
Towards Interfaces for Integrated Performance and

Power Analysis and Simulation

Chris Bleakley1, Tom Clerckx2, Harald Devos3, Matthias Grumer4, Alex
Janek5, Ulrich Kremer6, Christian W. Probst7, Phillip Stanley-Marbell8,

Christian Steger4, Vasanth Venkatachalam9, Manuel Wendt4

1 University College, Dublin, Ireland
2 Vrije Universiteit Brussel, Belgium

3 Ghent University, Belgium
4 Graz University of Technology, Austria

5 CISC, Klagenfurt, Germany
6 Rutgers, The State University of New Jersey, U.S.A.

7 Technical University of Denmark
8 Technische Universiteit Eindhoven, The Netherlands

9 University of California, Irvine, U.S.A.

Abstract. In the design and optimization of power-aware computing sys-
tems, it is often desired to estimate power consumption at various levels
of abstraction, e.g., at the transistor, gate, RTL, behavioral or transaction
levels. Tools for power estimation at these different levels of abstraction
require specialized expertise, e.g., understanding of device physics for
circuit-level power estimation, and as such are necessarily developed by
different research communities.

In the optimization of complete platforms however, it is desired to
be able to obtain aggregate power and performance estimates for the dif-
ferent components of a system, and this requires the ability to model the
system at a mixture of levels of abstraction.

One approach to enabling such cross-abstraction modeling, is to de-
fine a mechanism for interchange of data between tools at different layers
of abstraction, for both static analysis and simulation-based studies. This
document presents preliminary discussions on the requirements of such
an interface.

Keywords. Power Estimation Tools, Simulation, Tool Interfaces

1 Introduction

The requirements of computation, whether in the form of instruction execution
in a general purpose processor, or in the form of a state machine responding
to input stimuli, influences the physical implementation and runtime behavior
of hardware. The energy consumed in a hardware platform is influenced by its
carrying out of operations of interest in an application, whether due to the dy-
namic behavior of the application (e.g., and its associated dynamic power dis-
sipation), or its hardware requirements (e.g., and its associated leakage power

Dagstuhl Seminar Proceedings 07041
Power-aware Computing Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1107

2 C. Bleakley, T. Clerckx, H. Devos, M. Grumer, A. Janek, U. Kremer, C. W.
Probst, P. Stanley-Marbell, C. Steger, V. Venkatachalam, M. Wendt

dissipation). In design- and run-time estimation of power consumption and re-
lated issues (e.g., thermals, reliability), it is therefore often necessary to consider
both the modeling of the “application”, and that of hardware.

Tools for complete-system power estimation must necessarily be able to es-
timate power consumption of different components of the system, at different
levels of abstraction, e.g., at the gate, RTL, or behavioral level. These different
modeling abstraction requirements might arise either for different hardware
structures (e.g., modeling for a single SRAM cell might be desired at the gate
level, but an entire cache might be modeled at the RTL), or might be required
for different stages of the design cycle (e.g., behavioral modeling in the early
design stages, RTL and gate-level modeling later in the design cycle).

It is impractical to attempt to develop a single tool that on its own mod-
els every conceivable computing system, at every conceivable level of detail.
Instead, it is desirable to be able to use existing tools for different abstraction
levels, in a coherent integrated design system.

1.1 Proposal

One approach to enable the construction of such integrated power estimation
toolchains is to standardize the quantities / information of relevance to power and
performance analysis, that can be extracted from a design (hardware or executable
benchmark) by a tool, along with a measure of accuracy of these tool-reported es-
timates. For example, in addition to, or including its standard parameters, a
tool might take as input a standardized tuple of (ambient_temperature,
cycle_time), and might report as its output the tuple (50E-3, 1%), cor-
responding, for example, to a power estimation report (averaged over some
time window) of 50 mW and an associated accuracy of that value to be within
1% of hardware. This value could correspond to either, say, the reported leak-
age power of a temperature-aware leakage estimation tool, which ignores the
supplied cycle time parameter, or to the reported average power consumption
for some window of time on an instruction-set simulator, with the simulated
processor’s cycle time as given. These are simple illustrative examples of the
potential uses of the interface. Such an interface, alongside the standardization
of configuration parameters that can be provided to a tool (e.g., operating volt-
age, ambient temperature), enables the composition of tools conforming to the
interface, into a system-level framework.

As a further example, consider a microarchitectural simulator that is at-
tempting to perform accurate cache power estimation. Using the standard inter-
faces, it may interact with an RTL-level simulation of the cache, which might in
turn query a gate-level simulator for detailed power estimates of sub-components
of the cache.

2 Power Estimation Quantities

In order to enable the interchange and querying of quantities from tools, a
canonical or reference set of quantities which may be reported by a tool must

Interfaces for Integrated Perf. and Power Analysis and Simulation 3

Behavioral Level

Register Transfer Level

Gate Level

Transistor Level

Layout Level Interaction with lithographic process,
and techniques such as OPC and
RET; Technology parameters
provided by fab

Transistor sizing

Logic optimization

Structural optimization

Architectural optimization

Relevant Optimizations Properties
A
b
s
tr
a
c
ti
o
n

A
c
c
u
ra
c
ydynamic power,

leakage power

dynamic power,
leakage (subthreshold,
gate Ion, gate Ioff)

dynamic power,
leakage power

dynamic power, leakage
(subthreshold, gate Ion,

gate Ioff, shortcircuit)

dynamic power, leakage
(subthreshold, gate Ion,

gate Ioff, shortcircuit),

losses due to device/
layout structure effects

Transaction Level dynamic power,
leakage power

Communication optimization

Fig. 1. Abstraction layers, and examples of the associated possible optimiza-
tions and relevant system properties.

be defined, for each of the layers of abstraction, as illustrated in Figure 1. The
interpretation of the properties reported will be influenced by the parameters
supplied to the query. Possible parameters to a query include:

– Operating voltage
– Ambient temperature
– Current time / clock cycle
– Gate-, RTL-, or transactional-level system description

The type of power estimates supplied will vary to some extent with the
level of abstraction. For example, while it makes sense to consider short-circuit
power for a gate-level description, this may not be so meaningful for a behavioral-
level description. In what follows, examples of properties that may be taken as
input to a tool, or output therefrom, for each of the abstraction layers in Fig-
ure 1, are presented. Such input properties, which are supplied as part of a
request to a tool, may be based on a given abstraction level, may in practice be
the result of a system designer’s knowledge, or may be the output of a lower
level estimator.

For each abstraction level, an example of the basic unit of construction and
granularity of time at that layer is also provided. For example, at the gate-level
abstraction layer, the basic units of construction are Boolean logic gates, and

4 C. Bleakley, T. Clerckx, H. Devos, M. Grumer, A. Janek, U. Kremer, C. W.
Probst, P. Stanley-Marbell, C. Steger, V. Venkatachalam, M. Wendt

the granularity of time is a clock cycle. Every property value, regardless of the
layer of abstraction, has an associated property accuracy, representing the tool’s
perception of the accuracy of its (estimated) reported values, versus their actual
values in hardware. Associating such perceived accuracy values to input and
output properties will make it possible to reason about the quality of estimates
obtained when combining estimation tools from different abstraction levels.

2.1 Gate-level abstraction

– Unit: Logic gate. Granularity of time is a clock cycle.
– Output properties: Temperature, dynamic power, sub-threshold gate leak-

age, gate Ion leakage, gate Ioff leakage.
– Input properties: Clock frequency, voltage, temperature, current time, time

window for averaging, request of average versus peak value for given time
window.

It is likely that transistor-level estimates of properties will be supplied as
input to the gate-level tools.

2.2 RTL abstraction

– Unit: Functional block. Time granularity is a clock cycle.

– Output properties: Temperature, dynamic power, lumped leakage power.
– Input properties: Clock frequency, voltage, temperature, current time, time

window for averaging, request of average versus peak value for given time
window.

It is likely that gate-level estimates of properties will be supplied as input to the
RTL tools.

2.3 Behavioral-level abstraction

The properties and level of abstraction, specifically from the point of view of
power estimation, are very similar to the RTL and transaction-level case.

– Unit: Functional block. Time granularity is the time for a state transition,
usually a clock cycle.

– Output properties: Temperature, dynamic power, lumped leakage power.
– Input properties: Clock frequency, voltage, temperature, current time, time

window for averaging, request of average versus peak value for given time
window.

It is likely that RTL abstraction estimates of properties will be supplied as input
to the behavioral-level tools.

Interfaces for Integrated Perf. and Power Analysis and Simulation 5

2.4 Transaction-level abstraction

The properties and level of abstraction, specifically from the point of view of
power estimation, are very similar to the RTL and behavioral-level case.

– Unit: Functional block or communicating entity. Time granularity is the
time between transactions.

– Output properties: Temperature, dynamic power, lumped leakage power.
– Input properties: Transaction frequency, voltage, temperature, current time,

time window for averaging, request of average versus peak value for given
time window.

It is likely that RTL estimates of properties will be supplied as input to the
transaction-level tools.

3 Abstraction and State Synchronization

Due to the different levels of abstraction at which tools operate, what may be
considered “complete state” at one layer of abstraction will necessarily contain
gaps in state at a lower layer. It is thus necessary to consider ways in which
these gaps in state may be filled in.

One way to fill in the gaps in state is to pass down “bundled” machine
state as one of the input properties to an estimation tool. Another mechanism
would involve the lower-level estimation tool filling in the missing state, for
example, by simulating from a known initial state, or from a simulated check-
point. Such checkpoints or low-level “gap-filling” may be combined with the
passing-in of state to an estimation tool. Thus, for example, an instruction-set
simulator which models a pipelined microarchitecture (behavioral/RTL) may
provide state such as the contents of the register file, memory read/write ports,
bus state and the non-decoded portions of the pipeline latches to an RTL sim-
ulator, which will fill in the complete state of the pipeline latches and other
control structures from an RTL checkpoint. This RTL tool may provide the state
at the input to a functional unit to a gate-level tool for modeling that unit, and
that gate-level tool may then re-create a valid state for the internals of the func-
tional unit from scratch.

These interactions between estimation tools at the various levels of abstrac-
tion, the state they create, maintain, checkpoint and exchange, is illustrated in
Figure 2.

4 Related Work

Several simulation environments currently provide interfaces for interconnec-
tion of components. Examples include the interfaces of the UNISIM simulation
environment [1], and the plug-in application programming interface (API) for
the Code Composer Studio (CCS) tools from Texas Instruments [2].

6 C. Bleakley, T. Clerckx, H. Devos, M. Grumer, A. Janek, U. Kremer, C. W.
Probst, P. Stanley-Marbell, C. Steger, V. Venkatachalam, M. Wendt

Time

A
b
s
tr
a
c
ti
o
n

States at different abstraction layers, e.g.:

! = behavioral-level,

!"= RTL,

◆ = gate-level

Transition from state
to state (e.g., per clock
cycle at RTL, per
transaction, etc.)

Checkpoints; may
involve state at different
abstraction layers

Fig. 2. Interactions between estimation tools at the various levels of abstraction,
the state they create, maintain, checkpoint, and exchange.

The necessity of common formats for information interchange between hard-
ware design tools has recently been recognized by several commercial vendors.
In particular, several formats for exchange of power analysis information, such
as the Unified Power Format (UPF) [3], shepherded by Accellera, and the Com-
mon Power format (CPF) [4] from Cadence Design Systems are in the process
of being adopted or standardized. These interchange formats appear to be tar-
geted primarily at computer-aided design methodologies for low power, focus-
ing on issues such as consistent definition and semantics of power modes and
the associated behavior of hardware under these modes of operation. While it is
possible that they may prove to be the appropriate solutions for the challenges
discussed in this paper, it is not yet clear whether this is indeed the case.

It will be necessary to maintain a uniform notion or representation of time
across tools, especially if their interaction is going to be dynamic, e.g., dur-
ing simulation, as opposed to static design-time interactions. Similar problems
have been tackled in the area of parallel discrete event simulation [5], and the
techniques employed therein might be of relevance.

References

1. UNISIM: UNIted SIMulation environment. (http://www.unisim.org/, accessed
January 2007)

2. Texas Instruments Inc.: Software Developer’s Kit Version 2.0 User’s Guide. (2001)
3. Accellera: Unified Power Format (UPF). (http://www.accellera.org/activities/upf,

accessed April 2007)
4. Si2: Common Power Format (CPF). (http://www.si2.org/, accessed April 2007)
5. Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM 33 (1990) 30–53

	Towards Interfaces for Integrated Performance and Power Analysis and Simulation
	Chris Bleakley, Tom Clerckx, Harald Devos, Matthias Grumer, Alex Janek, Ulrich Kremer, Christian W. Probst, Phillip Stanley-Marbell, Christian Steger, Vasanth Venkatachalam, Manuel Wendt

