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Abstract

Slope selection, i.e. selecting the slope with rank k
among all

(
n
2

)
lines induced by a collection P of points,

results in a widely used robust estimator for line-
fitting. In this paper, we demonstrate that it is possi-
ble to perform slope selection in expected O(n·log2 n)
time using only constant extra space in addition to the
space needed for representing the input.

1 Introduction

Computing a line estimator, i.e., fitting a line to a
collection P of n data points {p1, . . . , pn} in the plane
is a frequent task in statistical analysis. A frequently
used robust line estimator is the so-called Theil-Sen
estimator (see [13] and the references therein) which
considers all

(
n
2

)
lines induced by the points in P and

selects the line with median slope. This problem is
also known as the (median) slope selection problem
and has been shown to exhibit an Ω(n · log2 n) lower
bound [6]. Several deterministic algorithms for solv-
ing this problem in optimal O(n · log2 n) running time
have been presented [5, 6, 10], however, as noted by
Matoušek et al. [13], they are based on relatively com-
plicated concepts such as parametric search, sorting
network, expander graphs, or cuttings. More practical
approaches have resulted in randomized algorithms
with expected O(n · log2 n) running time [7, 12, 15].

The Model The goal of investigating space-efficient
algorithms is to design algorithms that use very little
extra space in addition to the space used for represent-
ing the input. The input is assumed to be stored in
an array A of size n, thereby allowing random access.
We assume that a constant size memory can hold a
constant number of words. Each word can hold one
pointer, or an O(log2 n) bit integer, and a constant
number of words can hold one element of the input
array. An in-place algorithms uses O(1) extra words
of memory. Recently, a number of in-place algorithms
have been designed for solving geometric problems—
see, e.g., [1, 2, 3, 4, 16].
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In addition to theoretical considerations, one reason
for investigating space-efficient algorithms is that they
have the potential of using the different stages of hier-
archical memory, e.g., caches, to a much higher degree
of efficiency. Another motivation, especially for de-
signing algorithms for statistical data analysis, comes
from the recently increased interest in sensor networks
where small-scale computing devices are used to col-
lect large amounts of data. Since the memory of such
sensor devices usually is very limited, and since trans-
mitting data is much more costly than local computa-
tion, it is desirable to process as much data as possible
locally before transmitting (intermediate) results.

Our Results In this paper we show how to solve
the slope selection problem in expected optimal
O(n log2 n) time while at the same time using only
constant extra space. Our algorithm follows the ap-
proach of Matoušek [12], and, in the course of im-
plementing his algorithm in-place, we also devise an
in-place variant of the so-called randomized interpola-
tion search technique. This variant, together with an
algorithmic subroutine for efficiently constructing and
storing a set of randomly sampled intersections, is of
independent interest, since it can be used as a substi-
tute for Megiddo’s parametric search technique [14].

2 Randomized Interpolation Search

In the following, the slope selection problem is studied
in the dual setting where each point (x, y) is identified
with the line {(ξ, υ) | υ = x · ξ − y} and vice versa.
Selecting the k-th smallest slope is dual to the follow-
ing problem: Given a set of n lines in the plane, find
the k-th leftmost intersection point induced by the
arrangement of the lines. Since the duality transform
can be performed in an implicit way, we will assume
that our input is given as a set P of lines in the plane.

Since it is infeasible to compute all Θ(n2) intersec-
tions induced by P, the algorithm of Matoušek [12]
maintains a vertical strip 〈b, e〉 := [b, e]×IR ⊂ IR2 that
is guaranteed to contain the k-th smallest intersection
point. For a parameter r (to be defined later), the al-
gorithm first constructs a sample R of size r drawn
from the intersections inside 〈b, e〉. It then selects two
intersections from R whose x-coordinates are used to
construct a (narrower) candidate strip 〈b′, e′〉. The al-
gorithm then checks whether 〈b′, e′〉 indeed contains
the k-th smallest intersection point. If this is not the
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case, the process is repeated for 〈b, e〉 but using a new
sample R, otherwise the algorithm iterates with the
refined strip 〈b′, e′〉. The iteration terminates when
the number |I(b, e)| of intersections within 〈b, e〉 is no
larger than r: in this case, the k-th leftmost intersec-
tion point can be computed directly by enumerating
all intersections in 〈b, e〉 and selecting the appropriate
one. This refinement strategy is referred to as ran-
domized interpolation search—see [12]. The efficiency
of the resulting algorithm for slope selection is based
upon the following lemma which (applied iteratively)
implies that the number |I(b, e)| of intersections that
lie inside 〈b, e〉 can be reduced to O(r) using an ex-
pected constant number of iterations:

Lemma 1 (Lemma 2.1 in [13]) Given a set of
numbers Θ = {θ1, θ2, . . . , θN}, an index k (1 ≤ k ≤
N), and an integer r > 0, we can compute in O(r)
time an interval [θlo, θhi], such that, with probability
1−1/Ω(

√
r), the k-th smallest element of Θ lies within

this interval, and the number of elements in Θ that
lie within the interval is at most N/Ω(

√
r).

The above lemma will be applied for N ∈ O(n2).
Furthermore, Matoušek et al. [13] proved that we may
choose r := dnβe for any 0 < β < 1 without affecting
the asymptotic efficiency of the resulting algorithm,
and thus we will set r := d

√
ne. As we will see below,

our in-place algorithm will be working with binary
encoded numbers, and thus accessing a single num-
ber θi will take O(log2 n) time. Thus, the in-place
version of the algorithm implied by Lemma 1 runs in
O(r · log2 n) time.

It remains to describe how to construct (and store!)
the sampled set R of r = d

√
ne intersections in an in-

place setting, i.e., using only constant extra space.
Furthermore, we need to discuss how to compute
|I(b, e)|. To this effect, we describe an algorithm for
the first task, which also provides a solution for the
second one. Anticipating the results presented in the
next section, we combine them with the above lemma
and the original analyses of Matoušek et al. [12, 13]:

Theorem 2 The slope selection problem for a set of
n input points in the plane can be solved in-place and
in expected optimal O(n · log2 n) running time.

3 Constructing the Random Sample R

Following the approach of Matoušek [12, Lemma 1],
we first draw (with replacement) a set of r random
integers from {0, . . . , |I(b, e)| − 1} where |I(b, e)| is
the number of intersections in 〈b, e〉; these numbers
give the ranks of the intersections that will be part of
R with respect to the order in which they are found.

The main ingredient used for efficiently processing
intersections in 〈b, e〉 is the following well-known ob-
servation: the number of intersections inside 〈e, b〉 is

exactly the number of inversions between the permu-
tation of P that arranges the lines in sorted <b-order
(the vertical order at x = b) and the permutation
that arranges the lines in sorted <e-order (the ver-
tical order at x = b). Thus, to efficiently compute
|I(b, e)|, we can run the classic divide-and-conquer al-
gorithm for inversion counting—see, e.g., [11]. While
doing so, we keep track of the total number of inver-
sions/intersections seen so far and “record” an inter-
section if its rank matches one of the r given ranks.
If the ranks are sorted, we can process them in con-
stant extra time per inversion counting operation. We
process the “recursion tree” of (our adaption of) the
inversion counting algorithm (see Algorithm 1) in a
bottom-up, level-by-level traversal, i.e., without the
need of maintaining a recursion stack. Since we need
to maintain the r ranks and the intersections com-
puted so far in an in-place setting, the algorithm is
divided into three phases: During the first phase, we
process the lines stored in A[0, . . . , n/2 − 1] and use
A[n/2, . . . , n − 1] to encode the ranks and the inter-
sections found so far. We then reverse the roles of
both subarrays, and finalize the algorithm with a third
phase that processes the intersections induced by lines
stored in different halves of the array.

Three In-Place Data Structures For maintaining
more than O(1) numbers or indices, we resort to a
standard technique in the design of space-efficient al-
gorithms, namely to encode a single bit by a permuta-
tion of two objects q and r: For lines q, r with q <b r,
the permutation qr encodes a binary zero, and the
permutation rq encodes a binary one. We use the
subarray of size n/2 that does not contain the lines to
be processed in the current phase to represent three
(implicit) data structures DR, DL, and DI that oc-
cupy a subarray of size 4 · r · log2 n each:

Lines to be processed DR DL DI

0 1
2
n n− 1

Storing Ranks The randomly generated ranks in
the range [0, . . . , n2−1] are encoded in a “sorted-
list” data structure DR. At initialization of DR,
these ranks are sorted using heapsort [17], which
performs O(r · log2 r) operations each of which
requires decoding a binary-encoded integer or
swapping the values of two “rank elements”.1

This results in O(r · log2 r · log2 n) time spent for
sorting. Having sorted the ranks, our algorithm
will be able to traverse the list and report each
rank to be processed in O(log2 n) time.

1Note, that swapping two encoded values a, b (as done by
heapsort) does not require swapping the blocks of input ele-
ments used for encoding a and b—it merely involves updating
the permutations used to represent bits. Therefore, each input
element will be at most one position off its correct position.
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Storing Lines Involved in Intersections We use
a “sorted-list” data structure DL to record (ref-
erences to) lines involved in all of the sampled
intersections found so far. These (references to)
lines are maintained in sorted <b-order. Every
reference to a line is inserted into DL using inser-
tion sort (ignoring duplicates), and this leads to
O(r2 · log2 n) global cost for maintaining DL.

Storing Intersections The “linked-list” data struc-
ture DI records the intersections found so far by
indexing into DL. To add an intersection induced
by two lines `1 and `2 to DI , we first insert ref-
erences to `1 and `2 in sorted <b-order into DL

and then append the pair (i, j) referencing the
references in DL to these two lines at the end of
DI . The cost for performing a single insert to DI

is O(log2 n), and thus we have a global update
cost of O(r · log2 n).

3.1 Processing one Half of the Subarray

The algorithms for processing the two halves of
A[0, . . . , n−1] are symmetric, and thus we present the
algorithm for processing the subarray A[0, . . . , n/2−1].

Counting Inversions The algorithm for counting all
inversions in 〈b, e〉 is an extension of the iterative
mergesort algorithm: starting from the set of lines in
sorted <b-order, the algorithm iteratively merges the
lines into <e-order while counting inversions. Dur-
ing each merge-step of the algorithm, two subarrays
already in sorted <e-order are merged into a single
<e-sorted subarray. Each of these subarrays has been
processed during the previous iteration, and thus all
inversions involving lines from only one of these sub-
arrays have been processed. An obvious, yet cru-
cial, fact guaranteeing the correctness of the inversion
counting algorithm is that any two subarrays A1 and
A2 that are merged in the j-th iteration of processing
the m-th bottom-most level of the recursion tree are
of the form A1 := A[j · 2m, . . . , (j + 1) · 2m − 1] and
A2 := A[(j +1) · 2m, . . . , (j +2) · 2m− 1]2. Since in our
case all lines are initially sorted in <b-order, for every
invocation of the algorithm CountAndRecord (Al-
gorithm 1) depicted below the following holds: Each
line in A1 precedes all lines in A2 with respect to the
<b-order and the union A1 ∪ A2 forms a complete in-
terval of the input in <b-order.

Algorithm 1 can be implemented using constant ex-
tra space, and, excluding the time needed for record-
ing the relevant intersections, its running time is lin-
ear in the size of the union of the two subarrays to
be merged. Thus, excluding the time needed for up-
dating DR, DL, and DI , its time complexity is in

2The algorithm can be easily modified to handle instances
where n is not a power of two [1].

Algorithm 1 CountAndRecord(A1, A2, 〈b, e〉) in-
crements the global count c of intersections (falling
inside 〈b, e〉) by the number of intersections induced
by lines in A1 and A2 while recording intersections to
be sampled in DI .
Require: A1 and A2 are sorted according to <e.
Ensure: A1 and A2 are sorted according to <e.
1: Let i1 := 0 and i2 := 0.
2: for i = 0 to length(A1 ∪ A2)− 1 do
3: Let `1 := A1[i1] and `2 := A2[i2].

{The i-th element in sorted order is `1 or `2.}
4: if `1 <b `2 then
5: Let ci1 := i2. {](inversions induced by `1)

= ](elements in A2 preceding `1)}
6: for each rank ρ in DR ∩ [c, . . . , c + ci1 ] do
7: Let ` be the line stored at A2[ρ− c].
8: Update DI to record the pair (`1, `) as the

intersection with rank ρ.
9: end for

10: Let c := c + ci1 . {Count intersections.}
11: i1 := i1 + 1. {Advance i1.}
12: else
13: i2 := i2 + 1. {Advance i2.}
14: end if
15: end for

O(n log2 n). Also, leaving out the code in Lines 6–
9, we may use Algorithm 1 to compute |I(b, e)|.

Merging Two Subarrays Into Sorted <e-Order It
remains to discuss the actual merging process that
is required to merge A1 and A2 into sorted <e-order.
Since each of the subarrays is sorted according to <e,
a simple application of the linear-time merging algo-
rithm of Geffert et al. [8] will produce the desired
result. However, we also need to update the values
stored in DL, since they reference the lines involved in
the intersections found so far by directly indexing into
A. Merging A1 and A2 seems to corrupt the informa-
tion recorded in DL, but fortunately the information
of what goes where can be computed on the fly while
running CountAndRecord: During the i-th itera-
tion, this algorithm computes the element with rank
i in the final sorted order (Line 3 of Algorithm 1),
and thus we simply check whether the line ` that will
be the i-th element in sorted order is involved in an
intersection. In this case, we simply update the refer-
ence to ` to point to `’s position after the merge step:
the i-th position in the union of A1 and A2.

We point out that we have to be very careful when
maintaining (in DI) the references to elements stored
in DL: with every new intersection recorded, some ref-
erences may need to change their position in order to
maintain the <b-order. Due to space constraints, we
omit the description of the update algorithm, which
is summarized in the following lemma:

3



Lemma 3 The global extra cost incurred by updat-
ing the references stored in the data structure DL

while merging subarrays is in O(r · log2 r · log2
2 n).

3.2 Finishing Up

After we have processed the first half of the input ar-
ray (using the second half to maintain the data struc-
tures DR, DL, and DI), we reverse the roles of the
two subarrays. To do so, we first need to copy the
contents of the data structures to the first half of the
array. The important detail to keep in mind is that,
as a result of the inversion-counting algorithm, the
first half of the array is sorted according to <e. Thus,
when copying the contents of the data structures to
the first half of the array, the order according to which
we have to decide whether two lines encode a binary
zero or a binary one, is the <e-order.

DI DL DR Lines to be processed

0 1
2
n n− 1

Having run our subroutine on A[n/2, . . . , n− 1], we
need to finalize the algorithm by processing all in-
tersections induced by lines stored in different halves
of the array. As it turns out, we do not need
to actually merge the lines in A[0, . . . , n/2 − 1] and
A[n/2, . . . , n − 1]—it is sufficient to count the inver-
sions and construct the needed intersections. This
means that we can simply run Algorithm 1 with-
out the modifications needed to record the “what-
goes-where” information. Since the binary encoding
scheme permutes only adjacent elements, the lines
used to encode the data structures DR, DL, and DI

are at most one position off their correct position (in
sorted <e-order). Thus, we can process them with
constant extra (look-ahead) space.

As a result of this final invocation of CountAnd-
Record, the data structure DI will reference r pairs
of entries in DL which in turn reference pairs of lines
in A. To select the two intersection points whose x-
coordinates delimit the candidate strip 〈b′, e′〉 that
might be used during the next iteration (see [12]),
we could run a selection algorithm. However, since
we have chosen r small enough, we can simply sort
the pairs in DI according to the x-coordinate of their
intersection. The running time for the sorting (in-
cluding the time for resolving one level of indirection)
is O(r · log2 r · log2 n).

Combining the above, Lemma 3, and the fact that
r ∈ O(

√
n), we obtain the following lemma:

Lemma 4 A random sample R of r = d
√

ne intersec-
tions inside a strip 〈b, e〉 can be constructed in-place
and in O(n · log2 n) time.

The same algorithm can be used to explicitly con-
struct all of the at most r intersection points falling

inside 〈b′, e′〉 in the final iteration of the slope selec-
tion algorithm. This finishes the proof of Theorem 2.
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