benini, L., Kremer, U., Probst, C.W., Schelkens, P., eds.: Power-aware Comput-
ing Systems, 3.-8. April 2005. Volume 05141 of Dagstuhl Seminar Proceedings.,
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany (2005)

2. Homepage of Dagstuhl Seminar 05141: “Power-aware Computing Systems”. http:
//www.dagstuhl.de/05141 (2005)

3. Homepage of Dagstuhl Seminar 07041: “Power-aware Computing Systems”. http:
//www.dagstuhl.de/07041 (2007)

http://www.dagstuhl.de/05141
http://www.dagstuhl.de/05141
http://www.dagstuhl.de/07041
http://www.dagstuhl.de/07041

	Power-aware Computing Systems[8mm] Dagstuhl Seminar 07041 January 21st to January 26th 2007
	Luca Benini, Naehyuck Chang, Uli Kremer, Christian W. Probst

