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1 An Illustrated Introduction to the Problem

When studying a variety (or scheme) which is singular, many properties may
also be obtained from a non-singular variety which does not differ too much from
the original variety. More precisely, given a variety X this approach requires a
non-singular variety X̃ and a proper birational morphism π : X̃ −→ X which
leaves X \Sing(X) unchanged. In a certain sense we may consider X̃ as a kind
of smooth model of our given variety. X̃ (and the process of finding it) is called
a resolution of singularities or desingularisation of X . There are many known
special cases in which this task can be completed without major difficulties as,
for example, the case of toric varieties, where toric blow-ups allow computation
by combinatorial methods, or the case of normal surfaces where iterating blow-
ing ups of the singular points and normalization suffices. In the general case,
however, this problem has been a central topic in the research of many math-
ematicians over the last century and is up to now only solved in characteristic
zero (on which we focus here), but still open in positive characteristic.
In the case of curves the problem is very accessible to direct methods and has
already been solved (over the complex numbers) in the last decade of the 19th
century with important contributions e.g. by L. Kronecker, M. Noether and A.
Brill. The subsequent step, the case of surfaces, however, already turned out
to be more delicate. Here many contributions have been made by the Italian
School, among others O.Chisini, G. Albnese and F. Severi. But it was the contri-
bution of H.W. Jung (1908), who studied surfaces (embedded in 3-dimensional
space) locally by means of a projection to the plane, which lead to the first
rigorous proof of the existence of resolution of singularities of surfaces over C

by R.J.Walker in 1935. These early contributions all followed an analytic ap-
proach, whereas a more algebraic point of view entered this field of research
with O.Zariski’s work (proof of existence of a resolution of singularities over
algebraically closed fields of characteristic zero for surfaces in 1939 and for 3-
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dimensional varieties in 1944) enabling a more systematic approach. On these
foundations layed by Zariski all newer developments are based to some extent
such as e.g. the contributions in low dimensions by S.Abhyankar (1966) and
J. de Jong (1996) in positive characteristic and, of course, the breakthrough in
characteristic zero, the monumental work of H. Hironaka in 1964 in which he
proved resolution of singularities in any dimension.
In the desire to obtain a better understanding of the very complex proof of
Hironaka which on one hand introduces Standard Bases and involves highly
non-constructive steps on the other hand, new more algorithmic approaches
have evolved since the late 1980s with important contributions by the groups
of E.Bierstone and P.Milman, of O.Villamayor and S.Encinas and by H.Hauser.
Common to all these approaches in characteristic zero is the construction of
the proper birational morphism as a sequence of blowing ups whose center is
determined by means of an induction on the dimension of the ambient space.
Before we outline the structure of this construction in a little more detail, it

seems appropriate to illustrate some technical notions from algebraic geometry
(whose proper definition would be beyond the scope of this extended abstract)
and have a look at an example in the simplest case, the case of curves where the
choice of the center does not pose any problems, since the singular locus is a fi-
nite set of points. In figure 1, two examples of resolutions of curves (with simple
singularities) are shown: in the top row a desingularization is V (x3 − y4) ⊂ C
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is achieved by a single blow up of the singular point, in the bottom row we
see a resolution of the singularity of V (x2 + y4 − y5) which is improved, but
not resolved by the first blow up and requires a second blow up to become
non-singular. Comparing the two resolved curves (as they are embedded in the
respective ambient spaces), we find another difference: in the lower row the
(second) exceptional divisor intersects the curve transversally, in the upper row
the exceptional divisor is tangent to the curve. Here the situation in the lower
row can not be avoided, since a new exceptional divisor and the transformed
curve will always have a common point, but the tangency in the upper row can
be improved by further blow ups as shown in figure 2. In the general case, this
additional goal is expressed as the fact that the exceptional hypersurfaces arising
in the blow ups should be normal crossing (which is roughly speaking the fact
that locally at each point the intersection looks like the intersection of coordi-
nate hyperplanes) and should be normal crossing with the transformed variety.
In a more rigorous formulation the task of embedded resolution of singularities
over a field of characteristic zero can be formulated as

Given a smooth ambient space W and a variety (or scheme) X ⊂W

with ideal sheaf IX ⊂ OW , find a sequence

W = W0

π1←−W1

π2←− · · ·
πr←−Wr

of blow-ups πi : Wi −→ Wi−1 at smooth centers Ci−1 ⊂ Wi−1 such
that

(a) The exceptional divisor of the induced morphism Wi −→ W

has only normal crossings and Ci has normal crossings with it.
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Figure 1: Desingularizations of V (x3−y4) (upper row) and V (x2+y4−y5) (lower
row). Each of the arrows corresponds to one blow up of the ambient space which
corresponds roughly speaking to replacing the center by a projective space Pk of
appropriate dimension k resulting in lines through the center being separated.
The preimage of the center under a blow up is referred to as the exceptional
divisor or exceptional hypersurface of the blow up and is drawn in a red or
purple color in the above images. For each of the above blow ups the center has
been chosen to be the only singular point of the respective curve; only the charts
which contain a singular point or an intersection of the transformed curve with
an exceptional divisor are shown. In the lower row the first exceptional divisor
is no longer visible in the interesting chart, but has an intersection with the new
exceptional divisor in the other chart which is not included here.
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Figure 2: Two further blow ups at the points of tangency allow us to obtain
transversal intersections between the exceptional divisors and the transformed
curve in the example of the upper row of figure 1. One last blow up (which is
not illustrated here) at the point where the 3 lines meet then leads to a normal
crossing situation.

(b) Let Xi ⊂ Wi be the strict transform of X . All centers Ci

are disjoint from Reg(X) ⊂ Xi, the set of points where X is
smooth.1

(c) Xr is smooth and has normal crossings with the exceptional
divisor of the morphism Wr −→W .

(d) The morphism (Wr, Xr) −→ (W, X) is equivariant under group
actions.

2 The General Structure of Resolution Algo-

rithms

From the discussion in the previous section the reader could get the (wrong)
impression that the key issue is the calculation of the blow up, which is in
fact not a big problem since it can be implemented by a single Gröbner Basis
calculation2. After passing to a covering of the newly introduced projective
space by affine charts (to keep the number of variables low), the transforms of
the variety and the ’old’ exceptional divisors can then be determined by ideal
quotients, which are, of course, themselves again Gröbner Basis calculations.
The hard part of the resolution process, however, is the suitable choice of the

center. Intuitively, we would like to proceed by always blowing up the worst
points. But what are the worst points? A first idea would be to pass to the
singular locus and then to its singular locus and so on. Unfortunately, this does
not always improve the situation. For example the singular locus of V (z2−x2y2)
consists of two lines meeting transversally at the origin (see figure 3, right) but

1This is not a typographical error, it is really Reg(X), not Reg(Xi). This condition simply
ensures that the sequence of blow-ups is an isomorphism on Reg(X).

2This calculation involves n+k+1 variables where n is the dimension of the ambient space
and k is the number of generators of the ideal of the center.
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Figure 3: A blow up of the surface V (z2 − x2y2) ⊂ C3 at the origin. The green
hypersurface in the images is not part of the surface itself, but the hypersurface
introduced for the descent in dimension of the ambient space in step (2) below.

blowing up at the origin leads to the same singularity at two different point
(each appearing in precisely one chart) with an exceptional hypersurface added
(see figure 3, left). To improve this singularity it is necessary to blow up with
one of the lines as a center; but as the original situation is symmetric in x and
y, there is no obvious choice between the two lines.
Showing that suitable choices of successive centers for resolving the singularities
of any given (embedded) variety exist is the key point of Hironaka’s work. The
constructive approaches to the choice of the centers, which have been found in
the 1990s, all follow his central idea which can be formulated in several ways.
Here we choose the most algorithmic approach of defining an invariant whose
maximal locus is again a variety and subsequently passing to an appropriate
new ambient space of lower dimension to construct an auxilliary variety based
on the previous maximal locus. Therefore the choice of centers can be divided
into 3 main tasks:

(1) determining the maximal locus of an appropriate invariant for a given
ambient space W and a given variety X ,

(2) finding the new (lower-dimensional) ambient space for a given X ⊂ W

and the previously computed maximal locus,

(3) constructing the new scheme in this ambient space.

The most subtle of these tasks is (2) which is also a key reason that the construc-
tion does not hold in positive characteristic. Due to the constraints in the length
of this extended abstract, we only have room to sketch the required properties
of the hypersurface to be created in step (2) and the idea of the construction of
the new variety in (3), before we state the definition of the main ingredient to
the invariant of step (1).
As the hypersurface in (2) serves as the new ambient space in the induction
on the dimension, it needs to be smooth and it needs to contain the maximal
locus found in step (1). Additionally this second condition has to hold after
any finite number of blowing ups at points inside the maximal locus as long as
the value of the invariant of this locus (computed in the respective transform
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of W ) has not dropped. In order to make sure that the normal crossing con-
ditions on the exceptional divisors are not violated, the new hypersurface also
needs to be normal crossing with a specific subset of the exceptional divisors and
the intersections of the exceptional divisors with the hypersurface need to be
normal crossing (implying the normal crossing property of these divisors after
descending to the new ambient space). These conditions, however, can in gen-
eral not be fulfilled by a single hypersurface for all points of the maximal locus
simultaneously; such a hypersurface only exists locally. Hence the center has to
be constructed locally and the best that can be done is glueing it afterwards,
before the subsequent blow up.
After construction of the new ambient space in step (2), a new scheme has
to be defined which will play the role of our subvariety. This construction is
rather technical and can be done in several ways; common to all is the fact that
choosing the hypersurface in step (2) can basically be seen as fixing a main vari-
able. Locally, after choosing appropriate coordinates, the definition of the new
scheme is then achieved by constructing a new ideal in the following way: the el-
ements of a suitably chosen set of generators of the ideal of the maximal locus3

are considered as polynomials in the main variable with coefficents involving
the remaining variables, the new ideal is generated by appropriate powers and
products of these coefficients.
Up to now we have only considered the induction step on the dimension of
the ambient space and used the invariant of step (1) as a black box. We thus
obtained a general structure of the invariant defining the center which looks like

(invn; invn−1; . . . ),

where invi denotes an invariant being computed w.r.t. an ambient space of
dimension i. What is left to be explained is this invi for a fixed i. Here
again there are several possiblities of which the easiest to explain is of the
structure (ord(IX ), nE) where ord(IX ) denotes the order of the ideal4 defining
the variety/scheme X and nE counts certain exceptional divisors containing the
point at which we want to evaluate. This definition of the ingredients to the
invariant is again local, also due to the fact that for subsequent glueing of the
local pieces, all data has to be intrinsic.

3 Computational Tasks and Solutions

The algorithmic approach described in the previous section provides algorith-
mic proofs of resolution of singularities, but unfortunately there are several
issues which cause problems in a direct implementation (and also made the
very first implementation of a resolution algorithm, which is due to G.Bodnar
and J.Schicho rather inefficient):

3This chosen set of generators of the maximal locus is by no means minimal. Instead it is
chosen in a special way such that it behaves ’well’ under blowing up.

4This can be viewed as a generalization of the order of a power series. It is the maximal k

such that IX , x ⊂ mk
x at the point x where we are evaluating our invariant.
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(a) Dramatic increase of the number of charts even after only a few blowing
ups, because each blowing up introduces n− r new charts where n is the
dimension of the ambient space and r is the dimension of the center.

(b) The hypersurfaces of step (2) only exist locally.

(c) The ingredients of the invariant are of a local nature.

(d) Many of the involved calculations in each step, in particular the blowing
ups, involve Gröbner basis calculations.

(e) Glueing of the final result.

The increase of the number of charts in (a) cannot be avoided, since not passing
to charts would amount to allowing the number of variables to grow dramat-
ically. And the latter has even worse consequences for the time and memory
consumption of the computations than the duplicate work that has to be per-
formed for points appearing in more than one chart. On the other hand, there
are always charts which do not contribute any new information to our resolution
process, e.g. if the transforms of the variety and the exceptional divisors do not
meet any point which is not already appearing in another chart; these charts
can safely be suppressed.
Issues (b) and (c) can be tackled by passing to a suitable open covering which
of course increases the number of charts even more. Therefore it is essential to
glue after computing the maximal locus of the invariant in each dimension and
to glue the centers before blowing up instead of calculating a blow up for each
open set.
Issue (d) already influenced our approach to issue (a), since we wanted to avoid
an increase in the number of variables there. Here there are further impor-
tant changes to be introduced, e.g. blowing up at a center consisting of several
components turns out to be significantly slower than blowing up at each of the
components one after the other. This, of course, leads to a (small) rise in the
number of charts, but the calculations themselves and even the structures of the
calculated objects are simpler - even facilitating subsequent calculations a bit.
Additionally, there are several smaller changes to the calculation of the maximal
locus of the invariant and more structural considerations, like e.g. which excep-
tional divisors and which components of the maximal locus to take into account
at what step, that also contribute to keeping things as efficient as possible.
The crucial issue for applications of this algorithm is of course the glueing after
termination of the algorithm, but it is again beyond the scope of this extended
abstract to discuss the particular issues involved in this point.

References

[1] Bierstone,E., Milman,P.:Desingularization Algorithms I: The Role of
Exceptional Divisors, Mosc. Math. J. 3 (2003), 751-805

7



[2] Bravo,A., Encinas,S., Villamayor,O.:A Simplified Proof of Desingulari-
sation and Applications, Rev. Math. Iberoamericana 21 (2005), 349–458

[3] Bodnár,G., Schicho,J.: Automated resolution of singularities for hyper-
surfaces, J. Symb. Comp. 30(4), 299–309 (2000)
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