
The Formal Specification Language mCRL2

Jan Friso Groote, Aad Mathijssen, Michel Reniers,
Yaroslav Usenko and Muck van Weerdenburg

Technische Universiteit Eindhoven (TU/e)
P.O. Box 513, NL-5600 MB Eindhoven

The Netherlands
{J.F.Groote, A.H.J.Mathijssen, M.A.Reniers,

Y.S.Usenko, M.J.van.Weerdenburg}@tue.nl

Abstract. We introduce mCRL2, a specification language that can be
used to specify and analyse the behaviour of distributed systems. This
language is the successor of the µCRL specification language. The mCRL2
language extends a timed basic process algebra with the possibility to
define and use abstract data types. The mCRL2 data language features
predefined and higher-order data types. The process algebraic part of
mCRL2 allows a faithful translation of coloured Petri nets and com-
ponent based systems: we have introduced multiactions and we have
separated communication and parallelism.

Keywords. specification language, abstract data types, process algebra,
operational semantics

1 Introduction

In a typical computerised system, a number of components are running simulta-
neously. By working together, these components provide the functionalities that
are required from the complete system. Although the behaviour of a single com-
ponent can usually be specified and analysed relatively easy, the behaviour of the
system as a whole is often too complex to be specified or analysed thoroughly.
This is primarily due to (and inherent to) the parallelism among the system’s
components. An exhaustive analysis of all of the system’s states and execution
paths thus becomes a formidable task – even for a system with a relatively small
number of components.

In this paper, we introduce the mCRL2 specification language [1]. With this
language, users can specify the behaviour of a distributed system and analyse
it using automated techniques. The language mCRL2 is the successor of µCRL
[2, 3] and timed µCRL [4, 5] and is inspired by [6] and [7].

The µCRL language extends a basic process algebra – based on the Algebra
of Communicating Processes (ACP) [8] – with the possibility to define and use
abstract data types. The ability to use data within a process algebra specifica-
tion is a valuable (perhaps even a necessary) enhancement when applying the
language for the specification and analysis of real-life systems.

Dagstuhl Seminar Proceedings 06351
Methods for Modelling Software Systems (MMOSS)
http://drops.dagstuhl.de/opus/volltexte/2007/862

2 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

The µCRL language has clear and well-defined syntax and semantics. Over
the years, various tools have been developed for µCRL [9, 10], all with a strong
foundation in formal theories (see [3, 11] for an overview). The toolset has been
used in numerous case studies for the analysis of systems and protocols developed
by both the industry and the academic world (see for example [12, 13, 14]). In
nearly all cases the analysis revealed errors in the system being analysed.

Recently, as reported in [1], researchers at the Eindhoven University of Tech-
nology (TU/e) started the development of the mCRL2 language and toolset.
Based on user experiences with µCRL, their focus is to develop a more user-
friendly language and tool interface.

1.1 Improvements over the µCRL language

On the data side, the most substantial improvement to the language is the intro-
duction of predefined and higher-order data types, lambda calculus expressions
and various other language constructs that are designed to make the data type
definitions shorter and easier to read and write.

In µCRL, even all basic data types such as the Booleans and the naturals
needed to be defined explicitly. As a consequence, different users could give
widely different specifications of those. For tools, properties about such data
types turned out to be a hurdle that was hard to overcome. By having standard
data types, dedicated programming techniques can be employed for proving or
disproving such properties.

A more elaborate motivation for the chosen adaptations to the data language
can be found in [1]. In the rest of this subsection we will discuss the changes to
the process algebraic part of the language.

One can distinguish three main streams of process specification formalisms:
assertional specification formalisms, Petri nets and process algebras. We would
all benefit if these formalisms would be integrated. In the past, we did not find
any fundamental difficulties in relating assertional methods and µCRL [15, 16].
However, with Petri nets [17] we ran into a problem. Consider the coloured Petri
net in Fig. 1. There are two places P1 and P2 and a transition labelled with n2

in the middle. The tokens in this net contain natural numbers and the transition
squares the number in each token that it processes. The standard semantics of
such a net is that atomically a token leaves P1, has its value squared and is put
into P2.

��
��

P1

- n2

T

-��
��

P2

Fig. 1. A simple coloured Petri net

The Formal Specification Language mCRL2 3

The natural structure-preserving translation of this Petri net into process
algebra is in the form of the parallel composition P1 ‖ T ‖ P2. Using a standard
synchronous communication mechanism as in ACP, a token can be read from P1

into T , and in a subsequent step be forwarded from T to P2. But now we have
translated what was a single atomic step into two atomic steps.

There are two major drawbacks to such a translation: First, nice concepts
from the world of Petri nets, such as state invariants, do not easily carry over,
and second, doubling of states that results worsens the state space explosion
problem that is the primary difficulty in analysing process behaviour.

To solve this problem, we have introduced so-called multiactions. In a multi-
action zero or more actions occur simultaneously. As a consequence the transition
in the above net can now be captured by a process that reads a token with a
certain value n and delivers a token with the value n2 in one multiaction. There
is no straightforward and elegant way to achieve this in µCRL.

Allowing multiactions gives rise to a significant increase in the number of
(multi)actions that can possibly happen. If we put n actions in parallel, the re-
sult contains 2n−1 different multiactions. Often one only wants a small number
of these multiactions to occur, which one cannot establish as easily with just
the standard blocking (or encapsulation) operator. For this reason we have in-
troduced a special restriction operator, which specifies which multiactions are
actually allowed.

Furthermore, the way communication among parallel components is dealt
with has been changed with respect to µCRL. In µCRL there is a global com-
munication function, which means that there is only one such function specified
and the (communication) behaviour of all processes depends solely on this func-
tion. This causes µCRL to be non-compositional. Therefore, mCRL2 uses a local
communication mechanism, which allows one to specify the communication pre-
cisely where it is relevant and thus separates communication of distinct parts of
a system.

For example, in the system of Fig. 2 the components A and B occur twice,
but are connected in a different way. In the component on the left, actions a1 of A
and b2 of B communicate, while in the component on the right a1 communicates
with b3. Note that the action b2 is also available on the right, where it must not
communicate with a1. This is not a problem with local communication as we
can define the communication per subcomponent. With global communication,
however, one needs to rename certain actions in one component to avoid conflicts
with some unrelated component.

Also, we have chosen to separate the concepts of communication and par-
allelism, which gives more freedom in modelling (e.g. multiway communication
only needs to be defined once instead of partially at every parallel operator).
Consider, for example, a system with several components that need to synchro-
nise. In mCRL2 this can be done by putting these components in parallel. The
communication operator is used to express communication of precisely those ac-
tions. Without the separation of the parallel composition and communication,
one must pair components into a new one, synchronising only the components

4 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

a1
b3

b2

b3

a2

b1

b4

a1

a2 b2

b1

b4

A B A B

Fig. 2. Component-based system

of such a pair, and repeat this with the resulting components until only one is
left.

1.2 Tool support

In general, the following steps are involved in the analysis of a system with
mCRL2:

– A specification of the system’s behaviour is written in the mCRL2 language.
– This specification is converted to a Linear Process Specification (LPS).1 As

we shall see, an LPS is an mCRL2 specification in a stricter format.
– The LPS can be modified/simplified using various manipulation tools and

can be simulated using various simulation tools.
– A Labelled Transition System (LTS) or state space can be generated from

the modified LPS. Subsequently, this LTS can be analysed for errors using
model checking techniques.

For µCRL, these techniques have been defined, and implemented in the µCRL
toolset. The µCRL toolset has been developed at and maintained by the Center
for Mathematics and Computer Science (CWI) in Amsterdam since 1995 [9, 10].
Currently, we are adapting those tools and techniques to the setting of mCRL2.2

With mCRL2 we also want to assist the user in performing an analysis. For
this reason we are developing a graphical user interface that allows users to
manage their analyses in an intuitive way.

In this article, we restrict our focus to the theoretical side of the tool support:
we show that most mCRL2 specifications can be converted to an LPS.

1 Previously, in the literature, linear process specifications have been called linear
process equations and linear process operators.

2 Up-to-date information about the language mCRL2 and its toolset can be found at
http://www.mcrl2.org.

http://www.mcrl2.org

The Formal Specification Language mCRL2 5

1.3 Related work

As said, a reason for introducing multiactions in mCRL2 is to allow for a more
straightforward translation of Petri nets to mCRL2. The material presented in
this paper is not the first attempt to capture the features of Petri nets in a
process algebraic setting. Over the years many attempts have been made to link
Petri nets and process algebra.

In [18] and [19] an ACP approach is taken to combine these formalisms. The
main difference between these approaches and mCRL2 lies in the way commu-
nication works and in the additional restriction operator of mCRL2. Communi-
cation in [18, 19] is global.

Although in [18] there is a local communication operator ργ , it still depends
on a global communication function γ that defines which actions in a multiaction
communicate. This requires renaming in case one wishes to use multiple instances
of processes in different contexts in the same system, even though there might be
no name clash. Also, the complete communication behaviour has to be specified
globally, breaking the compositionality of the language.

Interworkings [20] and LOTOS [21] employ local communication. However,
it is strictly linked to the parallel operator(s). In mCRL2 there is a separation of
the concepts of communication and parallelism. This is also the case is in [19],
where a general renaming operator is used. This operator takes any function
on multiactions, thus communication is considered to be just simple renaming.
With data, however, renaming and communication are two different concepts
as communication can only take place if data parameters are agreed upon. For
renaming on multiactions, as in [19], data parameters may differ, but in some
way actions can still be related. We consider this as undesired, which is why our
renaming is defined on action names only and we have a special operator for
communication.

Both [18] and [19] do not have an equivalent to the restriction operator,
which specifies which multiactions (disregarding data) are allowed to occur. De-
pending on the situation, it can be much more useful to specify which multiac-
tions are allowed instead of which actions are not allowed. In a context without
data, in [18] and [19], this operator can also be modelled by combining renam-
ing/communication and blocking as follows: The process that only allows the
multiactions consisting of precisely one a and one b action in process p can be
described as follows:

ργ(∂{a,b}(ργ(p)))

with γ the identity on actions and γ(a|b) = c|d and γ(c|d) = a|b and c and d fresh
actions w.r.t. process expression p. Here ∂{a,b} denotes the blocking of actions
a and b. In a setting with data this becomes impossible because the actions a
and b can have different data parameters, unless one allows communication to
be defined not only on actions but also on data (e.g. γ(a(4)|b(true)) = c(4.5)).
Apart from data, also abstraction is not included in [18] and [19].

A more Petri net based approach is used in the Petri Box Calculus [22, 23]
(also [24]). Here communication is done à la CCS [25], which means that every
action has a counterpart and only these can communicate with each other. Such

6 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

a communication results in the silent step τ , interpreted as the empty multiset
(as in mCRL2). This choice makes multiway communication more cumbersome.
Because of this way of defining communication, one tends to model in such a way
that the restriction operator is probably of less value which is perhaps why it is
not included. Besides this they use a specific kind of syntax and semantics that
preserves history (after executing an action the resulting process still contains
this action, but only as being already executed).

1.4 Structure of the document

The document is structured as follows. In Sect. 2 we define the syntax of the
mCRL2 process language together with a set of axioms. After that, we define
the operational semantics of the process language in Sect. 3. We show that the
axioms are sound and complete with respect to the semantics. In Sect. 4 we
discuss the data language that is used by the process language. In Sect. 5 we
show that most mCRL2 specifications can be represented by a linear process
specification. Finally, we discuss future work in the Conclusions.

2 The mCRL2 process language

2.1 Actions

The most basic notion in the mCRL2 process language is an action. The following
example illustrates how action names send , receive and error can be declared.
Actions can be parameterised with data. For example:

act error ;
send : B;
receive : B× N;

This declares parameterless action name error, action name send with a data
parameter of sort B (Booleans), and action name receive with two parameters
of sort B and N (natural numbers), respectively. For the above action name
declaration, error, send(true) and receive(false, 6) are valid actions. The means
offered by mCRL2 to define sorts and operations on sorts will be discussed in
Sect. 4.

In general, we write a, b, . . . to denote action names and d, e, . . . to denote
vectors of data parameters. In the notation a(d), we assume that the vector of
data parameters d is of the type that is specified for the action name a. An
action without data parameters can be seen as an action with an empty vector
of data parameters.

The Formal Specification Language mCRL2 7

2.2 Multiactions

Multiactions represent a collection of actions that are assumed to occur at the
same time (i.e., truly in parallel). Multiactions are constructed according to the
following BNF:

α ::= τ | a(d) | α t β ,

where a denotes an action name and d a vector of data parameters. The con-
structor τ represents the multiaction containing no actions, the constructor a(d)
represents a multiaction that contains only (one occurrence of) the action a(d),
and the constructor α t β represents a multiaction containing the actions from
both the multiactions α and β.

Using the actions declared previously the following are considered multiac-
tions: τ , error t error t send(true), send(true) t receive(false, 6) and τ t error .
We often write α, β, . . . for multiactions.

On multiactions we define a notion of equality by means of the axioms from
Table 1. We also define operators \ and v on multiactions for later use. Here ≡
denotes syntactic equality on action names and 6= denotes provable inequality
on data (vectors).

MA1 α t β = β t α
MA2 (α t β) t γ = α t (β t γ)
MA3 α t τ = α

MD1 τ \ α = τ
MD2 α \ τ = α
MD3 α \ (β t γ) = (α \ β) \ γ
MD4 (a(d) t α) \ a(d) = α
MD5 (a(d) t α) \ b(e) = a(d) t (α \ b(e)) if a 6≡ b or d 6= e

MS1 τ v α = true
MS2 a(d) v τ = false
MS3 a(d) t α v a(d) t β = α v β
MS4 a(d) t α v b(e) t β = a(d) t (α \ b(e)) v β if a 6≡ b or d 6= e

MAN1 τ = τ
MAN2 a(d) = a

MAN3 α t β = α t β

Table 1. Axioms for multiactions

In this paper, we assume that we have a similar set of operators and axioms
for multisets of action names. In Table 1, we have also defined an operator α that
associates with a multiaction α the multiset of action names that are obtained
by omitting all data parameters that occur in α.

8 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

2.3 Basic operators

Process expressions, denoted by p, q, . . ., describe when certain multiactions can
be executed. For example, “a is followed by either b or c”. We make this notion
more formal by introducing operators. The most basic expressions are as follows:

– Multiactions (α, β etc.) as described above.
– Deadlock or inaction δ, which does not execute any multiactions, but only

displays delay behaviour.
– Alternative composition, written as p+q. This expression non-deterministically

chooses to execute either p or q.
– Sequential composition, written p · q. This expression first executes p and

upon termination of p continues with the execution of q.
– Conditional operator, written c → p � q, where c is a data expression of sort

B. This process expression behaves as an if-then-else construct: if c is true
then p is executed, else q is executed. The else part is optional. This operator
is used to express that data can influence process behaviour.

– Process references, written P (d), Q(d), etc. are used to refer to processes
declared by process definitions of the form P (x:D) = p. This process defi-
nition declares that the behaviour of the process reference P (d) is given by
p[d/x], i.e., p in which all free occurrences of variables x are replaced by d.

– Summation operator, written as
∑

x:D p, where x is a variable of sort D and
p is a process expression in which this variable may occur. The correspond-
ing behaviour is a non-deterministic choice among the processes p[d/x] for
all elements d ∈ D. For D = {d0, d1, . . . , dn, . . .} this can be expressed as
p[d0/x] + p[d1/x] + · · ·+ p[dn/x] + · · · .

– At operator, written p↪t, where t is a data expression of sort R≥0 (non-
negative real numbers). The expression p↪t indicates that the first multiaction
of p happens at time t.

– Initialisation operator, written t � p, where t is a data expression of sort
R≥0. The initialisation operator is an auxilary operator, i.e., it is hardly ever
used in modelling a system. The expression t � p restricts the behaviour of
p to the part that starts after time t.

When writing process expressions we usually omit parentheses as much as
possible. To do this, we define precedence rules for the operators. The precedence
of the operators introduced so far, in decreasing order, is as follows: ↪, ·, �, →,∑

, +. Furthermore, · and + are associative (made formal in Table 3). So, instead
of writing (a · (b · c)) + (d + e) we usually write a · b · c + d + e.

Often processes have some recursive behaviour. A coffee machine, for exam-
ple, will normally not stop (terminate) after serving only one cup of coffee. To
facilitate this, we use process references and process definitions:

act coin, break , coffee;
proc Wait = coin · Serve;

Serve = break · δ + coffee ·Wait ;

The Formal Specification Language mCRL2 9

This declares process references (often just called processes) Wait and Serve.
Process Wait can do a coin action, after which it behaves as process Serve.
Process Serve can do a coffee action and return to process Wait , but it might
also do a break action, which results in a deadlock.

A complete process specification needs to have an initial process. For example:

init Wait ;

Parameterised processes can be declared as follows:

proc P (c : B, n : N) = error · P (c, n)
+ send(c) · P (¬c, n + 1)
+ receive(c, n) · P (false,max (n− 1, 0));

This declares the processes P (c, n) with data parameters c and n of sort B
and N, respectively. Note that the sorts of the data parameters are declared in
the left-hand side of the definition. In the process references on the right-hand
side the values of the data parameters are specified.

Summation is used to quantify over data types. Summations over a data type
are particularly useful to model the receipt of an arbitrary element of a data
type. For example the following process is a description of a single-place buffer,
repeatedly reading a natural number using action name r, and then delivering
that value via action name s.

act r, s : N;
proc Buffer =

∑
n:N r(n) · s(n) · Buffer ;

init Buffer ;

Time can be added to processes using the operator ↪. We give a few examples
of the use of the operator ↪. To start with, we specify a simple clock:

act tick;
proc C (t : R≥0) = tick ↪t · C (t + 1);
init C (0);

For a value u of sort R≥0, the process C (u) exhibits the single infinite trace
tick ↪u · tick ↪(u + 1) · tick ↪(u + 2) · · · · .

As a different example, we show a model of a drifting clock (taken from [26]).
This is a clock that is accurate within a bounded interval [1 − d, 1 + d], where
d < 1.

proc DC (t : R≥0) =
∑

ε:R≥0(1− d ≤ ε ∧ ε ≤ 1 + d) → tick ↪(t + ε) ·DC (t + ε);

10 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

2.4 Axioms for equality of processes

A structured operational semantics in the form of strong bisimulation equiva-
lence classes of labelled transition systems (the labels are multiactions) can be
associated with each process expression by means of deduction rules in the style
of Plotkin [27, 28], just as has been done for µCRL [3] and timed µCRL [5]. We
give such a semantics in Sect. 3, but first we use axioms to express the properties
of the operators.

p = p

p = q

q = p

p = q q = r

p = r

p1 = q1 · · · pn = qn

f(p1, . . . , pn) = f(q1, . . . , qn)

p = q ∈ Ax

p = q

P (x : D) = p ∈ PD

P (x) = p

p = q

p[d/x] = q[d/x]

d = e

p[d/x] = p[e/x]

Table 2. Derivation rules for mCRL2 processes

The derivation rules for mCRL2 processes from Table 2 are used to prove
equalities between processes. Here, and in all other tables in this paper, p, q,
and r are arbitrary process expressions, f is an operator from the signature
of mCRL2, Ax refers to the collection of axioms of mCRL2 as presented in
this paper, PD refers to the collection of user-defined process definitions, x is
a data variable, d and e are data expressions, and p[d/x] denotes the result
of substituting d for x in p in a capture-avoiding way. Substitution should be
capture-avoiding since

∑
x:D is a binder. Data variables may occur in process

and data expressions. Note that we do not have process variables. The last rule
in the table links provable equality on process expressions with provable equality
on data expressions.

The axioms for the operators introduced so far are listed in tables 3 and 4.
Here, α and β are multiactions, and t and u are data expressions of sort R≥0.
The function fv gives the data variables that occur freely in a process expression.

With the axioms we can prove, for instance, a + (δ + a) equal to a using
axioms A2, A6 and A3 as follows:

a + (δ + a) A2= (a + δ) + a
A6= a + a

A3= a.

The Formal Specification Language mCRL2 11

A1 p + q = q + p
A2 p + (q + r) = (p + q) + r
A3 p + p = p
A4 (p + q) · r = p · r + q · r
A5 (p · q) · r = p · (q · r)
A6 α + δ = α
A7 δ · p = δ

C1 true → p � q = p
C2 false → p � q = q

SUM1
P

x:D p = p if x 6∈ fv(p)
SUM2

P
x:D p =

P
y:D p[y/x] if y 6∈ fv(p)

SUM3
P

x:D p =
P

x:D p + p
SUM4

P
x:D(p + q) =

P
x:D p +

P
x:D q

SUM5 (
P

x:D p) · q =
P

x:D p · q if x 6∈ fv(q)

Table 3. Axioms for the basic operators

T1 p↪0 = δ↪0
T2 c → p = c → p � δ↪0
T3 p =

P
x:R≥0 p↪x if x 6∈ fv(p)

T4 p↪t · q = p↪t · (t � q)

TA1 α↪t↪u = (t ≈ u) → α↪t � δ↪min(t, u)
TA2 δ↪t↪u = δ↪min(t, u)
TA3 (p + q)↪t = p↪t + q↪t
TA4 (p · q)↪t = p↪t · q
TA5 (

P
x:D p)↪t =

P
x:D p↪t if x 6∈ fv(t)

TI1 t � α↪u = t < u → α↪u � δ↪t
TI2 t � δ↪u = δ↪max(t, u)
TI3 t � (p + q) = t � p + t � q
TI4 t � (p · q) = (t � p) · q
TI5 t �

P
x:D p =

P
x:D t � p if x 6∈ fv(t)

Table 4. Timed axioms for the basic operators

12 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

2.5 Parallel operators

Having covered the basics, we take a look at some additional operators that play
an essential role in process algebra, namely the parallel operators:

– Parallel composition or merge p ‖ q, which interleaves and synchronises the
actions of p with those of q.

– Synchronisation operator p|q, which synchronises the first actions of p and
q and combines the rest of p and q like the parallel composition.

– Left merge pTq, which is an auxiliary operator to allow for the axiomatisation
of the parallel composition. (It only allows p to execute a first action and
thereafter combines the remainder of p with q as the parallel composition
does.)

– Before operator p � q, which is an auxiliary operator for the axiomatisation
of the left merge that describes the part of process p that starts before or at
the time q gets definitely disabled.

The corresponding axioms are given in Table 5. Observe that the axioms S1-
S3, in combination with axiom SMA, are generalisations of the axioms MA1-MA3
to arbitrary process expressions. The synchronisation operator binds stronger
than all other binary operators and parallel composition and left merge bind
stronger than the sum operator but weaker than the conditional operator: |, ↪, ·,
{�,�}, →, {‖,T},

∑
, +. One might expect that the synchronisation operator

binds equally strong as parallel composition and left merge, but due to the
strong relationship between the synchronisation operator and multiset union, as
expressed by axiom SMA, we prefer to let it bind strongest. This way one can
always write the synchronisation operator instead of multiset union. In the rest
of this paper, we always use the synchronisation operator.

2.6 Additional operators

Now that we are able to put various processes in parallel, we need ways to
restrict the behaviour of this composition and to model the interaction between
processes. For this purpose we introduce the following operators:

– Restriction operator ∇V (p) (also known as allow), where V is a set con-
sisting of (non-empty) multisets of action names specifying exactly which
multiactions from p are allowed to occur. Restriction ∇V (p) disregards the
data parameters of the multiactions in p when determining if a multiaction
should be blocked, e.g., ∇{ b|c }(a(0) + b(true, 5)|c) = b(true, 5)|c.
The axioms are given in Table 6. In this table, we use α to denote the multiset
of action names that is obtained from multiaction α by omitting the data
parameters of all actions in α (see Table 1). We define ma ∈V as follows:

ma ∈V iff ma = mb for some mb ∈ V

Here, = denotes equality on multisets of action names. It has axioms similar
to M1-M3. It is used to abstract from the order of the elements in the multiset

The Formal Specification Language mCRL2 13

SMA α|β = α t β

M p ‖ q = p T q + q T y + p|q

LM1 α T p = (α � p) · p
LM2 δ T p = δ � p
LM3 α · p T q = (α � q) · (p ‖ q)
LM4 (p + q) T r = p T r + q T r
LM5 (

P
x:D p) T q =

P
x:D p T q if x 6∈ fv(q)

LM6 p↪t T q = (p T q)↪t

S1 p|q = q |p
S2 (p|q)|r = p|(q |r)
S3 p|τ = p
S4 α|δ = δ
S5 (α · p)|β = α|β · p
S6 (α · p)|(β · q) = α|β · (p ‖ q)
S7 (p + q)|r = p|r + q |r
S8 (

P
x:D p)|q =

P
x:D p|q if x 6∈ fv(q)

S9 p↪t|q = (p|q)↪t

TB1 p � α = p
TB2 p � δ = p
TB3 p � q↪t =

P
u:R≥0 u ≤ t → p↪u � q

TB4 p � (q + r) = p � q + p � r
TB5 p � q · r = p � q
TB6 p �

P
x:D q =

P
x:D p � q if x 6∈ fv(p)

Table 5. Axioms for the parallel composition operators

V1 ∇V (α) = α if α ∈V ∪ {τ} V4 ∇V (p + q) = ∇V (p) +∇V (q)
V2 ∇V (α) = δ if α 6∈V ∪ {τ} V5 ∇V (p · q) = ∇V (p) · ∇V (q)

V3 ∇V (δ) = δ V6 ∇V (
P

x:D p) =
P

x:D ∇V (p)
V7 ∇V (p↪t) = ∇V (p)↪t

Table 6. Axioms for the restriction operator

14 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

of action names and from redundant empty multisets. Note that the empty
multiaction τ is not allowed as an element of the set V , but is always allowed
to occur (see axioms V1 and V2).

– Blocking operator ∂B(p) (also known as encapsulation), where B is a set of
action names that are not allowed to occur. Blocking ∂B(p) disregards the
data parameters of the actions in p when determining if an action should be
blocked, e.g., ∂{ b }(a(0) + b(true, 5)|c) = a(0). For the blocking operator we
need to detect whether or not action names in a multiaction occur in the set
of action names B. The axioms are given in Table 7.

B1 ∂B(τ) = τ B5 ∂B(δ) = δ
B2 ∂B(a(d)) = a(d) if a 6∈ B B6 ∂B(p + q) = ∂B(p) + ∂B(q)
B3 ∂B(a(d)) = δ if a ∈ B B7 ∂B(p · q) = ∂B(p) · ∂B(q)
B4 ∂B(α|β) = ∂B(α)|∂B(β) B8 ∂B(

P
x:D p) =

P
x:D ∂B(p)

B9 ∂B(p↪t) = ∂B(p)↪t

Table 7. Axioms for the blocking operator

– Renaming operator ρR(p), where R is a set of renamings of the form a → b,
meaning that every occurrence of action name a in p is replaced by action
name b. Renaming ρR(p) also disregards the data parameters, but when a
renaming is applied the data parameters are retained, e.g., ρ{ a→b }(a(0) +
a) = b(0)+b. Note that every action name may only occur once as a left-hand
side of a → in R. The axioms are given in Table 8.

R1 ρR(τ) = τ
R2 ρR(a(d)) = b(d) if a → b ∈ R for some b
R3 ρR(a(d)) = a(d) if a → b 6∈ R for all b
R4 ρR(α|β) = ρR(α)|ρR(β)
R5 ρR(δ) = δ
R6 ρR(p + q) = ρR(p) + ρR(q)
R7 ρR(p · q) = ρR(p) · ρR(q)
R8 ρR(

P
dx:D p) =

P
x:D ρR(p)

R9 ρR(p↪t) = ρR(p)↪t

Table 8. Axioms for the renaming operator

– Communication operator ΓC(p), where C is a set of allowed communications
of the form a0 | · · · | an → c, with n ≥ 1 and ai and c action names. For each

The Formal Specification Language mCRL2 15

communication a0 |· · ·|an → c, multiactions containing a0(d)|· · ·|an(d) (for
some d) in p are replaced by c(d). Note that the data parameters are retained
in action c. For example Γ{ a|b→c }(a(0)|b(0)) = c(0), but also Γ{ a|b→c }(a(0)|
b(1)) = a(0)|b(1). Furthermore, Γ{ a|b→c }(a(1)|a(0)|b(1)) = a(0)|c(1). The
axioms are given in Table 9.

C1 ΓC(α) = γC(α) C4 ΓC(p · q) = ΓC(p) · ΓC(q)
C2 ΓC(δ) = δ C5 ΓC(

P
x:D p) =

P
x:D ΓC(p)

C3 ΓC(p + q) = ΓC(p) + ΓC(q) C6 ΓC(p↪t) = ΓC(p)↪t

Table 9. Axioms for the communication operator

The function γC(α) applies the communications described by C to a multi-
action α. It replaces every occurrence of a left-hand side of a communication
it can find in α with the appropriate result. More precisely:

γ∅(α) = α
γC1∪C2(α) = γC1(γC2(α))
γ{a0 | ··· | an → b}(α) = b(d) | γ{a0 | ··· | an → b}(α \ (a1(d)|· · ·|an(d)))

if a1(d)|· · ·|an(d) v α for some d
γ{a0 | ··· | an → b}(α) = α otherwise

For example, γ{a|b→c}(a|a|b|c) = a|c|c and γ{a|a→a,b|c|d→e}(a|b|a|d|c|a) = a|a|e.
The left-hand sides of the communications in C should be disjoint (e.g.
C = {a|b → c, a|d → e} is not allowed) to satisfy the desired property that
γC1(γC2(α)) = γC2(γC1(α)) which guarantees that γC does not have multiple
solutions.

2.7 Abstraction

An important notion in process algebra is that of abstraction. Usually the re-
quirements of a system are defined in terms of external behaviour (i.e. the in-
teractions of the system with its environment), while one wishes to check these
requirements on an implementation of the system which also contains internal
behaviour (i.e. the interaction between the components of the system). So it is
desirable to be able to abstract from the internal behaviour of the implementa-
tion. For this purpose the following constructs are available:

– Internal action or silent step τ , which is a special multiaction that denotes
that some (unknown) internal behaviour happens.

16 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

– Hiding operator τI(p), which hides (or renames to τ) all actions with an
action name in I in all multiactions in p. Hiding τI(p) disregards the data
parameters of the actions in p when determining if an action should be
hidden. The axioms are listed in Table 10.

H1 τI(τ) = τ H5 τI(δ) = δ
H2 τI(a(d)) = τ if a ∈ I H6 τI(p + q) = τI(p) + τI(q)
H3 τI(a(d)) = a(d) if a 6∈ I H7 τI(p · q) = τI(p) · τI(q)
H4 τI(α|β) = τI(α)|τI(β) H8 τI(

P
x:D p) =

P
x:D τI(p)

H9 τI(p↪t) = τI(p)↪t

Table 10. Axioms for the abstraction operator

Although, at this stage, we do not include axioms that explicitly express that
τ is an internal step and cannot be observed in certain cases (see [29, 30]), we
note that the multiactions themselves already exhibit part of such abstraction
properties. In specific, this is expressed in axiom S3 (and axiom MA3), which is
the result from the fact that multiactions are actually bags and τ is the empty
multiaction.

3 Operational semantics of the mCRL2 process language

3.1 Relating process expressions with the semantics

To define the semantics of the mCRL2 process language we interpret the process
expressions defined in Sect. 2 to processes without data variables. This is done
in a similar fashion as in [31].

As the process language depends on data, the semantics is parameterised by
a data algebra A and a valuation η that maps data variables to data values. Fur-
thermore, there is a parameter PD , the set of process definitions corresponding
to the proc section of an mCRL2 specification.

We need some notation. We write DA for the interpretation of sort D in data
algebra A. We also write η[v/x] to denote a valuation that maps x to v and all
other variables y to η(y). Finally, we write JdKη for the interpretation of data
expression d.

The process operators in the semantics are very similar to those in the syn-
tax. We will therefore also use the same notation. The difference is that the
semantics does not have operators for alternative composition and conditional,
and the summation operator on data types is replaced by a summation opera-
tor

∑
on sets of processes. This summation operator behaves as the alternative

composition of all processes in the set.

The Formal Specification Language mCRL2 17

The correspondence between the syntax and semantics is defined with the
interpretation J Kη as follows. Note that we only provide the definition for the
interesting cases; it is straightforward for the other operators.

JτKη = τ
Ja(d)|αKη = a(JdKη) t JαKη

Jp + qKη =
∑
{JpKη, JqKη}

Jb → pKη =
{

JpKη if JbKη = JtrueKη

δ@J0Kη if JbKη 6= JtrueKη

Jb → p � qKη =
{

JpKη if JbKη = JtrueKη

JqKη if JbKη 6= JtrueKη

J
∑

x:D pKη =
∑
{JpKη[v/x] | v ∈ DA}

We write PDη for the set of interpreted process definitions from PD . That is,
if P (x : D) = q is in PD , then PDη contains P (v) = JqKη[v/x], for all v ∈ DA.

We write P for the set of processes and A for the set of multiactions. The
semantics of the mCRL2 process language is expressed by the action termination
predicate−→ X⊆ P×A×R≥0

A , the action transition relation−→⊆ P×A×R≥0
A ×P

and the delay predicate ⊆ P×R≥0
A . The delay predicate indicates that a process

can wait until at least the indicated time before not being able to let time pass
without actually doing anything.

3.2 Auxiliary functions

We first introduce some auxiliary functions needed to define the semantics.
Note that these functions work on interpreted multiactions or multiset of ac-
tion names. For the blocking operator ∂B we need to check whether or not a
(interpreted) multiaction α contains an action name that is in B. We do this by
converting α into a set such that we can take the intersection with B. This is
done by first using to remove the data from α and then applying {}, which is
defined as follows.

τ{} = ∅
a{} = {a}
(α t β){} = α{} ∪ β{}

With • we apply renaming R of the renaming operator ρR to a multiaction as
follows:

R • τ = τ
R • a(v) = b(v) if a → b ∈ R for some b
R • a(v) = a(v) if a → b 6∈ R for all b
R • (α t β) = (R • α) t (R • β)

Finally, we need to hide actions with names from the set I of the hiding operator
τI , which we do with the θI() functions.

θI(τ) = τ
θI(a(v)) = τ if a ∈ I
θI(a(v)) = a(v) if a 6∈ I
θI(α t β) = θI(α) t θI(β)

18 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

Note that we also need definitions of , ∈ and γC , but these are essentially
the same as in Sect. 2.

3.3 Structured operational semantics

We give the operational semantics using Structured Operational Semantics (SOS)
in the style of Plotkin [27, 28]. The deduction rules of the basic operators are
given in Tables 11-17. In Tables 18-21 the operational semantics is given for the
parallel operators. Finally, the semantics for the additional operators is given in
Tables 22-26.

δ t

Table 11. Deduction rules for deadlock

α
α−→t X

t > 0
α t

Table 12. Deduction rules for multiactions

p
α−→t XP

{p} ∪ S
α−→t X

p
α−→t p′P

{p} ∪ S
α−→t p′

p tP
{p} ∪ S t

Table 13. Deduction rules for summation operator

The Formal Specification Language mCRL2 19

p
α−→t X

p · q α−→t t � q

p
α−→t p′

p · q α−→t p′ · q
p t

p · q t

Table 14. Deduction rules for sequential composition

q
α−→t X

P (v)
α−→t X

P (v) = q ∈ PDη

q
α−→t q′

P (v)
α−→t q′

P (v) = q ∈ PDη

q t

P (v) t

P (v) = q ∈ PDη

Table 15. Deduction rules for process references

p
α−→t X

p↪t
α−→t X

p
α−→t p′

p↪t
α−→t p′

p t

p↪u t

t ≤ u

Table 16. Deduction rules for the at operator

20 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

p
α−→t X

u � p
α−→t X

u < t
p

α−→t p′

u � p
α−→t p′

u < t

p t

u � p t u � p t

t ≤ u

Table 17. Deduction rules for the initialisation operator

p
α−→t X, q t

p ‖ q
α−→t t � q

q ‖ p
α−→t t � q

p
α−→t X, q

β−→t X

p ‖ q
αtβ−→t X

p t, q t

p ‖ q t

p
α−→t p′, q t

p ‖ q
α−→t p′ ‖ t � q

q ‖ p
α−→t t � q ‖ p′

p
α−→t p′, q

β−→t X

p ‖ q
αtβ−→t p′

q ‖ p
αtβ−→t p′

p
α−→t p′, q

β−→t q′

p ‖ q
αtβ−→t p′ ‖ q′

Table 18. Deduction rules for parallel composition

p
α−→t X, q

β−→t X

p|q αtβ−→t X

p t, q t

p|q t

p
α−→t p′, q

β−→t X

p|q αtβ−→t p′

q |p αtβ−→t p′

p
α−→t p′, q

β−→t q′

p|q αtβ−→t p′ ‖ q′

Table 19. Deduction rules for the synchronisation operator

The Formal Specification Language mCRL2 21

p
α−→t X, q t

p T q
α−→t t � q

q T p
α−→t t � q

p
α−→t p′, q t

p T q
α−→t p′ ‖ t � q

q T p
α−→t t � q ‖ p′

p t, q t

p T q t

Table 20. Deduction rules for the left merge operator

p
α−→t X, q t

p � q
α−→t X

p
α−→t p′, q t

p � q
α−→t p′

p t, q t

p � q t

Table 21. Deduction rules for the before operator

p
α−→t X

∇V (p)
α−→t X

α∈V ∪ {τ}
p

α−→t p′

∇V (p)
α−→t ∇V (p′)

α∈V ∪ {τ}
p t

∇V (p) t

Table 22. Deduction rules for the restriction operator

p
α−→t X

∂B(p)
α−→t X

α{} ∩B = ∅
p

α−→t p′

∂B(p)
α−→t ∂B(p′)

α{} ∩B = ∅
p t

∂B(p) t

Table 23. Deduction rules for the blocking operator

22 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

p
α−→t X

ρR(p)
R•α−→t X

p
α−→t p′

ρR(p)
R•α−→t ρR(p′)

p t

ρR(p) t

Table 24. Deduction rules for the renaming operator

p
α−→t X

ΓC(p)
γC(α)−→ t X

p
α−→t p′

ΓC(p)
γC(α)−→ t ΓC(p′)

p t

ΓC(p) t

Table 25. Deduction rules for the communication operator

p
α−→t X

τI(p)
θI (α)−→ t X

p
α−→t p′

τI(p)
θI (α)−→ t τI(p

′)

p t

τI(p) t

Table 26. Deduction rules for the hiding operator

3.4 Bisimilarity

We define a notion of equivalence, called strong bisimilarity [32], on the pro-
cesses in our semantics. This equivalence is a congruence for the operators in
our language.

Definition 3.1 (Strongly bisimilar). Let p and q be two process expressions,
let PD be a set of process definitions and A a data algebra. We call p and q
(strongly) bisimilar, notation p ↔ q, if there exists a symmetric relation R,
called a strong bisimulation relation, relating JpKη and JqKη for all valuations η
and such that for all r and s with (r, s) ∈ R, the following holds.

– If r
α−→t r′ for some multiaction α, time t and process r′, then there exists

a s′ such that s
α−→t s′ and (r′, s′) ∈ R.

– If r
α−→t X for some multiaction α and time t, then also s

α−→t X.
– If r t for some time t, then also s t.

The Formal Specification Language mCRL2 23

Theorem 3.2 (Equivalence). Strong bisimilarity is an equivalence.

Proof. It is straightforward to check that strong bisimilarity is reflexive, sym-
metric and transitive.

Theorem 3.3 (Congruence). Strong bisimilarity is a congruence for all op-
erators of mCRL2.

Proof. Because our semantics fits the path format [33], we know that strong
bisimilarity (on the processes in the semantics) is a congruence for all operators
in our semantics. Note that technically this result is meaningless for summation,
since its argument is not a process but a set of processes. However, it is easy to
show that strong bisimilarity is also a congruence for summation.

Now, using Definition 3.1, we can easily show that strong bisimilarity is also
a congruence for all (syntactic) mCRL2 operators.

To express the relation between the semantics and the axiomatisation given in
Sect. 2, we give the following two theorems that express that strong bisimulation
and axiomatic derivability coincide.

Theorem 3.4 (Soundness). The axiomatisation of mCRL2 is sound with re-
spect to strong bisimilarity. That is, for all process expressions p and q we have
that p = q implies p ↔ q.

Proof. Straightforward but laborious, and therefore not given here.

For completeness of our axiomatisation we only consider expressions without
process references which we call process-closed expressions. Also, completeness
of the process language depends on completeness of the data language. We there
for call it relative completeness.

Theorem 3.5 (Completeness). The axiomatisation of mCRL2 is relatively
complete for process-closed expressions with respect to strong bisimilarity. That
is, for all process-closed expressions p and q we have that p ↔ q implies p = q.

Proof. We only give a sketch of the proof. As our language is quite related to
timed µCRL, we reuse the completeness proof of [5]. In this proof, the language
pCRLt forms the basis. Therefore we translate our process expressions to pCRLt

expressions. The main differences between our semantics and that of pCRLt are
that we have multiactions and non-urgency. Multiactions α are translated to
actions ma(α), where α is a representation of α in the data language used in
the pCRLt setting. To be able to translate non-urgency we add an additional,
and eliminable, operator≫ that corresponds to the mCRL2 � operator to get
pCRL≫

t .
The actual completeness proof uses the following properties:

1. Every process expression can be written to a basic form. This is quite stan-
dard and does not deviate much from similar lemmas in, for example, [5].
We call process expressions in basic form basic expressions.

24 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

2. The axioms of pCRL≫
t are sound. This follows from the soundness of the

axioms of pCRLt and the soundness of the ≫ axioms. The proof for the
latter is similar to the proofs of � in pCRLt.

3. The axiomatisation of pCRL≫
t is complete. This follows from the fact that

≫ is eliminable and the completeness of pCRLt.

4. The translation of basic expressions to pCRL≫
t preserves bisimilarity. That

is, if two bisimilar mCRL2 process expressions are translated, they are trans-
lated to bisimilar pCRL≫

t expressions.

5. The translation of pCRL≫
t expressions back to mCRL2 expressions pre-

serves axiomatic derivability. That is, if we translate derivably equal pCRL≫
t

expressions back to mCRL2, they are translated to derivably equal mCRL2
expressions.

6. The translation of pCRL≫
t to mCRL2 is the inverse of the translation of

mCRL2 to pCRL≫
t (modulo axiomatic derivability).

By property 1, completeness for all mCRL2 process expressions follows from
completeness for all basic expressions. Thus we show that for all bisimilar basic
expression we can derive that they are equal in the axiomatisation. To do so,
we first translate them to pCRL≫

t . By property 4, we know that this gives us
bisimilar pCRL≫

t expressions. Then by properties 2 and 3 we can prove that
these expressions are derivably equal in pCRL≫

t . Using the translation from
pCRL≫

t to mCRL2 we obtain mCRL2 expressions that are derivably equal
by property 5. Finally, because the translation back is the inverse of the first
translation (property 6), we have the same basic expressions of which we now
know that they are derivably equal in mCRL2.

4 The mCRL2 data language

The mCRL2 data language is a functional language based on higher-order ab-
stract data types [34, 35, 36]. As mentioned before, mCRL2 also has concrete
data types: standard data types and sorts constructed from a number of type
constructors.

Basic data type definition mechanism. Basically, mCRL2 contains a simple
and straightforward data type definition mechanism. Sorts (types), constructor
functions, maps (functions) and their definitions can be declared. Sorts declared
in such a way are called user-defined sorts. For instance, the following declares
the sort A with constructor functions c and d. Also functions f and g are declared
and (partially) defined:

The Formal Specification Language mCRL2 25

sort A;
cons c, d : A;
map f : A×A → A;

g : A → A;
var x : A;
eqn f(c, x) = c;

f(d, x) = x;
g(c) = c;

In the equations variables are used to represent arbitrary data expressions. A
sort is called a constructor sort when it has at least one constructor function.
For example, A is a constructor sort. Constructor sorts correspond to inductive
data types.

Equations are used to derive equalities between data expressions. The deriva-
tion rules are the standard rules for equational logic (reflexivity, symmetry, tran-
sitivity, congruence and substitution), plus extensionality and induction on con-
structor sorts.

Standard data types. In mCRL2, a number of sorts and functions on those
are predefined. The following standard data types are defined:

– Booleans (B) with constructor functions true and false and operators ¬, ∧,
∨, and ⇒. It is assumed that true and false are different.

– Unbounded positive numbers (N+), natural numbers (N), integers (Z), non-
negative real numbers (R≥0) and real numbers (R) with relational operators
<,≤, >,≥, unary negation−, binary arithmetic operators +,−, ∗, div, mod
and arithmetic operations max , min, abs, succ, pred , exp. These functions
are only available for appropriate sorts, e.g. div and mod are only defined
for a denominator of sort N+. Also conversion functions A2B are provided
for all sorts A,B ∈ {N+, N, Z, R≥0, R }.

The user of the language is allowed to add maps and equations for standard
data types. This also enables the user to specify inconsistent theories, e.g. by
adding the axiom true = false. In such a case, the data specification looses its
meaning.

Type constructors. There are a number of type constructors, of which the
first is a structured type. This is a compact way of defining a sort together with
constructor, projection, and recogniser functions. For instance, a sort of machine
states can be declared by:

struct off | standby | starting | running(mode : N) | broken?is broken;

This declares a sort with constructor functions off , standby , starting , running
and broken, projection function mode from the declared sort to N and recogniser
is broken from this sort to B. So mode(running(n)) = n and mode(c) is left

26 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

unspecified for all constructors c different from running ; so mode(c) is a natural
number, but we don’t know which one. Also, is broken(broken) = true and
is broken(d) = false for all constructors d different from broken.

Second, we have the function type constructor. The sort of functions from
A to B is denoted A → B. Note that function types are first-class citizens:
functions may return functions. It is assumed that parentheses associate to the
right in function notations, e.g., A → B → C means A → (B → C).

We also have a list type constructor. The sort of (finite) lists containing ele-
ments of sort A is declared by List(A) and has constructor functions [] : List(A)
and . : A × List(A) → List(A). Other operators include / , ++ (concatena-
tion), . (element at), head , tail , rhead and rtail together with list enumeration
[e0, . . . , en]. The following expressions of type List(A) are all equivalent: [c, d, d],
c . [d, d], [c, d] / d and []++ [c, d]++ [d].

Possibly infinite sets and bags where all elements are of sort A are de-
noted by Set(A) and Bag(A), respectively. The following operations are pro-
vided for these sort expressions: set enumeration { d0, . . . , dn }, bag enumeration
{ d0 : c0, . . . , dn : cn } (ci is the multiplicity or count of element di), set/bag com-
prehension {x : s | c }, element test ∈, bag multiplicity count , set complement
s and infix operators ⊆, ⊂, ∪, −, ∩ with their usual meaning for sets and bags.
Also conversion functions Set2Bag and Bag2Set are provided.

Sort references. Sort references can be declared. For instance, B is a synonym
for A in

sort B = A;

Using sort references it is possible to define recursive sorts. For example, a
sort of binary trees with numbers as their leaves can be defined as follows:

sort T = struct leaf (N) | node(T, T);

This declares sort T with constructor functions leaf : N → T and node :
T × T → T , and without projection and recogniser functions.

Standard functions. For all sorts the equality operator ≈, inequality 6≈, con-
ditional if and quantifiers ∀ and ∃ are provided. For the user-defined data types
the user has to provide equations giving meaning to ≈. For the standard data
types and the type constructors this operation is defined as expected. The in-
equality operator, the conditional and the quantifiers are defined for all sorts as
expected.

So for instance, with n a variable over the natural numbers N, the expression
n ≈ n is equal to true and n 6≈ n is equal to false. Using the above declaration
of sort A and map f , if (true, c, d) is equal to c and ∀x:A (f(x, c) ≈ c) is equal
to true.

The Formal Specification Language mCRL2 27

Also, expressions of sort B may be used as conditions in equations, for in-
stance:

var x, y : A;
eqn x ≈ y → f(x, y) = x;

Furthermore, lambda abstractions and where clauses can be used. For exam-
ple:

map h, h′ : A → A → A;
var x, y : A;
eqn h(x) = λy′:A(λz:Af(z, g(z)))(g(f(x, y′)));

h′(x)(y) = f(z, g(z)) whr z = g(f(x, y)) end;

Note that the functions h and h′ are equivalent, i.e., one can derive that
h = h′.

5 Linear process specifications

5.1 Definition and examples

The transition system corresponding to an mCRL2 specification often has a
number of states that is exponential in the number of parallel processes. The
fact that many process definitions lead to systems with a huge number of states
is commonly known as the state space explosion problem. Because of this, it often
takes a large amount of time to generate a state space and a large amount of
space to store it.

On the other hand, general specifications are not well suited for manipulation
– either by hand or using tools. Therefore it is useful to transform specifications
to a basic form called linear process specification or LPS for short. An LPS can
be seen as a (symbolic) representation of the transition system of a model. It
uses the basic mCRL2 operators only, and in a very specific way.

Definition 5.1. A linear process specification (LPS) is a process specification
that contains a single process definition of the linear form

proc P (x:D) =
∑

i∈I

∑
yi:Ei

ci(x, yi) → αi(x, yi)↪ti(x, yi)·P (gi(x, yi))
+

∑
j∈J

∑
yj :Ej

cj(x, yj) → αδj(x, yj)↪tj(x, yj);

where data expressions of the form d(x1, . . . , xn) contain at most free variables
from {x1, . . . , xn }, I and J are disjoint and finite index sets, and for i ∈ I and
j ∈ J the following are:

– ci(x, yi) and cj(x, yj) are boolean expressions representing the conditions,
– αi(x, yi) is a multiaction a1

i (f
1
i (x, yi))|· · ·|ani

i (fni
i (x, yi)), where fk

i (x, yi) (for
1 ≤ k ≤ ni) are the parameters of action name ak

i ,

28 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

– αδj(x, yj) is either δ or a multiaction a1
j (f

1
j (x, yj))|· · ·|a

nj

j (fnj

j (x, yj)), where
fk

j (x, yj) (for 1 ≤ k ≤ nj) are the parameters of action name ak
j , respectively,

– ti(x, yi) and tj(x, yj) are expressions of sort R≥0 representing the time stamps
of multiactions αi(x, yi) and αδj(x, yj), respectively,

– gi(x, yi) is an expression of sort D representing the next state of the process
definition P ;

and contains an initialisation of the form

init P (d0);

where d0 is a closed data expression.
Note that the summands

∑
i∈I and

∑
j∈J are meta-level operations:

∑
i∈I pi

is a shorthand for p1 + · · ·+ pn, where I = { 1, . . . , n }.

We call data parameter x the state parameter. In general we only strictly adhere
to the form above with one state parameter x and one sum variable yi per
summand in theoretical considerations. In practice we can use any number or
leave out all.

The form of the first summand as described above is sometimes presented as
the condition-action-effect rule. In a particular state d and for some data value
e the multiaction αi(d, e) can be done at time ti(d, e) if condition ci(d, e) holds.
The effect of the action on the state is given by the fact that the next state is
gi(x, yi).

We illustrative the above with some examples. The process specification
Buffer (also presented in Sect. 2)

act r, s : N;
proc Buffer =

∑
n:N r(n) · s(n) · Buffer ;

init Buffer ;

is not linear because it has two actions in front of the reference to Buffer
in the right-hand-side of the process definition. The LPS for the buffer has the
following form:

proc P (n:N, b:B) =
∑

m:N b → r(m)·P (m,¬b)
+ ¬b → s(n)·P (n,¬b);

init P (0, true);

Note that the linear form is less readable than the much more concise form
we started with.

Consider the following process definition that describes two buffers in se-
quence. The first process reads from channel 1 and delivers at channel 2. The
second one reads from channel 2 and sends to channel 3. This (non-linear) pro-
cess definition defines a system as the parallel composition of both processes
where they pass the value on via channel 2:

The Formal Specification Language mCRL2 29

proc P12(n:N, b:B) =
∑

m:N b → r1(m)·P12(m,¬b)
+ ¬b → s2(n)·P12(n,¬b);

P23(n:N, b:B) =
∑

m:N b → r2(m)·P23(m,¬b)
+ ¬b → s3(n)·P23(n,¬b);

System = ∇{r1,s3,c2}(Γ{r2|s2→c2}(P12(0, true) ‖ P23(0, true)));
init System;

The following LPS that has been derived from the process definition above
behaves in the same way:

proc P13(n1:N, b1:B, n2:N, b2:B) =
∑

m:N b1 → r1(m)·P13(m,¬b1, n2, b2)
+ (¬b1 ∧ b2) → c2(n1)·P13(n1,¬b1, n1,¬b2)
+ ¬b2 → s3(n2)·P13(n1, b1, n2,¬b2);

init P13(0, true, 0, true);

5.2 Linearisation of mCRL2 process specifications

In general the linearisability of mCRL2 process specifications can be stated in
the following way. Let M be an mCRL2 process specification with a set of
process definitions for process references {P1, . . . , Pm }. Let a new sort S con-
tain (representations of) mCRL2 process expressions that are constructed with
{P1, . . . , Pm }, actions and data definitions from M . It is easy to see that such
a data type can be defined in the data language of mCRL2 (Sect. 4). So, for
any process expression p constructed with the definitions from M , let S(p) be
its representation in S.

For the sort S we define the following predicates in the way that they reflect
derivability with the SOS rules from mCRL2 (Sect. 3):

Jca(S(p),S(q),S(α), t)Kη = JtrueKη iff JpKη
JαKη−→JtKη

JqKη

Jct(S(p),S(α), t)Kη = JtrueKη iff JpKη
JαKη−→JtKη

X
Jcd(S(p), t)Kη = JtrueKη iff JpKη JtKη

where p and q are mCRL2 process expressions, α is an arbitrary multiaction
and t:R≥0. We again argue that these predicates can be defined in the syntax of
mCRL2 data type definitions (Sect. 4).

Note that it is possible to define processes in mCRL2 that can perform in-
finitely many different multiactions. For example, process P , defined as P =
a + (P |a), can perform multiactions a, a |a, a |a |a and so on. An LPS cannot
mimic this behaviour because it can only perform a finite number of different
multiactions as it has only a finite number of summands.

For a fixed n ≥ 0 we define the following LPS:

30 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

proc P (s:S) =
∑

µ∈An

∑
yµ:Eµ

∑
t:R≥0

∑
s′:S ca(s, s′,S(µ(yµ)), t) → µ(yµ)↪t·P (s′)

+
∑

µ∈An

∑
yµ:E′

µ

∑
t:R≥0 ct(s,S(µ(yµ)), t) → µ(yµ)↪t

+
∑

t:R≥0 cd(s, t) → δ↪t;
init P (S(p));

where

– p is the initial process expression of M ,
– An is the set of bags of action names defined in M of size at most n.
– Eµ is a sort struct eµ(π1:E1, . . . , πk:Ek) where µ = a1 |· · ·|ak, 0 ≤ k ≤ n,

and Ei (for 1 ≤ i ≤ k) are the sorts of arguments of actions ai.
– µ(yµ) is the multiaction a1(π1(yµ)) | · · · |ak(πk(yµ)), where µ = a1 | · · · |ak,

0 ≤ k ≤ n, and πi (for 1 ≤ i ≤ k) are the projection functions of Eµ.

This LPS defining process P is related to the process specification M in the
following way. Suppose the process defined by M cannot perform multiactions
of size greater than n. Then this process is bisimilar to the process defined by the
LPS for P . The proof of this fact follows by considering the SOS rules applied
to the process definition P .

This approach to the linearisation problem has two drawbacks. One is a
theoretical one, because such a transformation is only valid in one model of
mCRL2 axioms, namely the one defined in Sect. 3. The other one is of a practical
nature; it turns out that in many practical cases the state space of P has far too
many states.

The solution to both problems is a linearisation method that is based on the
syntactic transformation of process specifications. This means using the axioms
of mCRL2 and rules to transform process definitions. This method of linearisa-
tion is implemented in both the µCRL and mCRL2 toolsets. In [37] it is described
how this can be done for a large class of process specifications in timed µCRL.
Using these techniques, a model of hundreds of parallel processes can be trans-
formed to a single LPS relatively easily and within a small amount of time; even
if the corresponding state space is infinitely large. The techniques have been
used in almost the same form in mCRL2 to obtain LPSs for mCRL2 processes.

6 Concluding remarks

In this paper, we have motivated and presented the process and data language
of mCRL2, the successor of µCRL. Our main results are (relative) completeness
of the process language and linearisability of most specifications. We conclude
by mentioning some future work.

Formal semantics of the data language. Usually the operations of algebraic
specifications are of first order: functions cannot occur as parameters nor as
results of other functions. In higher-order specifications, this restriction is lifted:
functions are treated as first-class citizens. Higher-order algebra [35, 36, 38] is

The Formal Specification Language mCRL2 31

roughly ordinary universal algebra [39, 40] extended with function types. For the
data language a formal semantics will be given in terms of higher-order algebra.
The concrete data types should then be expressed in this basic formalism in an
algebraic manner, i.e. by means of signatures and axioms.

Timed branching bisimulation equivalence. In this article we have pre-
sented axioms for a notion of equivalence called strong bisimilarity. This notion
does not allow one to abstract from the presence of internal actions.

It would be desirable to consider a notion of equivalence that does abstract
from internal actions without abstracting from the observable effect of their
presence. In the setting of µCRL, the notion of (rooted) branching bisimulation
equivalence [29, 30] is used for this purpose.

For timed process algebras, timed versions of branching bisimulation equiva-
lence have been proposed in the literature (see for example [41]). To date, we are
not yet confident that the right notion of timed branching bisimulation equiv-
alence has already been proposed. Therefore, we aim to look further into this
topic.

Proof techniques. The proof techniques that have been developed for the set-
ting of µCRL, such as the linearisation algorithms for µCRL and timed µCRL
[37], the cones and foci proof method for µCRL [42, 3] and timed µCRL [43], the
confluence reduction techniques for µCRL [44], and the simple LPS transforma-
tions from the µCRL toolset [9, 10] have to be adapted to the setting of mCRL2.
We expect that this only involves small changes to the proof techniques, their
proofs of correctness, and their implementations in the mCRL2 toolset.

Relation with Petri nets. One of the motivations for changing the process
language of mCRL2 was the desire to model Petri nets in a compositional way.
We believe we have succeeded in this goal, but this claim needs further proof.
Also, we still want to establish which of the techniques that are applied to
Petri nets can be carried over to mCRL2 in a meaningful way, and the other
way around, which of the techniques from the world of µCRL and mCRL2 are
useable for the analysis of Petri nets.

References

[1] Groote, J.F., Mathijssen, A., van Weerdenburg, M., Usenko, Y.S.: From µCRL
to mCRL2: motivation and outline. In: Proc. Workshop Essays on Algebraic Pro-
cess Calculi (APC 25). Volume 162 of Electronic Notes in Theoretical Computer
Science. (2006) 191–196

[2] Groote, J.F., Ponse, A.: The syntax and semantics of µCRL. In Ponse, A., Verhoef,
C., Vlijmen, S.F.M.v., eds.: Algebra of Communicating Processes, Utrecht 1994.
Workshops in Computing, Springer-Verlag (1995) 26–62

32 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

[3] Groote, J.F., Reniers, M.A.: Algebraic process verification. In Bergstra, J.A.,
Ponse, A., Smolka, S.A., eds.: Handbook of Process Algebra. Elsevier Science
Publishers B.V., Amsterdam (2001) 1151–1208

[4] Groote, J.F.: The syntax and semantics of timed µCRL. Technical Report SEN-
R9709, CWI, Amsterdam (1997)

[5] Reniers, M.A., Groote, J.F., van der Zwaag, M.B., van Wamel, J.: Completeness
of timed µCRL. Fundamenta Informaticae 50(3-4) (2002) 361–402

[6] van Weerdenburg, M.: GenSpect process algebra. Master’s thesis, Technische
Universiteit Eindhoven (TU/e) (2004)

[7] van Weerdenburg, M.: Process algebra with local communication. Technical
Report 05/05, Technische Universiteit Eindhoven (TU/e) (2005)

[8] Baeten, J.C.M., Weijland, W.P.: Process Algebra. Volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press (1990)

[9] Blom, S., Fokkink, W.J., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol,
J.C.: CRL: A toolset for analysing algebraic specifications. In Berry, G., Comon,
H., Finkel, A., eds.: Computer Aided Verification, 13th International Conference,
CAV 2001, Paris, France, July 18-22, 2001, Proceedings. Volume 2102 of Lecture
Notes in Computer Science. (2001) 250–254

[10] Blom, S., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol, J.C.: New
developments around the µCRL tool set. In: Proc. 8th Int’l Workshop on Formal
Methods for Industrial Critical Systems (FMICS’03). Volume 80 of Electronic
Notes in Theoretical Computer Science. (2003) 1–5

[11] Fokkink, W.J., Groote, J.F., Reniers, M.A.: Process algebra needs proof method-
ology (columns: Concurrency). Bulletin of the EATCS 82 (2004) 109–125

[12] Fokkink, W.J., Groote, J.F., Pang, J., Badban, B., van de Pol, J.C.: Verifying
a sliding window protocol in µCRL. In Rattray, C., Maharaj, S., Shankland, C.,
eds.: Proc. 10th International Conferance on Algebraic Methodology and Software
Technology, AMAST’04, Stirling. Volume 3116 of Lecture Notes in Computer
Science., Springer-Verlag (2004) 148–163

[13] Groote, J.F., Pang, J., Wouters, A.G.: Analysis of a distributed system for lifting
trucks. Journal of Logic and Algebraic Programming 55(1-2) (2003) 21–56

[14] Pang, J., Fokkink, W.J., Hofman, R., Veldema, R.: Model checking a cache co-
herence protocol for a java DSM implementation. In: Proc. 2003 International
Parallel and Distributed Processing Symposium (IPDPS’03), Nice, IEEE Com-
puter Society Press (2003)

[15] Groote, J.F., Ponse, A.: Process algebra with guards. Combining Hoare logic and
process algebra. Formal Aspects of Computing 6(2) (1994) 115–164

[16] Bezem, M.A., Groote, J.F.: Invariants in process algebra with data. In Jonsson,
B., Parrow, J., eds.: CONCUR’94: Concurrency Theory. Volume 836 of Lecture
Notes in Computer Science., Springer-Verlag (1994) 401–416

[17] Jensen, K.: Coloured Petri Nets. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag (1992)

[18] Baeten, J.C.M., Bergstra, J.A.: Non interleaving process algebra. In Best, E.,
ed.: CONCUR’93, International Conference on Concurrency Theory. Volume 715
of Lecture Notes in Computer Science., Springer-Verlag (1993) 308–323

[19] Baeten, J.C.M., Basten, A.A.: Partial-order process algebra (and its relation to
Petri nets). In Bergstra, J.A., Ponse, A., Smolka, S.A., eds.: Handbook of Process
Algebra. Elsevier Science Publishers B.V., Amsterdam (2001) 769–872

[20] Mauw, S., Reniers, M.A.: A process algebra for interworkings. In Bergstra, J.A.,
Ponse, A., Smolka, S.A., eds.: Handbook of Process Algebra. Elsevier Science
Publishers B.V., Amsterdam (2001)

The Formal Specification Language mCRL2 33

[21] ISO - International Organization for Standardization: Information processing
systems - Open systems interconnection - LOTOS - A formal description technique
based on the temporal ordering of observational behaviour, IS 8807. ISO (1989)

[22] Best, E., Devillers, R., Hall, J.: The Petri Box Calculus: A new causal algebra with
multilabel communication. Volume 609 of Lecture Notes in Computer Science.,
Springer-Verlag (1992) 21–69

[23] Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. EATCS Monographs on
Theoretical Computer Science. Springer-Verlag (2001)

[24] Best, E., Devillers, R., Koutny, M.: A unified model for nets and process algebra.
In Bergstra, J.A., Ponse, A., Smolka, S.A., eds.: Handbook of Process Algebra.
Elsevier Science Publishers B.V., Amsterdam (2001) 873–944

[25] Milner, R.: A Calculus of Communicating Systems. Volume 92 of Lecture Notes
in Computer Science. Springer-Verlag (1980)

[26] Willemse, T.A.C.: Semantics and Verification in Process Algebras with Data and
Timing. PhD thesis, Technische Universiteit Eindhoven (TU/e) (2003)

[27] Plotkin, G.D.: A structural approach to operational semantics. Technical Report
DIAMI FN-19, Computer Science Department, Aarhus University (1981)

[28] Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61 (2004) 17–139

[29] van Glabbeek, R.J.: The linear time - branching time spectrum II. In Best, E.,
ed.: CONCUR’93, International Conference on Concurrency Theory. Volume 715
of Lecture Notes in Computer Science., Springer-Verlag (1993) 66–81

[30] van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimu-
lation semantics. Journal of the ACM 43(3) (1996) 555–600

[31] Luttik, B.: Choice Quantification in Process Algebra. PhD thesis, University of
Amsterdam (2002)

[32] van Glabbeek, R.: The linear time - branching time spectrum. In Baeten, J.,
Klop, J., eds.: CONCUR’90 - Theories of Concurrency: Unification and Extension.
Volume 458 of Lecture Notes in Computer Science., Amsterdam, Springer-Verlag
(1990) 278–297

[33] Baeten, J.C.M., Verhoef, C.: A congruence theorem for structured operational
semantics with predicates. In Best, E., ed.: CONCUR ’93: Proceedings of the 4th
International Conference on Concurrency Theory. Volume 715., Springer-Verlag
(1993) 477–492

[34] Meinke, K.: Universal algebra in higher types. Theoretical Computer Science
100(2) (1992) 385–417

[35] Meinke, K.: Higher-order equational logic for specification, simulation and testing.
In: The 1995 Workshop on Higher-Order Algebra, Logic and Term Rewriting
(HOA ’95). Volume 1074 of Lecture Notes in Computer Science., Springer-Verlag
(1996) 124–143

[36] Möller, B., Tarlecki, A., Wirsing, M.: Algebraic specification of reachable higher-
order algebras. In: Recent Trends in Data Type Specification. Volume 332 of
Lecture Notes in Computer Science., Springer-Verlag (1988) 154–169

[37] Usenko, Y.S.: Linearization in µCRL. PhD thesis, Technische Universiteit Eind-
hoven (TU/e) (2002)

[38] Möller, B.: Algebraic specifications with higher-order operators. In: The IFIP
TC2/WG 2.1 Working Conference on Program Specification and Transformation,
Amsterdam, The Netherlands, North-Holland Publishing Co. (1987) 367–398

[39] Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Springer-Verlag
(1981)

34 Groote, Mathijssen, Reniers, Usenko and Van Weerdenburg

[40] Loeckx, J., Ehrich, H.D., Wolf, M.: Specification of Abstract Data Types. Wiley
(1996)

[41] Klusener, A.S.: Models and Axioms for a Fragment of Real Time Process Algebra.
PhD thesis, Eindhoven University of Technology (1993)

[42] Groote, J.F., Springintveld, J.: Focus points and convergent process operators. A
proof strategy for protocol verification. Technical Report 142, University Utrecht,
Department of Philosophy (1995)

[43] van der Zwaag, M.: The cones and foci proof technique for timed transition
systems. Information Processing Letters 80(1) (2001) 33–40

[44] Groote, J.F., Sellink, M.P.A.: Confluence for process verification. Theoretical
Computer Science 170(1-2) (1996) 47–81

