
06121 Abstracts Collection

Atomicity: A Unifying Concept in Computer

Science

� Dagstuhl Seminar �

Cli�ord B. Jones1, David Lomet2, Alexander Romanovsky3 and Gerhard
Weikum4

1 University of Newcastle, GB
Cliff.Jones@ncl.ac.uk

2 Microsoft Research - Redmond, US
lomet@microsoft.com

3 University of Newcastle, GB
alexander.romanovsky@ncl.ac.uk

4 MPI für Informatik, DE
weikum@mpi-sb.mpg.de

Abstract. From 19.03.06 to 24.03.06, the Dagstuhl Seminar 06121 �Atom-
icity: A Unifying Concept in Computer Science� was held in the Interna-
tional Conference and Research Center (IBFI), Schloss Dagstuhl. During
the seminar, several participants presented their current research, and
ongoing work and open problems were discussed. Abstracts of the pre-
sentations given during the seminar as well as abstracts of seminar results
and ideas are put together in this paper. The �rst section describes the
seminar topics and goals in general. Links to extended abstracts or full
papers are provided, if available.

Keywords. Formal methods, dependability, fault tolerance, atomic ac-
tions, databases, advanced transactional models, system structuring

06121 Executive Summary � Atomicity: A Unifying
Concept in Computer Science

This seminar was based on and continued the interaction of di�erent computer-
science communities that was begun in an earlier Dagstuhl seminar in April
2004. Both seminars have aimed at a deeper understanding of the fundamental
concept of atomic actions and their roles in system design, execution, model-
ing, and correctness reasoning, and at fostering collaboration, synergies, and a
uni�ed perspective across largely separated research communities. Each of the
two seminar brought together about 30 researchers and industrial practition-
ers from the four areas of database and transaction processing systems, fault
tolerance and dependable systems, formal methods, and to smaller extent, hard-
ware architecture and programming languages. The interpretations and roles of

Dagstuhl Seminar Proceedings 06121
Atomicity: A Unifying Concept in Computer Science
http://drops.dagstuhl.de/opus/volltexte/2006/836

2 C. B. Jones, D. Lomet, A. Romanovsky and G. Weikum

the atomicity concept(s) vary substantially across these communities. For ex-
ample, the emphasis in database systems is on algorithms and implementation
techniques for atomic transactions, whereas in dependable systems and formal
methods atomicity is viewed as an intentionally imposed or postulated property
of system components to simplify designs and increase dependability. Neverthe-
less, all four communities share the hope that it will eventually be possible to
unify the di�erent scienti�c viewpoints into more coherent foundations, system
development principles, design methodologies, and usage guidelines.

Joint work of: Jones, Cli�ord B.; Lomet, David; Romanovsky, Alexander;
Weikum, Gerhard

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2006/835

06121 Report: Break Out Session on Guaranteed
Execution

Calton Pu (Georgia Institute of Technology, USA)

The break out session discussed guaranteed properties during program execu-
tion. Using a work�ow example application, we discussed several research topics
that form part of the guaranteed properties, including declarative speci�cations,
generation of work�ow program, generation of invariant guards, automated fail-
ure analysis, automated repair, and automated recon�guration of work�ow.

Keywords: Guaranteed properties, declarative speci�cations, generation of
work�ow program, generation of invariant guards, automated failure analysis,
automated repair, automated recon�guration

Joint work of: Pu, Calton; Johnson, Jim; de Lemos, Rogerio; Reuter, Andreas;
Taylor, David; Zakiuddin, Irfan

Development of the Simpson's 4-slots algorithm

Jean-Raymond Abrial (ETH Zürich, CH)

The complete formal development of Simpson's 4-slots algorithms is presented
by means of a number of re�nements.

In an abstract initial model, the two participants in this algorithm, a writer
and a reader, are de�ned by means of the properties of their traces.Their actions
on these traces are performed at once.

The various re�nements then consist in introducing more and more con-
currency between the participants by cutting these initial actions into smaller
atomic actions. The development has been entirely proved.

http://drops.dagstuhl.de/opus/volltexte/2006/835

Atomicity: A Unifying Concept in Computer Science 3

BPQL - A Query Language for Business Processes

Catriel Beeri (The Hebrew University of Jerusalem, IL)

This talk presents BPQL, a novel graphical query language for querying Business
Processes, implemented as a set of cooperating web services. BPQL is based on
an intuitive model of business processes, an abstraction of the emerging BPEL
(Business Process Execution Language) standard. It allows users to query busi-
ness processes visually, in a manner analogous to how such processes are typically
speci�ed, and can be employed in a distributed setting, where process compo-
nents may be provided by distinct providers(peers).

The talk describes the query language as well as its underlying formal model.
Special emphasis is given to the following subjects: (a) The analogy between
the speci�cation and querying of business processes, and (b) the use of graph
grammars to represent potentially in�nite query results by a �nite and concise
representation. The current implementation, using Active XML andWeb services
is brie�y described.

Joint work of: Beeri, Catriel; Eyal, Anat; Kamenkovich, Simon; Milo, Tova

SOS is Good For You

Joey W. Coleman (University of Newcastle, GB)

A Structural Operational Semantics (SOS) model of a restricted language is pre-
sented along with the context in which it was developed. The language includes
concurrency and allows for a very high degree of interference between parallel
portions of a program in the language. In the larger context, this moel is used
to extend a logical frame in a manner similar to that of Nipkow and Melham.
With the Rely/Guarantee framework developed by Jones, this allows program
developments to be directly justi�ed in the combined logical frame.

Keywords: Structural operational semantics, rely/guarantee reasoning

Spheres of Control II

Charles T. Davies (San Luis Obispo, USA)

This talk describes transaction processing at the application level and assumes
that the operating system or human is something on the other side of a wall that
has a portal through which requests and responses may be propagated. It does
not mention any speci�c programming language since that would be below the
application functional level. The transactions are viewed as the application unit
of process atomicity. The main topics covered are ad hoc transactions, audit: the
act of veri�cation, transaction creation and generation of transaction data.

4 C. B. Jones, D. Lomet, A. Romanovsky and G. Weikum

Allocating Isolation Levels to Transactions

Alan Fekete (The University of Sydney, AU)

Serializability is a key property for executions of OLTP systems; without this,
integrity constraints on the data can be violated due to concurrent activity.

Serializability can be guaranteed regardless of application logic, by using
a serializable concurrency control mechanism such as strict two-phase locking
(S2PL); however the reduction in concurrency from this is often too great, and
so a DBMS o�ers the DBA the opportunity to use di�erent concurrency control
mechanisms for some transactions, if it is safe to do so.

However, little theory has existed to decide when it is safe! In this paper, we
discuss the problem of taking a collection of transactions, and allocating each
to run at an appropriate isolation level (and thus use a particular concurrency
control mechanism), while still ensuring that every execution will be con�ict
serializable. When each transaction can use either S2PL, or snapshot isolation,
we characterize exactly the acceptable allocations, and provide a simple graph-
based algorithm which determines the weakest acceptable allocation.

Full Paper:
http://doi.acm.org/10.1145/1065167.1065193

See also: Proc ACM Conference on Principles of Database Systems, 2005, pp
206-215

Relaxed Currency Serializability for Mid-Tier Caching and
Replication

Alan Fekete (The University of Sydney, AU)

Many applications, such as e-commerce, routinely use copies of data that are not
in sync with the database due to heuristic caching strategies used to enhance
performance. We study concurrency control for a transactional model that allows
update transactions to read out-of-date copies. Each read operation carries a
freshness constraint that speci�es how fresh a copy must be in order to be
read. We o�er a de�nition of correctness for this model and present algorithms
to ensure several of the most interesting freshness constraints. We outline a
serializability-theoretic correctness proof and present the results of a detailed
performance study.

Keywords: Lazy propagation, freshness constraint, drift constraint, limited
divergence

Joint work of: Berstein, Philip; Fekete, Alan; Guo, Hongfei; Ramakrishnan,
Raghu; Tarma, Pradeep

See also: Proc ACM Sigmod 2006, to appear

http://doi.acm.org/10.1145/1065167.1065193

Atomicity: A Unifying Concept in Computer Science 5

Atomic Exception Handling

Christof Fetzer (TU Dresden, D)

Exception and error handling is often buggy. To support this statement, I will
describe some measurements regarding the atomicity of existing exception han-
dling code. A simple atomic block that rolls back internal and external state on
exception might be a simple and intuitive abstraction for exception handling.
However, realistically programmers will most likely want to have some control
over what is rolled back (internal and/or external state) and how to deal with
external actions. This will require some less elegant and potentially more di�cult
mechanisms.

Keywords: Exception handling

The Case for Handling Inconsistency Caused by Errors

Wilhelm Hasselbring (Universität Oldenburg, D)

Errors are a fact of life. In requirements engineering, for instance, it is well
accepted that we have to live with inconsistent speci�cations; we need measures
to handle inconsistency caused by errors.

Database textbooks generally explain that integrity constraints should be
satis�ed at all times because they capture the set of all legal databases. Never-
theless, data inconsistency is a phenomenon that often occurs in practice. The
most common reason for inconsistency is the need to integrate heterogeneous, in-
dependent data sources: di�erent databases that are consistent by themselves can
contain inconsistent information about the same real-world object. The con�icts
are revealed only when the data is brought together in an integrated database. In
such situations, it is of practical importance to know how to deal with violations
of integrity constraints. In general, there is no single best way to restore consis-
tency, leaving us with a multitude of possible repairs. Domain-speci�c approaches
are required: in hospital information systems, for instance, data is often added,
but only seldom changed. Delays in inserting data may cause incomplete, but
not contradictory data. Fault-tolerance and self-healing/self-stabilizing systems
address the problem of handling errors, i.e. inconsistent states. EAI patterns
emphasize asynchronous updates. In Software Engineering, software architec-
tures with redundancy for enabling fault tolerance are designed. Programming
languages provide mechanisms for exception handling.

In this presentation, I'll discuss various issues of handling inconsistency,
and some related topics that are investigated in our graduate school TrustSoft
(http://trustsoft.uni-oldenburg.de).

Keywords: Inconsistency, Error handling, Trustworthy Software Systems

References:
[1] Hasselbring, W., Reussner, R.: Toward trustworthy software systems. IEEE

Computer 39 (2006) 91-92

6 C. B. Jones, D. Lomet, A. Romanovsky and G. Weikum

Atomicity in a timed world

Holger Hermanns (Universität des Saarlandes, D)

This talk discusses atomicity in the context of process algebra and operational
semantics. After some general remarks, I plan to focus on the question how
atomicity is � or is not � a�ected by real-time and by probabilistic phenomena.

Overview of Selected Research Topics at MSR Cambridge

Tony Hoare (Microsoft Research UK, GB)

Some Concurrency research at Cambridge England � by Tony Hoare

Byron Cook and Josh Berdine on termination detection.
Loops that go on forever are a menace, especially in kernel mode. A tool is

under development to detect the risk so that the programmer can avert it. It
has been applied successfully to several Windows device drivers, and may �nd
wider application in this area.

Marc Shapiro and Viktor Vafeiadis on Rely/guarantee proofs.
The spread of multi-core architecture provides a strong motive for ingenious

concurrent algorithms that exploit interleaving of individual store accesses from
multiple threads, without using locks for concurrency control. Many such algo-
rithms have been published by researchers, and are subject to formal veri�cation.
Rely and guarantee conditions play a role in concurrent programming proofs,
similar to that of preconditions and postconditions in sequential programming.

Tim Harris and Simon Peyton Jones on Software Transactional
Memory.

STM provides a high level language programmer (e.g., Java or Haskell) with
a facility to declare that a block of code is a conditional critical region. The
whole region will be executed atomically as if it were a single store access. It is
translated into a transaction that runs optimistically without a lock, and either
commits atomically or aborts if interference has been detected. This facility
greatly facilitates the design of concurrent algorithms and their proofs, while
maintaining most of the e�ciency of �ne-grained lock-free execution.

Georges Gonthier on the reader/writer lock in Windows Kernel.
The existing reader/writer lock in Windows kernel has been highly optimised

for e�ciency. It has been modelled abstractly in Leslie Lamport's logic TLA+,
and successfully model-checked. An analysis of fairness properties has lead to
suggestions for improving responsiveness.

Andrew Kennedy on the CLR Class Loader.
There are complex dynamic loading rules for Classes in languages such as

Cª# and Java. Because of heavy disc loading, these must be implemented con-
currently. Control of concurrency involves hundreds of locks; to avoid deadlock,
these are governed by a strict order of acquisition.

Atomicity: A Unifying Concept in Computer Science 7

Peter O'Hearn and Matthew Parkinson on Separation Logic.
Separation logic is a convenient way of writing assertions that implicitly

claim ownership of the objects on which a thread is operating. A tool (Small-
foot) is under development to o�er automatic proof of the necessary veri�cation
conditions.

Scoping Mechanism for Mobile Agent Systems

Alexei Iliasov (University of Newcastle, GB)

The presentation describes the scoping mechanism implemented by Cama (Con-
text-Aware Mobile Agents) .The Cama framework is intended for developing
mobile applications built using the agent paradigm. The framework provides a
powerful set of abstractions along with a supporting middleware and adaptation
layer that allow developers to address the main characteristics of mobile applica-
tion: openness, fault tolerance, asynchronous and anonymous communication, as
well as device and code mobility. Cama ensures disciplined system development
by enabling recursive system structuring using scope, agent, role, and location
abstractions. It also provides fault tolerance through exception handling and
agent coordination in an open dynamic environment. The framework is devel-
oped for constructing large mobile agent applications and provides an e�ective
highly-scalable middleware.

Both the Cama middleware and the adaptation layer are available as open
source software.

Keywords: Mobile agents, Linda, Coordination

Joint work of: Iliasov, Alexei; Romanovsky, Alexander

AO Challenge - Implementing the ACID properties for
Transactional Objects

Jörg Kienzle (McGill University - Montreal, CA)

This talk presents a challenge case study to the aspect-oriented community: en-
suring the ACID properties (atomicity, consistency, isolation and durability) for
transactional objects. We de�ne a set of ten base aspects, each one providing a
well-de�ned reusable functionality. The base aspects are simple, yet have com-
plex dependencies among each other. We then show how these base aspects can
be con�gured and composed in di�erent ways to implement di�erent concurrency
control and recovery strategies. This composition is delicate: some aspects con-
�ict with each other, others have to be recon�gured dynamically at run-time. We
believe that this case study can serve as a benchmark for aspect-oriented soft-
ware development, in particular for evaluating the expressivity of aspect-oriented
programming languages, the performance of aspect-oriented programming envi-
ronments, and the suitability of aspect-oriented modeling notations.

8 C. B. Jones, D. Lomet, A. Romanovsky and G. Weikum

Recovery from *Bad* User Transactions

David Lomet (Microsoft Research, USA)

User written transaction code is responsible for the *C* in ACID transactions,
i.e., taking the database from one consistent state to the next. However, user
transactions can be �awed and lead to inconsistent (or invalid) states. Data-
base systems usually correct invalid data using *point in time* recovery, a costly
process that installs a backup and rolls it forward. The result is long outages and
the *de-commit* of many valid transactions, which must then be re-submitted,
frequently manually. We have implemented in our transaction-time database sys-
tem a technique in which only data tainted by a �awed transaction and trans-
actions dependent upon its updates are *removed*. This process identi�es and
quarantines tainted data despite the complication of determining transactions
dependent on data written by the �awed transaction. A further property of our
implementation is that no backup needs to be installed for this because the prior
transaction-time states provide an online backup.

Joint work of: Lomet, David; Vagena, Zografoula; Barga, Roger

See also: 2006 SIGMOD Conference, Chicago, IL (June, 2006)

A Derivation of RDCSS

Stephan Merz (INRIA Lorraine & LORIA - Nancy, F)

Lock-free data structures have been proposed for implementing data structures
that are concurrently accessed by multiple threads. They promise to avoid con-
tention at mutexes that ensure single-thread access to the data structure, with-
out having to manage �ne-grained locks, which are error-prone. Several authors
have suggested that the design of lock-free data structure is simpli�ed by a multi-
word compare-and-swap operation (CASN). In a paper at DISC 2002, Harris,
Fraser, and Pratt have suggested an e�cient implementation of CASN on top
of single-word compare-and-swap (CAS1). In order to verify this algorithm, we
specify a linearizable memory in TLA+, and prove the implementation to be a
correct re�nement of this high-level speci�cation, re�ning atomicity. Automatic
�rst-order SMT (satis�ability modulo theories) solvers appear to be particularly
suited to the veri�cation conditions generated by this case study. We hope to
be able to completely automate this proof and to generalize this approach to
similar problems.

Joint work of: Fejoz, Loic; Merz, Stephan

Atomicity: A Unifying Concept in Computer Science 9

Atomicity and the Commutativity of Actions

Louise Moser (Univ. California - St. Barbara, USA)

Atomic transactions are one of the great successes of modern computing. They
have allowed the construction of large complex applications of high reliability
and have eased the programming of the applications. Considerable ingenuity
has been applied to maintaining the atomicity of transactions as systems scale
in size and concurrency, with sophisticated strategies for locking, ordering and
optimism.

Unfortunately, atomicity becomes more di�cult and more expensive as sys-
tems become more distributed. Recent attempts to extend transactions into
distributed environments without incurring such costs, such as compensating
transactions, have adversely a�ected the atomicity of distributed activities.

In many circumstances, much of the value of atomicity derives not from atom-
icity itself but from the separation of activities that is facilitated by atomicity.
We propose a strategy for the separation of activities based on commutativity of
actions rather than on atomicity of transactions. The operations of an activity
on a data item (record) are preceded by a special action that imposes constraints
on subsequent actions of that activity on that data item. The constraints suf-
�ce to ensure that those subsequent actions commute with the actions of other
concurrent activities that operate on the same data item.

A corresponding concluding action follows the activity's operations on the
data item. The preceding action and the concluding action can be strictly local
to the data item. This strategy based on commutativity of actions is applicable
to many common and useful activities.

Joint work of: Melliar-Smith, P. Michael; Moser, Louise

Beyond Harris and Fraser: Nested Transaction for Java

J. Eliot B. Moss (Univ. of Massachusetts - Amherst, USA)

Describes possible closed and open nesting constructs for Java, with discussion
of hoped-for semantics and sketch of possible directions at formalizing the se-
mantics. It is mostly intended to provoke discussion, re�nement of concepts, and
formalization.

Keywords: Open nesting, closed nesting, nested transactions, atomic actions,
Java

10 C. B. Jones, D. Lomet, A. Romanovsky and G. Weikum

Shades of Atomicity in Object-Oriented Programming

Arnd Poetzsch-He�ter (TU Kaiserslautern, D)

Modern object-oriented programming languages support multi-threading and
provide locking mechanisms for synchronization. However, the underlying con-
currency models are very complicated, mainly to enable compiler optimizations
and to exploit parallel computer architectures. In order to understand and receive
an expected behavior of a concurrent program, the application programmer has
to ensure correct synchronization which is not easy to prove. Several higher-level
language concepts are currently investigated to simplify multi-threaded object-
oriented programming, in particular transaction mechanisms, atomic methods,
and asynchronous methods.

Our goal is to combine such techniques with ownership structures for the heap
to get more �ne grained atomicity. Ownership techniques hierarchically structure
the heap into encapsulated regions of objects that we call compound objects.
We proposed two possible semantics for concurrent methods calls on compound
objects. Weak compound object atomicity guarantees that multi-threading does
not violate the consistency of compound objects, that is, their implementation
invariants. It does not provide any serialization guarantees for calls going to other
compound objects. In particular, if a thread T working in compound object C
makes a call to another compound D, it might see a di�erent state of C on return
from D. With compound object atomicity, the second, stronger notion, a method
call to C performs all actions within C atomically, but the actions of external
calls need not be atomic.

Keywords: Concurrency, object-oriented programming, atomicity, ownership

A (Transaction-Inspired) Defence against TOCTTOU
Attacks: The EDGI Approach

Calton Pu (Georgia Institute of Technology, USA)

We describe the TOCTTOU (Time-of-Check-To-Time-Of-Use) problem, char-
acterized by a pair of �le object access (check and use) by a victim process
and simultaneously an attacker access to the same �le object in-between the
check/use steps. An abstract model of the TOCTTOU problem (called STEM)
enumerates all the potential �le system call pairs (called exploitable TOCT-
TOU pairs) that form the check/use steps. When applied to POSIX and Linux,
STEM shows that Linux contains more than 200 ex-ploitable TOCTTOU pairs
and POSIX more than 400. A detection framework and tools for Linux found
previously unreported TOCTTOU vulnerabilities in often-used system utilities
such as vi and emacs. A defense mechanism based on STEM, called EDGI, works
by preventing �le object creation and removal by other attacker processes during
process execution. We discuss the in�uence of atomicity concept in the EDGI ap-
proach as an example of useful guaranteed execution properties that are weaker
than atomicity.

Atomicity: A Unifying Concept in Computer Science 11

Keywords: TOCTTOU, �le system vulnerabilities

Joint work of: Pu, Calton; Wei, Jinpeng

Database interfaces for replication support

Luis Rodrigues (University of Lisboa, P)

Database replication is a key technology to o�er highly available services. Two
main architectural options have been followed in the past to implement database
replication:

- The "in-core" approach consists in augmenting the database kernel with
support for replication. This typically involves the implementation of specialized
replication strategies that are hard to maintain as the database kernel evolves.

- The "middleware" approach implements the replication protocols at the
middleware layers, using the underlying database as a black box. This often
requires the middleware to reimplement several of the functionalities already
implemented at the database level.

The GORDA project is a EU funded research project that intents to foster
database replication as a means to address the challenges of trust, integration,
performance, and cost in current database systems underlying the information
society. As a step in this direction, it aims at de�ning standard interfaces, to
be exported by database vendors, that allow replication protocols to be logically
decoupled from the database kernel, regardless how they are bundled in the �nal
product.

This talk will motivate the GORDA API currently under development and
illustrate its use for di�erent replication strategies.

Joint work of: Rodrigues, Luis; Pereira, José; Correia, Alfrânio; Carvalho,
Nuno; Guedes, Susana; Oliveira, Rui

Dependable Systems Perspective (Atomic Manifesto) - a
very brief introduction

Alexander Romanovsky (University of Newcastle, GB)

This brief talk introduces the issues related to dependability and atomicity as
they were summarised in the Atomic Manifesto. The intention is to describe to
the partially new audience the vision of the Atomicity I people. Dependabil-
ity is understood as the reliance that can be justi�ably placed on the system.
The main means of achieving dependability are rigorous design, fault tolerance,
veri�cation and validation and system evaluation. It is clear that all the Semi-
nar attendees work on dependability (probably without realising it) because the
users are solely interested in system dependability. In the context of dependabil-
ity atomicity has two main meanings: it ensures error con�nement as well as the

12 C. B. Jones, D. Lomet, A. Romanovsky and G. Weikum

atomic system results or the atomic views on system evolution. To design fault
tolerant applications we need to use atomic actions as structuring units hid-
ing and encapsulating system state and behaviour and by doing these con�ning
errors. To ensuring consistent views of several distributed processes on system
evolution/changes (including failures of various assumed types) the dependabil-
ity community has been working on developing atomic commitment and atomic
multicast protocols, which represent particular cases of the general consensus
problem. It is proven that this problem does not have general solutions for asyn-
chronous systems with single process failure. Component based development of
dependable systems is greatly simpli�ed if the components are atomic in a sense
that they do not have side e�ects. Atomic component composition can rely on
both component interfaces and speci�cations of component interactions.

Keywords: Dependability, atomicity, atomic actions, consensus problem, error
con�nement, component composition

Exception Handling and Atomicity

Alexander Romanovsky (University of Newcastle, GB)

This talk was prepared before the seminar but was not given. It brie�y introduces
exception handling as the most general means for achieving application-speci�c
recovery and system structuring. Exception handling means are employed dur-
ing application development: architecting, modelling, design, implementation.
Exception handling can be successfully used when backward recovery is either
not applicable or prohibitively runtime expensive (control systems, web services,
virtual organisations, e-science/grid, mobile systems, and many more). Forward
Not Backward! Exception handling scopes need to be atomic to ensure that
all errors are con�ned and that only well-de�ned known outcomes are reported.
These outcomes are ALL (normal outcome), NOTHING (abort exception Ea) or
WELL-DEFINED SOMETHING (more exceptions E1, E2, etc.). The structur-
ing units of system design are atomic actions (atomic operations, conversations,
CA actions, ACID transactions, etc.). Exception handling being an application
level mechanism can deal in a consistent way with weaker forms of atomicity:
information smuggled in action, information smuggled out, runaway participants
of atomic actions, belated action participants, external components which cannot
guarantee ACID access, etc.

Keywords: Exception handling, atomic actions, exceptional outcomes, system
structuring

Atomicity: A Unifying Concept in Computer Science 13

Compensation handling

Alexander Romanovsky (University of Newcastle, GB)

How to help application programmers to write fault tolerant systems using ex-
ception handling, abort and compensation? We are o�ering programmers too
many techniques for recovery. Error recovery is too complex and is known to
be error prone. The mess needs cleaning up. We need to understand if these
mechanisms work at di�erent levels, deal with di�erent faults, incur di�erent
cost, etc. And, more generally, how to use them together and what are the right
combinations. It is clear that not everything can be or needs to be aborted or
compensated for. We do not live in such a world, compensation is obviously not
enough. Exception handling is the most general technique but in many situations
we need to use compensation and/or abort. The choice of the right mixture of
abort, compensation and exception handling is application speci�c.

Keywords: Application fault tolerance, exception handling, compensation,
abort

Isolation Levels in Federated Environments

Ralf Schenkel (MPI für Informatik - Saarbrücken, D)

Atomicity and isolation of transactions are key requirements of advanced appli-
cations in federated systems consisting of distributed and heterogeneous com-
ponents. While all existing federated systems support atomicity using the two-
phase commit protocol, they lack support for federated concurrency control.
Many possible solutions have been proposed in the literature, but they failed to
make impact on real systems because they completely ignored the widely used
concept of isolation levels, which o�er optimization options to applications at
the cost of less rigorous control over data consistency.

We discuss how global serializability can be guaranteed even in the presence
of weaker isolation levels at the component systems. For the commonly used
isolation level Snapshot Isolation, we present several algorithms for federated
concurrency control. For situations in which weaker consistency is su�cient, we
show how retricted isolation levels can be supported for global transactions.

Keywords: Isolation levels, snapshot isolation, federated databases

14 C. B. Jones, D. Lomet, A. Romanovsky and G. Weikum

The HO model and dogmas in distributed fault tolerant
computing

André Schiper (EPFL - Lausanne, CH)

We start by pointing out two dogmas that have appeared over the years in
distributed fault tolerant computing. Then we show their drawbacks in the con-
text of agreement problems (e.g., consensus), and we present a new computional
model, the HO model, that frees us from these dogmas and uni�es all benign
faults. The advantage of the HO model is illustrated on consensus.

Keywords: Consensus, system model, fault models

Joint work of: Charron-Bost, Bernadette; Schiper, André

Towards Exploiting Meta-Programming for Web Services

Gottfried Vossen (Universität Münster, D)

The management of procedural data has regained interest in recent years, due to
an increased exploitation of database concepts in novel applications such as the
Web. We give a quick survey of several languages for "meta-programming" data-
bases, i.e., query languages for databases containing queries. In particular, we
discuss Meta-SQL, which assumes that stored queries are represented in XML,
and that XSLT is used as a manipulation sublanguage. Since just a few features
need to be added to SQL to turn it into a full meta-query language, we try to
exploit the approach for specifying, executing, and (ultimately) composing Web
services. We show our initial attempts in this direction by simulating relational
transducers in "Service SQL."

Keywords: Meta-programming, Web services

From (Security) Protocol to Enterprise Network
Infrastructure (Security) Analysis

Christoph Weidenbach (MPI für Informatik - Saarbrücken, D)

Atomicity violations in (security) protocols often result in attack opportunities.
We propose �rst-order logic theorem proving as a paradigm where such vulner-
abilities can be automatically detected.

Furthermore, the underlying �rst-order modelling can be extended from sin-
gle protocol analysis to cope with an enterprise network infrastructure including
routing, �rewalling, and higher level services.

Atomicity: A Unifying Concept in Computer Science 15

Formal Development of Distributed Transactions for
Replicated Databases using Event B

Divakar Yadav (Univ. of Southampton, GB)

System availability is improved by the replication of data objects in a distributed
database system. However, during updates, the complexity of keeping replicas
identical arises due to failures of transactions. Event B is a formal technique
which provides a framework for developing mathematical models of distributed
systems by rigorous description of the problem, gradually introducing solutions
in re�nement steps, and veri�cation of solutions by discharge of proof obligations.

In this talk, I present a formal development of a distributed system using
Event B that ensures atomic commitment of distributed transactions consisting
of communicating transaction components at participating sites. This formal
approach carries the development of the system from an initial abstract spec-
i�cation of transactional updates on a one copy database to a detailed design
containing replicated databases in re�nement. Through re�nement we verify that
the design of the replicated database con�rms to the one copy database abstrac-
tion.

Keywords: Formal Method, Transactions, Replicated Database, Event B

Joint work of: Butler, Michael; Yadav, Divakar

Architectural Recon�guration using Coordinated Atomic
Actions

Rogerio de Lemos (University of Kent, GB)

The provision of system services despite the presence of faults is known as fault
tolerance. One of its associated activities is fault handling, which aims to prevent
the reactivation of already located faults. System recon�guration, one of the steps
of fault handling, is a complex cooperative activity involving several participants,
thus should be developed in a structured fashion. This position paper describes
how coordinated atomic actions (CA actions) and exception handling can be
applied to the architectural recon�guration of systems.

Keywords: Fault tolerance, fault handling, dynamic recon�guration, software
architecture

	06121 Abstracts Collection Atomicity: A Unifying Concept in Computer Science --- Dagstuhl Seminar ---
	 Clifford B. Jones, David Lomet, Alexander Romanovsky and Gerhard Weikum

