Tightness of the Security Bound of CENC

Tetsu Iwata

Department of Computational Science and Engineering,
Nagoya University
Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
iwata@cse.nagoya-u.ac.jp
http://www.nuee.nagoya-u.ac.jp/labs/tiwata/

Abstract. CENC (Cipher-based ENCryption) is the recently designed
encryption mode for blockciphers. It is provably secure with beyond the
birthday bound. In this note, we present a simple distinguishing attack on
CENC, and show that the attack is the best attack for some parameter.
This proves the tightness of the security bound, and gives a partial answer
to the open question posed at FSE 2006.

Key words: Encryption mode, blockcipher, CENC, provable security

1 Introduction

There are many widely used blockcipher encryption modes, including CTR mode,
CBC mode, OFB mode and CFB mode. These modes are proved to be secure
with the standard birthday bound. That is, if n is the block length of the underly-
ing blockcipher, and o is the total number of ciphertext blocks that the adversary
obtains, then the success probability of a distinguishing attack is O(c2/2") [1, 3].
The analysis is tight. There is an adversary that meets the security bound within
a constant factor, £2(c2/2™). This implies that there is no possibility that these
modes achieve beyond the birthday bound security, and therefore, the secret key
must be updated well before encrypting 2™/2 blocks of plaintexts.

CENC (Cipher-based ENCryption) was designed to overcome this security
limitation [2]. The design goals are: (1) beyond the birthday bound security, (2)
security proofs with the standard PRP assumption, (3) highly efficient, (4) single
blockcipher key, (5) fully parallelizable, (6) allows precomputation of keystream,
and (7) allows random access. CTR mode achieves all the above goals except for
the first one, while CENC improves the security of CTR mode without breaking
its important advantages.

It was proved in [2] that the success probability of a distinguishing attack
against CENC is O(wé? /22" +wé /2™), where w is a constant (default is w = 28),
and & is roughly the same as ¢. In [2] the tightness of the security bound was
posed as an open question. That is, the question is the existence of a distinguish-
ing attack with success probability (w3 /22" 4+ wé /2™), or the proof that the
security is better than the above.

Dagstuhl Seminar Proceedings 07021
Symmetric Cryptography
http://drops.dagstuhl.de/opus/volltexte/2007/1016

In this note, we present a simple distinguishing attack on CENC. The at-
tack is based on the observation on the keystream of CENC given in [2], and
the success probability is 2(wo/2"), where o < 27/2. The strategy is straight-
forward and obvious. However, it turns out that the attack is the best attack
since O(wé® /22" +wa /2™) is O(wé /2™) when & < 27/2 and hence it proves the
tightness of the security bound. This gives a partial answer to the open question
posed r;tt FSE 2006 — the security bound, O(wé3 /22" + wé/2"), is tight for
o < 2n/2,

2 Preliminaries

Notation. If is a string then |z| denotes its length in bits. If and y are two
equal-length strings, then @y denotes the xor of x and y. If z and y are strings,
then z||y denotes their concatenation. Let x < y denote the assignment of y to
z. If X is a set, let z <~ X denote the process of uniformly selecting at random
an element from X and assigning it to z. For a positive integer n, {0,1}" is the
set of all strings of n bits. For positive integers n and w, ({0,1}™)" is the set
of all strings of nw bits. For a bit string and a positive integer n such that
|z| > n, first(n, z) denote the first n bits of 2. For a positive integer n, 0™ denotes
the n-times repetition of 0.

Blockciphers. The blockcipher (permutation family) is a function E : K x
{0,1}™ — {0,1}", where, for any K € K, E(K,-) = Ek(-) is a permutation
on {0,1}". The positive integer n is the block length and an n-bit string is
called a block. If K = {0, 1}*, then k is the key length.

Let Perm(n) denote the set of all permutations on {0,1}™. This set can be
viewed as a blockcipher by considering that each permutation is specified by a
unique string. We say P is a random permutation if P < Perm(n).

The frame, nonce, and counter. CENC takes a positive integer w as a parameter,
and it is called a frame width. For fixed positive integer w > 1 (say, w = 28), a
w-block string is called a frame. A nonce N is a bit string, where for each pair
of key and plaintext, it is used only once. The length of the nonce is denoted by
Lronce, and it is at most the block length. CENC also uses an n-bit string called
a counter, ctr. This value is initialized based on the value of the nonce, then it
is incremented after each blockcipher invocation. The function for increment is
denoted by inc(). It takes an n-bit string = (possibly a counter) and returns the
incremented x. We assume inc(z) = z + 1 mod 2", but other implementations
also work, e.g., with LFSRs if x # 0™.

3 CENC: Cipher-based ENCryption

CENC takes three parameters, a blockcipher, a nonce length, and a frame width.

Algorithm CENC.Encg (N, M) Algorithm CENC.KSGeng (ctr, 1)

100 ctr « (N||on fnonce) 300 for j « 0 to [I/w] — 1 do

101 I [|M]|/n] 301 L — Ek(ctr)

102 S «— CENC.KSGeng (ctr,l)| [302 ctr < inc(ctr)

103 C «— M @ first(| M|, S) 303 for i — 0 to w—1 do

104 return C 304 Swjt+i — Ex(ctr)® L
305 ctr « inc(ctr)

Algorithm CENC.D@CK(N, C) 306 if UJj + i =1—1 then

200 ctr « (N||Qnfnonce) 307 S — (SollSa|l -+ [1Si—1)

201 1 [|C|/n] 308 return S

202 S «— CENC.KSGeng (ctr,1)

203 M — C @ first(|C|, S)

204 return M

Fig. 1. Definition of the encryption algorithm CENC.Enc (top left), the decryp-
tion algorithm CENC.Dec (bottom left), and the keystream generation algorithm
CENC.KSGen (right).

Fix the blockcipher E : {0,1}* x {0,1}" — {0,1}", the nonce length £ynce
and the frame width w, where 1 < fhonce < n. CENC consists of two algo-
rithms, the encryption algorithm (CENC.Enc) and the decryption algorithm
(CENC.Dec). Both algorithms internally use the keystream generation algorithm
(CENC.KSGen). These algorithms are defined in Figure 1. A picture illustrating
CENC.KSGen is given in Figure 2. See [2] for more details of CENC.

Now we are interested in the security of CENC itself, and in the rest of
this note we assume that the blockcipher is ideally secure. That is, we assume
that the blockcipher is a random permutation P <~ Perm(n), and we write
CENC.Encp (N, M), CENC.Decp(N, (), and CENC.KSGenp(ctr,l) where all
Ek(:) in Figure 1 and Figure 2 are replaced with P(-).

4 Security of CENC

Security definition for CENC. We consider the strong security notion, which we
call indistinguishability from random strings.

An adversary is a probabilistic algorithm (a program) with access to an
oracle. Let A be an adversary with access to an oracle O(-,), which is either the
encryption oracle CENC.Encp(-,-) or R(-,), and returns a bit. The R(, -) oracle,
on input (N, M), returns a random string of length |CENC.Encp(N, M)|. We say
that A is a PRIV-adversary for CENC. Let (No, My), ..., (Ng—1, M4—1) denote
its oracle queries. The adversary is said to be nonce-respecting if No, ..., Ny_1
are always distinct, regardless of oracle responses and regardless of A’s internal
coins. We assume that any PRIV-adversary is nonce-respecting.

The advantage of PRIV-adversary A for CENC is

AdVRE o (A) E Pr(P & Perm(n) : ACENCEner() = 1) — pr(ARC) = 1)|,

NHO"*énonce

ctr

Fig. 2. Illustration of the keystream generation algorithm. This example uses w = 3
and outputs | = 7 blocks of keystream S = (So, ..., S6).

Security result on CENC. Let A be a nonce-respecting PRIV-adversary for
CENC, and assume that A makes at most ¢ oracle queries, and the total length
of these queries is at most o blocks, where “the total length of queries” is de-
fined as follows: if A makes g queries (No, My), ..., (Ng—1, M4_1), then the total
length of queries is o = [|Mo|/n] + -+ + [|Mg—1|/n], i.e, the total number of
blocks of plaintexts. The following information theoretic result was proved in [2].

Proposition 1. Let Perm(n), lnonce, and w be the parameters for CENC. Let
A be a nonce-respecting PRIV-adversary for CENC making at most q oracle
queries, and the total length of these queries is at most o blocks. Then

(w+1)%62 (w+1)6 1
w322n+1 2n+1 ’ ()

AdvEiio(4) <

where 6 = o + qu.

If we use the rough inequality, w +1 < 2w, then we have the simpler
form, AdvPne(A4) < wé? /22773 + w6 /2", Now if 6 < 2("=3)/2 then we have
wé? /22773 < wé /27, while if & > 2("73)/2 then wé? /223 > w6 /2", There-
fore, the bound in (1) can be written as

{Advgﬁ\lc(,ﬁl) <wg/2nL if 6 < 2(n=3)/2) @)
Advlpio(A) <ws3/22"~* otherwise.

5 Distinguishing Attack on CENC

Let Perm(n), fhonce; and w be the parameters for CENC, and fix ¢ > 1 and
o > 1. For simplicity, we assume o/w is an integer, but it is easy to handle the
general case.

Now we have an obvious observation on the keystream of CENC. That is, if
S; = (S;[0], ..., Si[w —1]) € ({0,1}™)*" is one frame of the keystream of CENC,
then we always have S;[j] # S;[j’] for any j and j’ such that j # j’. On the other

PRIV-adversary A

100 M « (0™)°

101 N « Qfnonee

102 C« O(N,M)

103 S~ MaC

104 parse S into frames (So, ..., Sy w—1)
105 fori=0to o/w—1

106 if coll(S;) =1 then return 1
107 return 0

Fig. 3. The nonce-respecting PRIV-adversary A for CENC.

hand, if S; is the truly random string, then S;[j] = S;[j’] holds with non-zero
probability. The above observation was given in [2, p. 315], and this leads to the
following simple distinguishing attack.

First, the adversary chooses any message of o blocks M = (My,...,M,_1)
and asks M to receive C = (Cop,...,Cy_1), which is either the ciphertext of
CENC or the truly random string. Then the adversary retrieves the correspond-
ing keystream S = (Mo @® Cy,...,M,_1 ® C,_1). Now the adversary parses S
into o /w frames, and searches for a collision in the frame. If there is a collision
in some frame, then C' cannot be the ciphertext of CENC.

More precisely, let A be the nonce-respecting PRIV-adversary for CENC
defined in Figure 3. In Figure 3, the oracle O(-,) is either the encryption oracle
CENC.Encp(-,-) or R(-,-), and “parse S into frames (So, ..., S5 /w—1)" is defined
by (So,-..,Ssjw-1) + S, where |S;| = wn for 0 < i < o/w — 1. The collision
search function coll(-) takes the w block of string S; = (S;[0],. .., S;[w —1]) €
({0,1}™)* as input, and the output is 1 if and only if S;[j] = S;[j’] holds for
some j and j’ such that j # j'.

Now if O(,-) is CENC.Encp(-,-), then the output of the function coll(-) in
line 106 cannot be 1, and thus Pr(P <~ Perm(n) : ACENC-Encr(+) — 1) = 0. On
the other hand, if O(-,-) is R(+,-), then S in line 103 is the truly random string
of ¢ blocks since C' in line 102 is the truly random string. Since each §; is the
truly random string of w blocks, we have

Pr(coll(Sy) =) =1—] (1 _ 2J_n> N (1 - é) w(;i; D o.:m(;: —1)

0<j<w—1

and thus,

S 0.3w(w — 1)

2n w 2n

since we have o/w frames, and these frames are independent. Therefore, we
have Advepye(4) > 0.30(w — 1)/2". This implies that the bound (2) is tight
for & < 2("=3)/2 since the bound in (2) is Advipxnc(A) < we /271, and hence
the above simple distinguisher is the best attack for 5 < 2(7=3)/2,

6 Discussions and Conclusion

Another distinguisher. Another obvious observation on the keystream of CENC
is that, if S = (So,...,S5,-1) € ({0,1}™)7 is the keystream of CENC, then
we always have S; # 0" for any 0 < i < o — 1. On the other hand, if S =
(So,.-.yS0-1) € ({0,1}™)7 is the truly random string, then .S; = 0™ holds with
probability 1/2™. This observation was also given in [2, p. 315], but it does not
give us a better distinguisher than the one presented in Section 5.

Tightness of the security bounds. For any adversary against CENC, the advan-
tage is O(wé? /22" +wa /2™), which is O(wé /2™) when & < 22, and O(wé? /2%7)
when ¢ > 2"/2. We presented a simple distinguisher with advantage £2(wo/2")
for ¢ < 2"/2, and this implies that (1) the bound O(w&?/2%" + wé/2") is tight
when 6 < 27/2 and (2) the simple distinguisher is the best attack for & < on/2,
The tightness of the bound for & > 2"/2 is still open. Either we have a distin-
guisher with advantage £2(wo?/227), or the bound O(wé3 /22" + w6 /2™) can be
improved. We conjecture that the bound can be improved to O(wé /2™).

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treat-
ment of Symmetric Encryption. Proceedings of The 38th Annual Symposium on
Foundations of Computer Science, FOCS 97, pp. 394-405, IEEE, 1997.

2. T. Iwata. New Blockcipher Modes of Operation with Beyond the Birthday Bound
Security. Fast Software Encryption, FSE 2006, LNCS 4047, pp. 310-327, Springer-
Verlag, 2006. Full version is available at http://www.nuee.nagoya-u.ac.jp/labs/
tiwata/.

3. P. Rogaway. Nonce-based Symmetric Encryption. Fast Software Encryption, FSE
2004, LNCS 3017, pp. 348-358, Springer-Verlag, 2004.

