On Layering Directed Acyclic Graphs

Martin Harrigan*and Patrick Healy'
Department of Computer Science and Information Systems,

University of Limerick, Limerick, Ireland

Abstract

We consider the problem of layering a directed acyclic graph with
minimum dummy nodes. We present a new Integer Linear Programming
formulation of the problem based on a set of fundamental cycles in the
underlying undirected graph and show that it can be solved in polynomial
time. We outline some of the advantages of the formulation. Each solution
defines a family of layerings with the same number of dummy nodes. We
can also transform one solution into another by adding or removing certain
combinations of dummy nodes, thus allowing the consideration of other
aesthetics.

1 Introduction

Graph layering is an important step in the Sugiyama framework [5] for drawing
directed acyclic graphs (DAGs). A graph layering algorithm partitions the node
set of a graph into subsets, called layers, so that all the edges point in the same
direction and edges only occur between consecutive layers. Whenever an edge is
about to cross a layer, a dummy node is added. We would like a graph layering
algorithm to minimize the number of dummy nodes for the following reasons [1,
p.271]:

e A small number of dummy nodes generally results in compact drawings;

e The time required by subsequent steps of the Sugiyama framework [5]
depends on the total number of nodes (real nodes plus dummy nodes);

e Bends in the final drawing occur only at dummy nodes and reduce read-
ability.

Existing layering algorithms include the Longest Path algorithm, the Coffman-
Graham algorithm [2] and Gansner et al.’s network simplex algorithm [3]. The

*Supported by the Irish Research Council for Science, Engineering and Technology: funded
by the National Development Plan
f{martin.harrigan, patrick.healy}Qul.ie

Dagstuhl Seminar Proceedings 05191
Graph Drawing 1
http://drops.dagstuhl.de/opus/volltexte/2006/343

Longest Path algorithm layers a graph with minimum height. The Coffman-
Graham algorithm layers a graph with width at most W and height H <
(2 —2/W)H in, where H,p,;p, is the minimum height of a layering of width W.
The network simplex algorithm layers a graph with minimum dummy nodes,
however, it has not been proven to have polynomial running time. Other ap-
proaches to layering a graph with minimum dummy nodes involve solving a
linear program using interior-point methods or converting the program to an
equivalent minimum-cost flow problem and using an algorithm like Orlin’s [4].
While these methods are polynomial time they are difficult to implement in
practice.

This paper is organised as follows. In the following section we begin with
some definitions. In Section 3 we define a layering in two ways; the first defines
the layer of each real node while the second defines explicitly the location of the
dummy nodes. We also present the corresponding Integer Linear Programming
(ILP) formulations. In Section 4 we outline some of the advantages of our new
formulation. Finally, in Section 5 we draw some conclusions from our work.

2 Definitions

A graph G = (V, E) consists of a vertex set V and an edge set E, where an edge
is an unordered pair of distinct vertices of G. A cycle is a sequence of edges
(ei S E)

{eo,€1,...,en}

such that e; and e; 1 (mod n) share a vertex, any vertex is shared between at
most two of the edges, and no edge appears more than once. An orientation of
a graph G is a function o from the edges of G to {—1,1} such that if (u,v) is
an edge, then o(u,v) = —o(v,u).

A directed graph D = (V, A) consists of a vertex set V and an arc set A,
where an arc, or directed edge, is an ordered pair of distinct vertices of D. A
directed cycle is a sequence of arcs (a; € A)

{ag,a1,...,an}

such that if a; = (u;,v;) then v; = u;41 (mod n), and no arc appears more
than once. A directed acyclic graph (DAG) is a directed graph that contains
no directed cycles. Since any DAG has no symmetric pair of arcs, it can be
represented by its underlying undirected graph together with an orientation
(see Figure 1).

A hypergraph H = (V,E) consists of a vertex set V' and a hyperedge set &,
where a hyperedge is a non-empty subset of vertices of H.

2.1 Cycle Bases and Fundamental Cycles

Let D = (V, A) be a DAG and G = (V, E) be the underlying undirected graph
of D with orientation o. Although D is acyclic, G may contain cycles. Let C be

o(a,b) = —o(b,a) =1

() (m) o(b,c) = —o(c,b) =1
(1) ’0.(.m, n)=—o(n,m) =1

Figure 1: A DAG, its underlying undirected graph and orientation.

Figure 2: A spanning tree (full lines) and chords (dotted lines) for the undirected
graph in Figure 1.

| F | Chords | Fundamental Cycles |
Fo | (b,d) {(b,d), (d,c), (c,0)}
Fi | (de) | {(de), (e), 4 k), (k,9),(g: f),(f,a),(ab),(b,c),(c,d)}
B | (g,h) {(g, h), (h,)7(67]) (J, k), (k,9)}
Fy | (1) {(i,e), (e,5), (5, 9)}
Fy | (m,n) {(m,n), (n, 1), (L, k), (k,), (4, 9), (i, m)}

Table 1: Chords and fundamental cycles for the spanning tree in Figure 2.

the set of all cycles in G. The cycle vector xc of a cycle C' € C (with coordinates
xc(e), e € E) is defined by

(e) = lifeeC
Xo(€) =9\ oife ¢ C.

The cycle vector space of G is the vector space over GF(2) spanned by x¢
(VC € C). A set of cycles B={B1,...,Bn,} CCis a cycle basis if xg (VB € B)
form a basis for the cycle vector space of G. Therefore, for every C € C,

Z OéiB

i=1,...,n

with at least one non-zero coefficient.

Let T be a spanning forest of G. A set of fundamental cycles F can be
constructed as follows: For each e = (u,v) ¢ T there is a unique cycle in TU{e}
(see Figure 2 and Table 1). Each e is a chord of G with respect to T. A set
of fundamental cycles constitutes a cycle basis, however, the converse is not
necessarily true. The orientation of the chords provide a natural direction in
which to traverse the fundamental cycles. Forward (resp., backward) edges in

Figure 3: The fundamental cycle hypergraph of the undirected graph in Figure

1 with respect to the set of fundamental cycles in Table 1.

| Hyperedge | Associated edge subset (s; = s;+ Us;_) |

50 {(b.d)} 0

51 {(d,e),(cub)} {(f»a)a(gaf)}
52 {(gvh)v(h76)} 0

53 {(i.e)} 0

54 {(mvn)7(nvl)v(i’m)} {(lrk)}

S5 {(b,¢), (c,d)} 1]

56 {(g.k)} 0

57 0 {(.9)}

58 0 {(e.)}

59 {(.k)} 0

Table 2: The edge subsets of the undirected graph in Figure 1 associated with

each hyperedge of the hypergraph in Figure 3.

a fundamental cycle are those edges (u,v) € E that are oriented with (resp.,
against) this direction.

A fundamental cycle hypergraph of G with respect to F is the hypergraph
FCH g r)(F,E) where the vertex set is 7, and where each hyperedge £ € £ is
a maximal non-empty subset £ C F such that (). F # 0. Each hyperedge is
therefore associated with a subset of G’s edges (see Figure 3 and Table 2).

3 The Layering Problem

A layering of D is a partition of V into subsets L, ..., Ly, such that if (u, v) € A,
where v € L; and v € Lj, then ¢ > j. The span of an edge (u,v) with u € L;
and v € L; is i — j. The layering is proper if no edge has span greater than one.
This can be achieved by adding dummy nodes along edges whose edge span is
greater than one.

A natural way to define a layering is by a function that maps each node to
an integer representing the layer,

L:V—Z
and satisfies the following constraints:

L(u) >0, YueV (1)
L(u) — L(v) >0, Y(u,v)e€ A (2)

The location of the dummy nodes are implicity defined by £; if (u,v) € A
then there are £L(u) — L(v) — 1 dummy nodes along the arc (u,v).

There is an alternative way to define a layering that explicitly locates the
dummy nodes,

L E—Z.

The domain for this function is the set of undirected edges in G. The dif-
ficulty now lies in determining what constraints £ must satisfy in order to
represent a proper layering. We introduce the notion of a balanced cycle in the
underlying undirected graph. £’ balances a cycle C in G if

Y xele)a(u,v) (1+L'(e) =0,

e=(u,v)EE

where the edges (u,v) € E are traversed in an arbitrary direction around the
cycle.

Proposition. If L' balances any set of fundamental cycles in G, then it
balances all the cycles in G.

Proof. Let F = {Fy,...,F,} be any set of balanced fundamental cycles in
G. Therefore,

> xple)o(uv)(1+L(e) =0, i={1,...,m},

e=(u,v)EE

Algorithm 1 PARTITION-EDGE-SET

Input: a graph G = (V, E) and a set of fundamental cycles F = {F},..., F,}
Output: a partition of the edge set S = {s1,...,5,}

XFy
construct a fundamental cycle - edge incidence matrix of G as follows

XFy

sort the columns using radix sort, where each column represents a binary
number, thereby grouping identical columns together

partition the edge set into subsets of identical columns, S = {s1,...,s}

where the edges e € F are traversed in the direction identified by the orien-
tation of the branches of the spanning tree used to construct F.

Let C be any cycle in GG. The incidence vector of C' is some linear combination
over GF(2) of the cycles in F, therefore,

m
Xc =Y Xixr,
i=1
such that at least one)\; is non-zero. So,

S xel@)o(u,v) (1+L£/(e))

e=(u,v)EE

= D D dixm(ea(uv) (1+L'(e))

e=(u,v)€E i=1

=AY Ym0 1+ L)

Clearly, if all the cycles in G are balanced, then D is properly layered.

L' specifies the individual edges that are assigned dummy nodes. However,
this can be generalised as follows. We partition the edge set with respect to some
set of fundamental cycles F so that each subset is a maximal set of edges shared
between the same subset of F. These are the same subsets that are associated
with the hyperedges of the fundamental cycle hypergraph FCH ¢, 7).

Let S = {si1,...,8,} be such a partition. It can be determined using
PARTITION-EDGE-SET in O(|FE|?) time. The subset of edges in s; € S can be fur-
ther divided into two groups, s;+ and s;_, those pointing in one direction and

those point in the opposite direction. We again differentiate these as forward

and backward edges. Any dummy node assigned to a forward (resp., backward)

edge can be moved to any other forward (resp., backward) edge within the same

edge subset while still ensuring that the fundamental cycles remain balanced.
We replace £’ with two functions,

L' :S—7Zand
LS —7Z
where £, (s) and £’ (s) are the number of dummy nodes assigned to the

subset of edges s € S on the forward and backward edges respectively. The
functions are subject to the following constraints:

Zw(F, s) (Is4| = [s—|+ L' (s) = L (s)) =0, VFe€F, (3)
ses

L' (s) =0, VseSsuchthat s =0, (4)
L' (s) =0, Vse€ S suchthat s_ =0, (5)
L' (s)>0,L (s)>0, VseS (6)

=

where «(F, s) is the orientation of the edge subset s within the fundamental
cycle F' and is defined as follows: v(F,s) = 1 if s C F and the forward (resp.
backward) edges in s are forward (resp. backward) edges in F, v(F,s) = —1
if s C F and the forward (resp. backward) edges in s are backward (resp.
forward) edges in F, and v(F,s) = 0 if s € F. The function (s, F') defines a
fundamental cycle - edge subset incidence matriz of D.

3.1 The ILP Formulations

Gansner et al. [3] formulated the layering problem as an ILP based on £ where
the objective function is:

min Z(u,v)EA ‘C(u) - ‘C(U)

subject to (1), (2) and integrality constraints on all the variables.
An alternative ILP formulation based on £, and £’ is:

min Y .o LY(s)+ L (s)

subject to (3), (4), (5), (6) and integrality constraints on all the variables.

The constraint matrix of our formulation, like that of Gansner et al. [3],
has a property known as total unimodularity. A matrix is totally unimodular if
and only if every submatrix has determinant 0, 1, or —1. This ensures that the
corresponding relaxed linear program has integral solutions and can be solved
in polynomial time.

(a) Minimum Dummy Node (b) Longest Path Layering
Layering

Figure 4: Different layerings of the graph in Figure 1.

4 Advantages

4.1 A Family of Layerings

A solution in the form of functions £, and £’ describes a family of layerings
with the same number of dummy nodes. The forward and backward dummy
nodes assigned to each edge subset can be distributed in any way amongst the
forward and backward edges respectively within that edge subset. Since m
indistinguishable dummy nodes can be distributed between n distinguishable

edges in (m:fl_ !) distinct ways then a solution defines

(=) ()

ses

distinct layerings . From this family of layerings, we can choose one that satisfies
other preferences. For example, if a user wanted a particular edge e € s to be
as short as possible within the confines of a minimum dummy node solution,
we could move the dummy nodes from e to other edges of the same direction
within s.

4.2 Transforming Solutions

If we layer the graph in Figure 1 with the minimum number of dummy nodes
(see Figure 4a) by solving the ILP above, the dummy nodes are assigned to the
edge subsets sg, s3 and sg as follows:

ACIJF(S()) = 17
L' (s3) = 1, and
E;(Sg) = 1.

| Lsolsi[ss]ss|safss]s6]sr]ss]s]

| 1)10]10]10]0]|-110]0]0]0
Fryoj1ry0(0(0}1-1y0 1|1
H|1 00|10, 00|-110|1]1
31010010001]|1]0
Frip0)j0fj0jo0f1rjo0fo]10]-1

Table 3: A fundamental cycle - edge subset incidence matrix of the directed
graph in Figure 1.

Similarly, if we layer the graph using the Longest Path algorithm (see Figure
4(b)), the dummy nodes are assigned to the edge subsets s, s3 and sg as follows:

‘CCF(SO) = 17
L' (s3) = 2, and

It is possible to simultaneously add and remove certain combinations of
dummy nodes to any subset of S for which the corresponding multiset of columns
in the fundamental cycle - edge subset incidence matrix are linearly dependent
over GF(3) so that the fundamental cycles remain balanced and the layering
proper. Suppose {sp,...,s;} is such a subset, then there exists some \; €
{-1,0,1} (i =0,...,k) such that

XSy + .-+ s, = 0 (as defined by the columns they label),

and at least one)\; is non-zero. We can (repeatedly) perform either of the
following transformations, assuming there are sufficient dummy nodes on each
edge subset and edges in the appropriate directions:

e Either L/, (s])+ = \; or L' (s))— =X (i =0,...,k).

e Either L/, (s))— = \; or L' (s))+ =X (i =0,...,k).

The columns of the fundamental cycle - edge subset incidence matrix of the
directed graph in Figure 1 (see Table 3) labelled by the edge subsets s3, sg,
and sg are linearly dependent over GF(3) (since s3 — sg — sg = 0). The coeffi-
cients determine whether we can add or remove dummy nodes to the forward or
backward edges in the edge subsets. For example, we can transform the Longest
Path solution (see Figure 4(b)) into the minimum dummy node (see Figure 4(a))
solution as follows:

e +s3 : Remove one ’forward’ dummy node from the edge subset s3 (£, (s3)— =

).

10

e —s6 : Add one ’forward’ dummy node to the edge subset s¢ (L', (s6)— =
-1).

e —sg : Remove one ’backward’ dummy node from the edge subset sg
(L/_ (88)4— = —1).

5 Conclusions

We have described a new ILP formulation for layering a directed acyclic graph
with minimum dummy nodes based on a set of fundamental cycles in the un-
derlying undirected graph. A solution describes a family of layerings all with
the minimum number of dummy nodes, thus allowing the consideration of other
aesthetics by shuffling dummy nodes between edges in a given direction within
the same edge subset. We can also transform one solution into another by
adding and removing certain combinations of dummy nodes as determined by
the coeflicients of the dependent subsets of columns in the fundamental cycle -
edge subset incidence matrix of the directed graph.

We hope to use this work to find a combinatorial algorithm that can trans-
form an arbitrary layering into one with the minimum number of dummy nodes.
As the layerings in Figure 4 show, it is not sufficient to remove all superfluous
dummy nodes since we may also need to add dummy nodes to certain edge
subsets in order to find the minimum.

References

[1] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing -
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[2] E. G. Coffman and R. L. Graham. Optimal scheduling for two processor
systems. Acta Informatica, 1:200-213, 1972.

[3] E. R. Gansner, E. Koutsofios, S. C. North, and K. Vo. A technique for draw-
ing directed graphs. IEEE Transactions on Software Engineering, 19:214—
230, 1993.

[4] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm.
Proceedings of the 20th ACM symposium on theory of computing, pages 377—
387, 1988.

[5] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical systems. IEEE Transactions on Systems, Man, and Cybernetics,
11(2):109-125, 1981.

11

