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1 Introduction

Let k£ be a field. The vector Hermite Padé approrimation problem takes as input
e N € Z-y, the desired order of the approximant;

o F = (fi,..., fm)" € Kk[z]™**, a vector of truncated formal power series, say each
fi € klx]*® of degree bounded by N — 1;

en = (n,...,ny,) € ijl No1]y @ tuple of degree constraints with norm defined by

o= (1 +1) 4 - 4 (2 + 1)

The goal is to compute linearly independant row vectors P = (Py,..., P,) € k[z]**™ such
that
deg<ni deg<nm
—~ = —~ = N
P(z) -F(z) = Pi(x) filz) + -+ Pp(z) fn(x) = O(2™). (1)
When s = 1 and N = ||n| — 1 this is the classical Hermite Padé approximation problem.

Here we allow N to be arbitrary. We describe algorithms for computing an order N genset of
type n: a matrix V' € k[z]**™ such that every row of V is a solution to (1) and every solution
P of (1) can be expressed as a k[x]-linear combination of the rows of V. Ideally, V will be a
minbasis of solutions: V has full row rank, and if n > max; n; then Vdiag(n—nq,...,n—n,,)
is row reduced (e.g., in weak Popov form). To compare with [1], an order N minbasis of
type n will be comprised of those rows of a o-basis (with ¢ = sN') which satisfy the degree
constraints (i.e., have positive defect), and vice versa. For example, the Popov form of the
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order 8 minbasis of type (1,1,1,1,1) for

9027 +222% +422° + 32 + 8723 + 4122 + 35
24 2% +932° + 14 2% + 8723 + 6222 + 152 + 80
F=| 5327+ 7128 +802° +222* + 872 + 902% + 572 + 42 | € Z/(97)[z]**"
47274+ 2328 + 752 + 52t + 6% + T42? + 7220 + 37
T4x"T + 8728 + 4425 +292* + 2% + 7422 + 102 + 36

18
x+47 57 8xr+44 9x+23 93x+ 76

€ Z,/(97)[2]5°.
15 r+18 52x+23 15x+58 93x + 88

The Popov form of the complete o-basis (with o = 8) of F is

[ x+47 57 o8z + 44 9x + 23 93x + 76
15 z4+18 52x + 23 15z + 58 93z + 88
17 86 2+ 77x+16 76z +29 90z + 78 € 7./(97)[x]>*.
44 36 3x+42 22+ 500 +26 85z + 44
|2 22 541 + 94 TB3rx+24 22 +2x+25 |
Recall that o-bases, or minimal approximant bases, are always square and nonsingular m xm
matrices. A o-basis gives a minbasis of type (ny —j, ..., n, —j) for all integer shifts j: as in
the example above some rows in a o-basis may not be solutions to (1). A minbasis of type
(n1,...,n,) gives a minbasis of type (n; — j,...,n, — j) only for all nonnegative integer

shifts j: every row is a solution to (1). Restricting the definition of minbasis and genset to
actual solutions of (1) allows us avoid computation of the full o-basis.

Consider algorithm SPHS from [1] and algorithms M-Basis/PM-Basis from [2]. Let
us assume' that s < m. Each of the calls SPHPS(F(z*)[1,x,...,2° 7, 0,2M°827] n) and
M-Basis/PM-Basis(F, N,n) will compute a o-basis of type n. Algorithm SPHPS has cost
O((m?+ms)(sN)'*€) field operations, while M-Basis and PM-Basis have cost O(m?s“ 2N?)
and O(m“ N'T¢), respectively.

On the one hand, algorithms M-Basis and PM-Basis are particularly efficient when s ~ m
and N is not too large. On the other hand, if s = 1 and N is large, say N = m(d +
1) — 1 where d = ||n||/m — 1, which precisely covers the case of classical Hermite Padé
approximation, the resulting worst case runtime estimates for M-Basis and PM-Basis of
O(m*d?) and O(m*(md)'*€), respectively, seem too high. Indeed, algorithm SHPS from [1]
uses only O(m?(md)'*¢) field operations for this case. Here we observe that algorithms
M-Basis and PM-Basis can be used to compute an order N genset of type n for this case in
time O(m“d?) and O(m“d'™), respectively.

IThis restriction on s is not required but simplifies the cost estimates. Moreover, all the classical appli-
cation of the vector Hermite Padé approximation problem seem to satisfy s < m: see [1, Table 1].

2



We can outline our approach by giving an example of Hermite Padé approximation as in

the last paragraph. Suppose we are starting with the following problem: F € k[z]™*! and
N = ||n|| — 1 where
m/2 m/4 m/8 1
—N— —— N—— ~ =
n=(d,...,d,2d,...,2d,4d,...,4d,...,...,md/2).
Note that ||n|| = ©(mdlogm) for this example. First we transform to a new problem

F € k[z]°0"*1 of the same order but of type i, each element of i bounded by O(||n||/m),
which for this example is O(d logm). Then we transform to a new problem F e k[z]0(m)*0(m)
of type type n with max; n; = max; n;. An order O(||n||/m) genset for F of type A can be
computed with PM-Basis in time O(n®(dlogm)*™) and gives a genset for the original F.
In general, it is possible to compute an order N genset in time O(m®(||n||/m)'*) for
all problems with sN = O(||n||). This seems to cover most cases arising in practice since a

generic problem instance will have no solutions for sN > ||n||, and exactly one solution for
sN = ||n]|| — 1.

2 Reduction to lower order

For convenience, suppose that s = 1, that is, that F € k[z]™*!. Recall that the multi-
index of degree constraints n = (ng,...,n,,) satisfies n;, < N, N the desired order of the
approximants. We will show how to construct an equivalent problem of order d, any d
satisfying max; n; < d < N.

First note that, for any £ > 0, an order N minbasis of type n for F is an order N + k
minbasis of type n for z*F, and vice versa. This shows that, up to the transformation
(N,F) « (N + k,2*F) with k = modp(d — N,d + 1) € [0,d], we may assume without loss
of generality that N > 2d and that d + 1 divides N — d.

Define s := (N —d)/(d+ 1), m:=m+ 35— 1,

5—1

ﬁ::(nl,...,nm,a—l,...,d—l)

and construct the matrix

F | Left(F,d + 1) | Left(F,2(d + 1)) | -+~ | Left(F, N — 2d — 1)
1
F:= 1 mod z? € k[z]™

1

Suppose W € k[z]**™ is an order 2d + 1 minbasis of type n for F. Write W = [ Wi ‘ Ws }
where W, € k[z]**™. We claim that 7 is an order N minbasis of type n for F. To see that
W is a genset it suffices to verify that every row of W is a solution to (1), and in the reverse
direction, every solution P of (1) can be extended to give a solution to the new problem. To
see that Wy is a minbasis it suffices to verify that Wj is row reduced.
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Worked example
We are working over k = Z/(97). The Popov form of the the order 7 minbasis of type
n=(1,1,0,1,1) of
902% +222° +422* +32° + 8722 + 41«
3520 + 24 2% + 9323 + 14 2% + 87z + 62
F=|152°4+802° +532% +712% + 8022 + 222 + 87 | € k[z]**!
90 2% +57a% + 422 + 4723 + 2322 + 751+ 5
| 62° + 7425 + 722 + 3723 + T42? + 87w + 44 |

18
x + 40 20 78 9x+84 1l1x+ 77
6k[m]2X5.
30 r+17 93 32x+9 78x+ 16

For d = 1 the above recipe gives

87x% +4lz 422% + 32+ 87 90x% + 221 + 42 |
1422 +87x+62 242°+93x+ 14 3522 + 24
80224+ 222 +87 5322+ T71x+80 1522 +80x + 53
2322+ 752 +5 4222 +47x+23 9022 +57x +42 | € k[z]™.
TAx? +87x+44 722>+ 37Tx+T4 6224+ Tdx 4+ 72
0 1 0
0 0 1

=5l
I

The Popov form of the order 3 minbasis of type (1,1,0,1,1,0,0) of F is equal to

x+40 20 T8 9z + 84 11x+77‘24 57

e k[z]>*7.
30 x+17 93 32z+9 78x+16|58 21

3 Reduction to smaller degree constraints

Consider the multi-index (ny,...,n,). For b > 0, let ¢, be the function which maps a single
degree bound n; to a sequence of degree bounds, all element of the sequence equal to b except
for possibly the last, and such that ||(n;)| = n; + 1 = ||(¢s(n,))]|. Let len(¢p(n;)) denote
the length of the sequence. For example, we have ¢3(10) = 3,3,2 with len(¢3(10)) = 3,
while ¢5(11) = 2,2,2,2 and len(¢2(11)) = 4. Computing a genset of solutions to (1) can be
reduced to computing an order N genset of type n = (¢p(n1), ..., s(ny)). Corresponding



to n define the expansion/compression matrix

1

l’b+1

S+ Dlen(@p(nn)~1

B = 1 € klx]™™
xb—i—l

x(b+1)(leﬂ(¢b(n2))—1)

where m = > " len(¢y(n;)) = >0 [(n; +1)/(b+ 1)]. Now “expand” to construct

1

_ £ -
fﬂ?bJr1
F :
fi fra bt (len(@p(n1)=1)
F=B| f|= f% ) € klz]™**
: far"*
Jyz D (en(6(n)-1)

Let W € k[z]"*™ be an order N genset of type n for F. Then the “compression” WB €
k[x]**™ is an order N genset of type n for F. In general, W B will not be a minbasis even if
W is. However, because W is a minbasis of type n, and each element of n is bounded by b,
we know that W B has the following very nice property: every approximant P of type n for
F can be expressed as a P = vW B for a vector v over k[z] that has degrees bounded by b.

Note: The construction above is obviously just a partial linearization of the problem.
On the one hand, the choice b = 0 fully linearizes, transforming to an ||n|| X N linear system
over k, thus reducing the problem to computing a left nullspace. On the other hand, the key
point here is that any choice b = Q([||n||/m|) will balance the degree constraints but not
increase significantly the dimension of the problem (i.e., m = O(m)).

Worked example
We are working over k = Z/(97). The Popov form the order 5 minbasis of type (0,1,4) of
9023 +222% +422+ 3
F = 87 2% + 41 2% + 35 € k[z]**!
24 2% 4+ 931 + 14



18
0 1 562%+ 1622+ 272+ 46
1 0 282%+1822 +882+76 | k[z]*.
00 xt

If we apply the above recipe with b = 1 we reduce to a problem

[ 9023 +222% +42x + 3 ]
872% 4+ 4122+ 35
2422 +93x + 14 € k[z]>*!.

9323 + 14 2
0

s
I

If we compute a genset W for F of type (0,1, 1,1,0) we can compress to recover a genset G
for F:

w B G
1 65 50 79x+8 0711 1 65 7923 + 8822 + 59
0 z+45 33 14x-+68 0 1 0 445 142° + 6822 + 33 "
1 |= € klx]*3.
0 18 452 382+94 0 2 0 18 382349422+ 2+ 52
0 0 0 0 1 xt 0 0 x4

Note that although W is a minbasis for F, G is not a minbasis for F, only a genset.
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