
Architectural Views for Computation,
Coordination and Distribution - An Extended

Abstract?

Cristóvão Oliveira1,2 and Michel Wermelinger1,3

1 Dep. de Informática, Fac. de Ciências e Tecnologia, Univ. Nova de Lisboa
2829-516 Caparica, Portugal

co@di.fct.unl.pt
2 Department of Computer Science, University of Leicester

University Road, Leicester LE1 7RH, UK
3 Computing Department, The Open University

Walton Hall, Milton Keynes MK7 6AA, UK
m.a.wermelinger@open.ac.uk

Abstract. CommUnity and its categorical foundations provide a for-
mal approach to Software Architecture (SA). Several concepts such as
(re)configuration and (higher-order) connector have been given precise
definitions in this setting. One of the cornerstones of the approach is
the separation between computation, coordination and distribution. In
this paper, we take this separation one step further and define explicit
architectural views, one for each concern. They will be used to help to
detect errors made while building the architecture. Moreover they will be
a support to improve the design of the system by focusing on one concern
at a time and/or by combining them with each other. In order to test
the runtime behaviour of the system, the views are used as support to
the distributed execution of the developed architecture.

1 Introduction

The goal of this work is to present a precise definition of three architectural
views over CommUnity, a language that we have been using to support our
research on the foundations of architectural description [2]. We introduce the
architectural views with the aim of representing the explicit separation between
computation, coordination and distribution concerns. We define transformations
to obtain each view from the architectural representation we have been using so
far.

Furthermore, the three views make the analysis and validation of CommU-
nity-based architectures easier, better structured and more incremental. For
example, by focusing only on the coordination view one can easily verify indi-
rect interactions that should not occur. Besides that, the aim behind developing
? This research was supported by Fundacão para a Ciência e Tecnologia through the

PhD Scholarship SFRH/BD/6241/2001 of Cristóvão Oliveira

Dagstuhl Seminar Proceedings 05081
Foundations of Global Computing
http://drops.dagstuhl.de/opus/volltexte/2006/296 
 

mailto:co@di.fct.unl.pt�
mailto:m.a.wermelinger@open.ac.uk�


the views is to have the opportunity to concentrate only on one concern each time
while modelling the architecture. Improvements on the model can be achieved
studying in particular each view and this without having in mind the detail of
the others.

2 Architectural Views

An architectural view describes a part of a system according to some perspective
of interest, helping the designer to validate the architecture. Each view highlights
and makes explicit some aspects, while omitting others.

In the setting of CommUnity [1], we are interested in three views: compu-
tation, coordination, and distribution. They should be defined in such a way as
to make it easy for the designer to answer questions like:

1. which actions cannot occur simultaneously and which ones must occur to-
gether?

2. which variables are actually the same?
3. which variables are used by which actions?
4. which actions from distinct components use the same channel? are those

actions synchronized?
5. which constituents (variables or actions) are always co-located?
6. which locations might have to be in touch with each other?
7. which locations (more precisely channels and actions located at those loca-

tions) are controlled by which actions?

Such checks will help the designer to validate the architecture, detect poten-
tial problems (e.g., a design with too many constituents at the same location),
and take corrective actions (e.g., by relocating some of the constituents). This
may require switching between views. For example, the coordination view might
help the designer spot a large set of actions that always execute synchronously,
whereas the distribution view shows if they are scattered among many locations
or not. But this switching can be in part avoided by combining the views, mean-
ing that, being in a given view it is possible to obtain adapted version(s) of the
other(s) and combine them. Moreover the combinations appear to be useful in
order to compare the views.

The combination of the computation view with the coordination view is al-
ready subsumed by the architecture, which is centered on the designs (computa-
tion view) combined with the interactions between designs (coordination view).
The combination of the computation view with the distribution view doesn’t
add new insights either, because in the architecture each design has its channels
(computation view) mapped to a location (distribution view) and each action
is explicitly distributed or not over several locations. Finally, the combination
of coordination with distribution is not presented because the combination of
distribution and coordination is more clear and succinct.

The views are not completely independent of each other. There is some over-
lap between them; otherwise it would be impossible to relate the entities of one

2



view with those of another one. In order to relate one view to another, we need
unique names. Since each name is unique within each design instance in the
architecture, and all views stem from the architecture, we use in views names
of the form D[N].X where D is the name of the design, N is the number of the
instance, and X the name of the constituent. We omit [N] if there is only one
instance of design D. Moreover, the views are defined in a way as to allow their
automatic construction from a given architecture.

In the graphical spirit of CommUnity, each view will be defined as a graph,
with nodes aggregating actions and channels according to the perspective of
interest (i.e., each node uses the usual CommUnity notation), and arcs showing
relationships between such groupings.

References

1. José Luiz Fiadeiro and Tom Maibaum, Categorical semantics of parallel program
design, Science of Computer Programming 28 (1997), 111–138.

2. José Luiz Fiadeiro, Antónia Lopes, and Michel Wermelinger, A mathematical seman-
tics for architectural connectors, Generic Programming LNCS Springer (2003),
no. 2793, 190–234.

3


