Towards Class-Based Dynamic Voltage Scaling
for Multimedia Applications

Richard Urunuela®, Gilles Muller!, Julia L. Lawall?

! Ecole des Mines de Nantes
44307 Nantes cedex 3
rurunuel@emn.fr, Giller.Muller@Qemn.fr
2 DIKU, University of Copenhagen
2100 Copenhagen @, Denmark
julia@diku.dk

Keywords. Dynamic voltage scaling, multimedia applications, embed-
ded systems

1 Introduction

As more and more of computing has become mobile, and thus reliant on battery
or solar power, reducing energy consumption has become critical. One signifi-
cant consumer of energy in any computer system is the CPU. To reduce the CPU
energy consumption, many CPUs now allow dynamic scaling of the CPU volt-
age, known as DVS. As a linear reduction in CPU voltage leads to a quadratic
reduction in its energy consumption [1], this approach is very attractive. Never-
theless, reducing the voltage also entails reducing the CPU frequency, and thus
increasing the computation time, which is unacceptable for many applications.

One kind of application for which increasing the computation time can be
acceptable is a video player. In practice, a video player only needs to meet its
frame rate; any further increase in performance gives no benefit for the user.
Furthermore, while decoding some frames may require the full computing power
of the host platform, others are often much more simple to decode, providing
intervals in which the CPU frequency can be reduced with no loss in perfor-
mance. Video has thus been an attractive target for DVS algorithms [2/3/4]5].
Nevertheless, most of these approaches require either modifying the operating
system process scheduler or the video codec, and thus they have not achieved
wide use in practice.

In previous work, we have proposed a DVS algorithm appropriate for use in
the context of video kiosks, where we exploit the fact that the video is played
over and over to identify the best CPU frequency for each frame based on its
history of execution [6]. In this paper, we begin to consider how to extend this
approach to the more common case, where a video is played only once, on hetero-
geneous platforms. For this, we propose to classify frames according to a model
of their computation requirements and then to use this classification on an ar-
bitrary platform to predict the treatment time of arbitrary frames at various
CPU frequencies, based observation of the treatment time of a few frames in
each class.

Dagstuhl Seminar Proceedings 07041
Power-aware Computing Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1108

2 R. Urunuela, G. Muller, J.L. Lawall

In the rest of this paper, we first consider the impact of using DVS in the
context of video, then review our algorithm for video kiosks, and finally propose
a class-based algorithm.

2 Video Applications and DVS

Video is periodic, in that frames must be displayed at a fixed rate, known as
the frame rate. While all frames produce an image of the same size, sophisti-
cated compression algorithms are used to reduce the size of video data, based on
the observation that it is often the case that some frames are similar to nearby
frames, and thus much information can be shared. Accordingly, the cost of de-
coding the various frames varies widely, depending on the amount of information
to decode and the compression algorithms involved. For example, Figure 1! shows
the treatment times of 100 frames of the Fedex and Mastercard divx videos from
www.divx.comon a Via C3. Especially in the case of Fedex, the treatment times
vary widely within the video. Furthermore, there is a significant difference in the
treatment times between the two videos. Finally, in both cases, the treatment
time is often well below the frame time (i.e., the inverse of the frame rate),
although in a few cases at the given CPU frequency it exceeds the frame time.
For the frames where the treatment time is significantly below the frame time,
it should be possible to reduce the CPU frequency, and thus achieve an energy
savings.

Fedex avi frame 550 650 @ 600 MHz Mastercard avi frame 280 380 @ 600 MHz

Fig. 1. Average treatment time, in milliseconds, for 100 frames of the (a) Fedex
and (b) Mastercard insert codes videos on a Via C3 running at a CPU frequency
of 800 MHz. The frame time is indicated by a dotted horizonal line in each graph.

The potential of DV.S We now consider concretely the impact of CPU frequency
scaling on video display with current codecs. For our tests we used a Pentium 4M
Dell Inspiron laptop 510m with 6 CPU frequencies (1700 MHz, 1400 MHz, 1200

www.divx.com�

HBDVS 3

MHz, 1000 MHz, 800 MHz, and 600 MHz) and the video player MPlayer (www-.
mplayerhq.hu) running under Linux. This laptop has a battery with an average
lifetime of 30 minutes. In this configuration, we play a 2 minute preview of the
movie Jarhead (www.divx.com) continuously at various static CPU frequencies.
For each CPU frequency, we start with a fully charged battery, and measure the
battery lifetime. As shown in Figure 2(a), the battery lasts 30% longer at 1000
MHz than at the maximum CPU frequency of 1700 MHz. Thus, CPU frequency
scaling is beneficial for this video.

A-V delay at 1200 MHz A-V delay at 1000 MHz

z e z :Jw_‘f\:«;j:_%_
Static CPU frequency|Battery lifetime | e
(MHz) (min)
1700 18.2 o e o wm o o
1400 24.0 A dlaya 800 Wiz A elay a1 800
1200 25.0
1000 26.2 .

(a) (b)

Fig. 2. a) Battery lifetime in minutes when playing the Jarhead video at various
CPU frequencies. b) Per-frame execution time for the video Jarhead at various
CPU frequencies.

Given this good result, one may wonder why we do not reduce the CPU
frequency still lower, to 800 MHz or 600 MHz. Figure 2(b) measures the quality
of service offered by MPlayer at various frequencies, including 800 MHz or 600
MHz, in terms of the “audio-video delay,” which indicates the difference between
the time of decoding the audio associated with a frame and the time of decoding
its video. A value in the range from +0.5 to -0.5 is considered to be an acceptable
level of quality. Our measurements show that the CPU frequencies 800 MHz or
600 MHz are too low to play some parts of the video in this range.

Even though both 800 MHz and 600 MHz are inadequate to play the entire
video, Figure 2a suggests that it should be possible to use 800 MHz for some
of the frames. Thus, it could be beneficial to use dynamic CPU frequency se-
lection. In this case, the difficulty is to choose when to change the frequency to
get the best result. Most existing DVS strategies can be categorized as interval-
based [7/8] or task-based [9/TOJTTI12]. But the frequent variation in computation
requirements across the different frames of a video implies that interval-based ap-
proaches tend to significantly under-approximate or over-approximate the CPU
frequency required for a given frame [1314], and task-based approaches are dif-

www.mplayerhq.hu�
www.mplayerhq.hu�
www.divx.com�

4 R. Urunuela, G. Muller, J.L. Lawall

ficult to implement, as they often need specialized support from the operating
system’s process scheduler.

3 History-Based DVS

In previous work [6], we have proposed the History-based DVS (HbDVS) algo-
rithm for minimizing the energy consumption of a video player based on exe-
cution history. This algorithm is oriented towards video kiosks, where a small
set of videos are displayed repeatedly. It is based on constructing a frequency
plan, giving the best CPU frequency for each frame based on observations of
its computation requirements in previous iterations. On each iteration, we try
to lower the CPU frequency used for each frame, as long as doing so does not
unacceptably violate the video’s frame rate.

Concretely, our algorithm works in two phases: an adaptation phase, which
identifies the lowest possible CPU frequency for each frame, and a post-adaptation
phase, which displays each successive frame at its CPU frequency, as indicated in
the frequency plan, dynamically adjusting for any perturbation in the observed
behavior. In the rest of this section, we describe these phases in more detail.

3.1 Adaptation phase

The adaptation phase is centered on the construction of the frequency plan,
which concretely is an array mapping each frame to its identified ideal CPU
frequency. Initially, the entries of this array are uninitialized. The adaptation
phase also maintains a variable F_Master, which records the CPU frequency
that should be used for frames for which the entry in the frequency plan is
uninitialized. Initially, F_Master is the highest CPU frequency provided by the
host platform.

The adaptation phase proceeds by iteratively displaying the video and filling
in the frequency plan according to the observed behavior. On each iteration, for
each frame, the player uses the CPU frequency indicated in the frequency plan,
if that has been initialized, or F_Master otherwise. If F_Master is used, then after
the treatment of the frame, the algorithm considers whether F_Master should
become the permanent CPU frequency for this frame. We choose to do so if
the treatment time plus any expected variance in this treatment time plus any
overrun (i.e., treatment time beyond the frame time) incurred for recent frames
exceeds the frame time. In this situation, no lower CPU frequency is possible
for this frame, and its entry in the frequency plan is set to F_Master. At the
end of each iteration F_Master is lowered to the next lowest CPU frequency
provided by the host platform. The adaptation phase ends after the iteration
at the lowest possible CPU frequency or when all entries in the frequency plan
have been initialized.

The above strategy assigns to each frame the CPU frequency at which the
player first starts to fall behind the frame rate, rather than the last frequency at
which it meets the frame rate, optimistically assuming that enough slack time

HBDVS 5

will be available in the treatment of later frames to absorb the overrun. Even-
tually, however, the overrun may accumulate to the point that the video player
cannot provide the desired quality of service. In that case, the algorithm tem-
porarily increases the CPU frequency used for the upcoming frames, until the
desired quality of service is restored. At the same time, the algorithm perma-
nently increases the stored CPU frequencies used for the same number of recent
frames, so that the player will not fall so far behind on those frames in subse-
quent iterations. The temporary incrementing of the CPU frequency used with
the upcoming frames implies that some frames might not get tested at F_Master.
In that case, there is another iteration at the same value of F_Master, and thus
the adaptation phase may comprise more iterations than the number of available
frequencies. In practice, we have observed that at most 8 iterations at the same
frequency are required [6].

3.2 Post adaptation phase

The post-adaptation phase normally just plays the video at the CPU frequency
stored in the frequency plan. By construction, it is known to be possible to
follow this plan and maintain the required quality of service. In practice, how-
ever, the treatment time for a given frame can vary across executions. Thus it
is possible, although unlikely, that in the post-adaptation phase a sequence of
frames will accumulate a delay that exceeds the quality threshold. As the adap-
tation phase has ensured that the video can normally be displayed according
to the frequency plan with acceptable quality, the post-adaptation phase does
not make further modifications to the frequency plan. Nevertheless, this phase
detects such overruns and treats subsequent frames at higher frequencies within
the current iteration until the delay has returned below the quality threshold.

3.3 Results

We have tested HbDVS on a variety of divx videos, on the Pentium 4M Dell
Inspiron described in Section 2. In these experiments, we have observed increases
in battery lifetime of up to 109% as compared to using the maximum CPU
frequency of the machine, of up to 40% as compared to using the minimum CPU
frequency that is adequate for the entire video, and of up to 40% as compared
to using the widely available Linux utility powernowd (version 0.96). Further
details about these results are available in our previous work [6].

4 Class-Based DVS

HbDVS gives a significant reduction in energy consumption, but because of the
need to construct the frequency plan, it is limited to the case where the video
is played repetitively on the same platform. We are currently considering how
to extend the approach to the more common case where the video is played
only once, on heterogeneous platforms that are not known in advance. The key

6 R. Urunuela, G. Muller, J.L. Lawall

requirement of HbDVS is to know the treatment time of each frame at each
possible CPU frequency on the host platform. In a setting where the video is only
to be played once, it would incur too much overhead to test every frame. Thus,
we propose a refined algorithm, Class-based DVS (CbDVS), that approximates
the treatment time for various classes of frames based on the behavior observed
for representatives drawn from each class.

4.1 Overview of the CbDVS algorithm

f Modelffile specific \ f Platform specific \

CPU frequency
plan

Media specific
model 4

o

Video file

Calculate
class
Group of

frames by class

EX::::;;nb"me Offline
Y HBDVS
frame

Calculate
matrix

h 4

Play
execution
time
model

N AN v

Execution
time model

Execution time
matrix by class

A 4

Fig. 3. The CbDVS algorithm

Figure [3 illustrates the architecture of our refined algorithm. This algorithm is
divided into two phases, the first performed once, by the video provider, and
the second performed on each host platform. In the first phase, the frames are
categorized into a set of classes (1), based on a media-specific model (2). The
model is designed so that frames within a given class have similar computational
requirements. The first phase also selects representative frames from each class,
as well as all of the frames on which these depend, to form an execution-time
model (3). The categorization of frames into classes and the list of frames in the
execution-time model are then distributed with the video for use in the second
phase, which is carried out on each host platform. In the second phase, the video
player first decodes the frames in the execution-time model at each possible CPU
frequency to determine their treatment time (4). The observed treatment times
are then used to construct an execution-time matriz for all of the frames in
the video (5), indicating for each frame the anticipated treatment time at all

HBDVS 7

possible frequencies, as determined by its class. This matrix is then passed to
the HbDVS algorithm, modified to obtain the treatment time for each frame
from the execution-time matrix rather than from decoding the given frame. The
resulting frequency plan is then used to play the video.

With this approach, the overhead on the host platform for testing frames at
various frequencies is determined by the number of frames in the execution-time
model, not by the length of the video. Thus, if the size of the execution-time
model is sufficiently small, the approach is applicable to videos that are played
only once. Its effectiveness, however, is determined by the appropriateness and
stability of the class selection strategy.

4.2 Current work

The media-specific model must be platform independent, so that the analysis
required to classify the frames can be performed offline by the video provider.
It must also be robust enough to adequately predict the treatment times of all
frames at all frequencies based on results on the platform for only a few frames.
We are currently analyzing divx and H.264 video to find such a model. Pre-
vious work on MPEG-2 video in a video conference setting has found that it
in this context it is adequate to consider the frame type (I, P, or B) and size.
MPEG-2, however, is simpler than modern codecs such as divx and H.264, and
typical movies involve more variety than a video conference. These factors imply
that the treatment times may vary widely for a given frame type and size. We
are thus considering what other information can be taken into account, without
excessively increasing the number of frames that have to be tested at run-time
before playing the video. Possible information includes the set of encoding al-
gorithms used for each frame [I5] and measures of each frame’s computational
requirements via performance counters [12].

References

1. Genossar, D., Shamir, N.: Intel Pentium M processor power estimation, budgeting,
optimization and validation. Intel Technology Journal 7 (2003) 44-49

2. Burchard, L.O., Altenbernd, P.: Estimating decoding times of MPEG-2 video
streams. In: Proceedings of International Conference on Image Processing (ICIP
00), Vancouver, Canada (2000)

3. Im, C., Ha, S.: Dynamic voltage scaling for real-time multi-task scheduling using
buffers. In: Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on Lan-
guages, compilers, and tools for embedded systems, Washington, DC, USA (2004)
88-94

4. Maxiaguine, A., Chakraborty, S., Thiele, L.: DVS for buffer-constrained architec-
tures with predictable QoS-energy tradeoffs. In: CODES+ISSS ’05: Proceedings of
the 3rd IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, New York, NY, USA, ACM Press (2005) 111-116

5. Pouwelse, J.: Power Management for Portable Devices. PhD thesis, Delft Univer-
sity of Technology (2003)

8

10.

11.

12.

13.

14.

15.

R. Urunuela, G. Muller, J.L. Lawall

Urunuela, R., Lawall, J., Muller, G.: Energy adaptation for multimedia information
kiosks. In Min, S., Yi, W., eds.: International Conference on Embedded Software,
EMSOFT’06, Seoul, South Korea, ACM (2006)

Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced CPU
energy. In: Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI’94), Berkeley, CA, USA, USENIX Association (1994)
13-24

. Govil, K., Chan, E., Wasserman, H.: Comparing algorithms for dynamic speed-

setting of a low-power CPU. In: Proceedings of the First Annual International
Conference on Mobile Computing and Networking (MOBICOM ’95), Berkeley,
CA (1995) 13-25

Flautner, K., Mudge, T.N.: Vertigo: Automatic performance-setting for Linux. In:
Proceedings of the Fifth USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA (2002) 105-116

Lorch, J.R., Smith, A.J.: PACE: A new approach to dynamic voltage scaling. IEEE
Trans. Computers 53 (2004) 856-869

Yuan, W., Nahrstedt, K.: Energy-efficient soft real-time CPU scheduling for mo-
bile multimedia systems. In: Proceedings of the nineteenth ACM symposium on
Operating systems principles, Bolton Landing (Lake George), New York (2003)
149-163

Weissel, A., Bellosa, F.: Process cruise control: Event-driven clock scaling for dy-
namic power management. In: Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems CASES’02, Greno-
ble, France (2002) 238-246

Grunwald, D., Levis, P., Farkas, K.I., Morrey III, C.B., Neufeld, M.: Policies for
dynamic clock scheduling. In: 4th Symposium on Operating System Design and
Implementation (OSDI 2000), San Diego, CA (2000) 73-86

Pering, T., Broderson, R.: The simulation and evaluation of dynamic voltage
scaling algorithms. In: Proceedings of the 1998 International Symposium on Low
Power Electronics and Design, 1998, Monterey, CA (1998) 76-81

Mattavelli, M., Brunetton, S.: Implementing real-time video decoding on mul-
timedia processors by complexity prediction techniques. IEEE Transactions on
Consumer Electronics 44 (1998) 760-767

