
04301 Abstracts Collection

Cache-Oblivious and Cache-Aware Algorithms

� Dagstuhl Seminar �

Lars Arge1, Michael A. Bender2, Erik Demaine3, Charles Leiserson3 and Kurt
Mehlhorn4

1 Duke University, Durham, USA
large@daimi.av.dk

2 SUNY at Stony Brook, USA
bender@cs.sunysb.edu
3 MIT Cambridge, USA
edemaine|cel@mit.edu

4 MPI Saarbrücken, DE
mehlhorn@mpi-sb.mpg.de

Abstract. The Dagstuhl Seminar 04301 �Cache-Oblivious and Cache-
Aware Algorithms� was held in the International Conference and Re-
search Center (IBFI), Schloss Dagstuhl, from 18.07.2004 to 23.07.2004.
During the seminar, several participants presented their current research,
and ongoing work and open problems were discussed. Abstracts of the
presentations given during the seminar as well as abstracts of seminar re-
sults and ideas are put together in this paper. The �rst section describes
the seminar topics and goals in general. Links to extended abstracts or
full papers are provided, if available.

Keywords. Cache oblivious, cache aware, external memory, I/O-e�cient
algorithms, data structures

E�cient Tree Layout in a Multilevel Memory Hierarchy

Michael A. Bender (SUNY at Stony Brook)

We consider the problem of laying out a tree with �xed parent/child structure
in hierarchical memory. The goal is to minimize the expected number of block
transfers performed during a search along a root-to-leaf path, subject to a given
probability distribution on the leaves. This problem was previously considered
by Gil and Itai, who developed optimal but slow algorithms when the block-
transfer size B is known. We present faster but approximate algorithms for the
same problem; the fastest such algorithm runs in linear time and produces a
solution that is within an additive constant of optimal.

In addition, we show how to extend any approximately optimal algorithm
to the cache-oblivious setting in which the block-transfer size is unknown to

Dagstuhl Seminar Proceedings 04301
Cache-Oblivious and Cache-Aware Algorithms
http://drops.dagstuhl.de/opus/volltexte/2005/157

2 L. Arge, M. A. Bender, E. Demaine, Ch. Leiserson, K. Mehlhorn

the algorithm. The query performance of the cache-oblivious layout is within a
constant factor of the query performance of the optimal known-block-size layout.
Computing the cache-oblivious layout requires only logarithmically many calls
to the layout algorithm for known block size; in particular, the cache-oblivious
layout can be computed in O(N log N) time, where N is the number of nodes.

Finally, we analyze two greedy strategies, and show that they have a per-
formance ratio between Ω(log B/ log log B) and O(log B) when compared to the
optimal layout.

Keywords: Tree layout; unbalanced trees; cache-oblivious; data structure; ap-
proximation algorithm

Joint work of: Alstrup, Stephen; Bender, Michael A.; Demaine, Erik D.; Farach-
Colton, Martin; Rauhe, Theis; Thorup, Mikkel

Pipelining the Memory Hierarchy

Gianfranco Bilardi (Universitá di Padova)

Pipelining the memory hierarchy is a natural avenue to explore in order to reduce
the impact of memory latencies on running time. In this talk we consider the
following issues:

(a) the physical feasibility of memory structures that a�ord high pipelinabil-
ity without sacrifying latency of individual accesses; (b) the impact of pipelining
on algorithmic running time; (c) the issues that an agressively pipelined memory
raises for processor design; (d) open problems and research directions.

Keywords: Memory pipeline, memory models, processor models, physical scal-
ability, algorithmic models

Joint work of: Bilardi, Gianfranco; Kattamuri Ekanadham; Pratap Pattnaik

External-Memory Exact and Approximate All-Pairs
Shortest-Paths

Rezaul Chowdhury Alam (Univ. of Texas at Austin)

We present several new results for �nding all pairs shortest paths in a V -node,
E-edge undirected graph. We present a cache-oblivious algorithm for computing
AP-BFS on undirected graphs in O(V.sort(E)) I/Os matching the I/O complex-
ity of its cache-aware counterpart. This algorithm can also be used to compute
the unweighted diameter of an undirected graph in the same I/O bound and
O(V + E) space. We also present an e�cient cache-aware algorithm to com-
pute approximate APSP on unweighted undirected graphs with small additive
error. The algorithm produces estimated distances with an additive error of at
most 2(k − 1), where 2 <= k <= logV is an integer, and E >= V logV . All of

Cache-Oblivious and Cache-Aware Algorithms 3

our results improve earlier results. For approximate APSP we provide the �rst
nontrivial results.

These results are included in a paper that will be presented at the 2005 ACM-
SIAM Symposium on Discrete Algorithms (SODA). That paper also includes
results on weighted APSP that are described in the abstract of the Dagstuhl
talk by the second author.

Keywords: All pairs shortest paths; external memory; cache oblivious; cache
aware; approximation algorithm; I/O-e�cient algorithms

Joint work of: Vijaya Ramachandran

Cache-Oblivious Data Structures for Orthogonal Range
Searching

Andrew Danner (Duke University)

We develop cache-oblivious data structures for orthogonal range searching, the
problem of �nding all T points in a set of N points in Rd lying in a query
hyper-rectangle. Cache-oblivious data structures are designed to be e�cient in
arbitrary memory hierarchies.

We describe a dynamic linear-size data structure that answers d-dimensional
queries in O((N/B)1−1/d + T/B) memory transfers, where B is the block size
of any two levels of a multilevel memory hierarchy. A point can be inserted
into or deleted from this data structure in O(log2

BN) memory transfers. We also
develop a static structure for the two-dimensional case that answers queries in
O(logBN +T/B) memory transfers using O(Nlog2

2N) space. The analysis of the
latter structure requires that B = 22c

for some non-negative integer constant c.

Keywords: cache oblivious; data structure; range query

Joint work of: Agarwal, Pankaj; Arge, Lars; Danner, Andrew; Holland-Minkley,
Bryan

Asynchronous Parallel Disk Sorting

Roman Dementiev (MPI für Informatik)

We develop an algorithm for parallel disk sorting, whose I/O cost approaches
the lower bound and that guarantees almost perfect overlap between I/O and
computation.

Previous algorithms have either suboptimal I/O volume or cannot guarantee
that I/O and computations can always be overlapped.

We give an e�cient implementation that can (at least) compete with the best
practical implementations but gives additional performance guarantees.

For the experiments we have con�gured a state of the art machine that can
sustain full bandwidth I/O with eight disks and is very cost e�ective.

4 L. Arge, M. A. Bender, E. Demaine, Ch. Leiserson, K. Mehlhorn

Keywords: Algorithm engineering; algorithm library; external memory sorting;
large data sets, overlapping I/O and computation; parallel disks; prefetching,
randomized algorithm; secondary memory; I/O-e�cient algorithms

Cache-Oblivious Data Structures and Algorithms for
Undirected BFS and SSSP

Rolf Fagerberg (Univ. of Southern Denmark - Odense)

We present improved cache-oblivious data structures and algorithms for breadth-
�rst search and the single-source shortest path problem on undirected graphs
with non-negative edge weights. Our results remove the performance gap be-
tween the currently best cache-aware algorithms for these problems and their
cache-oblivious counterparts. Our shortest-path algorithm relies on a new data
structure, called bucket heap, which is the �rst cache-oblivious priority queue to
e�ciently support a weak DecreaseKey operation.

Keywords: cache oblivious; data structure; single source-shortest path; breadth-
�rst search; bucket heap

Joint work of: Brodal, Gerth Stølting; Fagerberg, Rolf; Meyer, Ulrich; Zeh,
Norbert

Cache-Oblivious Searching and Sorting in Multisets

Arash Farzan (University of Waterloo)

We study three problems related to searching and sorting in multisets: deter-
mining the most frequent element (the mode), duplicate elimination and �nally
multi-sorting. We give deterministic and randomized cache-oblivious algorithms
for these problems. We are interested in the cache complexity (i.e. the number of
cache misses) of the algorithms. Our randomized algorithms match the proven
asymptotic lower bounds. The deterministic algorithms are close to the lower
bounds. Moreover, the cache-aware versions of the deterministic algorithms are
asymptotically optimal and simpler than the previously known algorithms. All
of our algorithms make the asymptotically optimal number of comparisons.

Keywords: cache oblivious; deterministic algorithm; randomized algorithm;
multiset; multiset searching; multiset sorting

Joint work of: Farzan, Arash; Munro, Ian

Cache-Oblivious and Cache-Aware Algorithms 5

Concurrent Cache-Oblivious Search Trees

Jeremy Fineman and Seth Gilbert (MIT - Cambridge)

The B-tree is the classic data structure for maintaining searchable data in ex-
ternal memory. Recent experiments have shown, however, that cache-oblivious
search trees can outperform traditional B-trees. Before cache-oblivious search
trees can replace traditional B-trees in industrial applications, they must sup-
port concurrent operations.

This talk presents the �rst study of cache-oblivious search trees. We develop
two classes of concurrent cache-oblivious search trees based on the two main
approaches for serial cache-oblivious search trees. The �rst data structure is
based on an exponential search tree. This data structure supports insertions
and searches/successor queries with a nearly optimal number of block transfers
per operation. The data structure uses write locks but supports nonblocking
reads. The second data structure is based on the packed-memory-based search
tree. This data structure supports insertions and deletions, searches/successor
queries, and range queries. We present both lock-based (with nonblocking reads)
and lock-free variants of this data structure. The serial performance of both
concurrent data structures matches the serial performance of both serial data
structures they replace.

Keywords: Cache-oblivious B-tree; exponential tree; packed memory; lock-
based; lock-free; nonblocking; concurrent; parallel; data structure

Joint work of: Bender, Michael A., Fineman, Jeremy T., Gilbert, Seth G.,
Kuszmaul, Bradley C.

The Priority R-Tree: A Practically E�cient and
Worst-Case-Optimal R-Tree

Herman J. Haverkort (Universität Karlsruhe)

The query e�ciency of a data structure that stores a set of objects, can normally
be assessed by analysing the number of objects, pointers etc. looked at when
answering a query. However, if the data structure is too big to �t in main memory,
data may need to be fetched from disk. In that case, the query e�ciency is easily
dominated by moving the disk head to the correct locations, rather than by
reading the data itself.

To reduce the number of disk accesses, once can group the data into blocks,
and strive to bound the number of di�erent blocks accessed rather than the num-
ber of individual data objects read. An R-tree is a general-purpose data structur
that stores a hierarchical grouping of geometric objects into blocks. Many heuris-
tics have been designed to determine which objects should be grouped together,
but none of these heuristics could give a guarantee on the resulting worst-case
query time.

6 L. Arge, M. A. Bender, E. Demaine, Ch. Leiserson, K. Mehlhorn

We present the Priority R-tree, or PR-tree, which is the �rst R-tree variant
that always answers a window query by accessing O((N/B)1−1/d +T/B) blocks,
where N is the number of d-dimensional objects stored, B is the number of
objects per block, and T is the number of objects whose bounding boxes intersect
the query window. This is provably asymptotically optimal. Experiments show
that the PR-tree performs similar to the best known heuristics on real-life and
relatively nicely distributed data, but outperforms them signi�cantly on more
extreme data.

Keywords: R-Trees; data structure

Joint work of: Arge, Lars; de Berg, Mark; Haverkort, Herman J.; Yi, Ke

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2005/155

External A*

Shahid Jabbar (Universität Dortmund)

We study External A*, a variant of the conventional (internal)A* algorithm
that makes use of external memory, e.g., a hard disk. The approach applies
to implicit, undirected, unweighted state space problem graphs with consistent
estimates. It combines all three aspects of best-�rst search, frontier search and
delayed duplicate detection and can still operate on very small internal memory.
The complexity of the external algorithm is almost linear in external sorting
time and accumulates to O(sort(|E|) + scan(|V |)) I/O operations, where V and
E are the set of nodes and edges in the explored portion of the state space graph.
Given that delayed duplicate elimination has to be performed, the established
bound is I/O optimal.

In contrast to the internal algorithm, we exploit memory locality to allow
blockwise rather than random access. The algorithmic design refers to external
shortest path search in explicit graphs and extends the strategy of delayed du-
plicate detection recently suggested for breadth-�rst search to best-�rst search.
The approach has been successfully implemented. We conducted experiments
with sliding-tile puzzle instances and have been able to solve some of the hard-
est instances of the 15-puzzle that were previously unsolvable by internal A* due
to enormous memory requirement.

Keywords: A*; best-�rst search; frontier search; duplicate detection; shortest
path; I/O-e�cient algorithms

http://drops.dagstuhl.de/opus/volltexte/2005/155

Cache-Oblivious and Cache-Aware Algorithms 7

Practical Cache Oblivious B-Trees on Disk

Bradley C. Kuszmaul (MIT - Cambridge)

One frequent argument in favor of cache-oblivious algorithms is that we can get
rid of the �voodoo� parameters that characterize the cache.

We found, surprisingly, that cache-oblivious B-trees ($OB-trees) often out-
perform traditional disk-access-model B-trees (DAM B-trees).

We implemented and measured static and dynamic cache oblivious B-trees
using memory mapping. We compared the performance to Berkeley DB DAM
B-trees and several DAM B-trees that we implemented both with �le I/O and
memory mapping.

For static tree, which only support lookup, the $OB-tree achieved about
twice the performance of a DAM B-tree with 4K blocks, and about 25% better
performance than a DAM B-tree with 128K blocks. Thus in the static case, DAM
B-trees with big blocks (about one track) are nearly as good as $OB-trees.

For dyanmic trees, which can support inserts and queries, we measured ran-
dom inserts and inserts all in the same place. For random inserts and queries,
the $OB-tree beats the traditional btree, usually by more than a factor of two.
For inserts all in the same place, which is the worst case for $OB-trees, the
$OB-trees often do as well as the DAM B-tree, but are sometimes half as fast.

It's not just about the voodoo. �It's the performance, stupid.�

Keywords: B-tree; cache oblivious; search tree; disk access model; static tree;
dynamic tree

Joint work of: Bender, Michael; Farach-Colton, Martin; Kashe�, Zardosht;
Kuszmaul, Bradley C.

Cache-Oblivious Algorithms

Charles Leiserson (MIT - Cambridge)

Computers with multiple levels of caching have traditionally required techniques
such as data blocking in order for algorithms to exploit the cache hierarchy e�ec-
tively. These �cache-aware� algorithms must be properly tuned to achieve good
performance using so-called �voodoo� parameters which depend on hardware
properties, such as cache size and cache-line length.

Surprisingly, however, for a variety of problems including matrix multiplica-
tion, FFT, and sorting asymptotically optimal cache-oblivious algorithms do ex-
ist that contain no voodoo parameters. They perform an optimal amount of work
and move data optimally among multiple levels of cache. Since they need not
be tuned, cache-oblivious algorithms are more portable than traditional cache-
aware algorithms.

We employ an ideal-cache model to analyze these algorithms. We prove that
an optimal cache-oblivious algorithm designed for two levels of memory is also

8 L. Arge, M. A. Bender, E. Demaine, Ch. Leiserson, K. Mehlhorn

optimal across a multilevel cache hierarchy. We also show that the assumption of
optimal replacement made by the ideal-cache model can be simulated e�ciently
by LRU replacement. We also provide some empirical results on the e�ectiveness
of cache-oblivious algorithms in practice.

Keywords: cache aware; cache oblivious; cache hierarchy; ideal cache model

Joint work of: Leiserson, Charles; Prokop, Harald

The Cost of Cache-Oblivious Searching

Alejandro López-Ortiz (University of Waterloo)

Tight bounds on the cost of cache-oblivious searching are proved. It is shown that
no cache-oblivious search structure can guarantee that a search performs fewer
than lg e logB N block transfers between any two levels of the memory hierarchy.
This lower bound holds even if all of the block sizes are limited to be powers of 2.
A modi�ed version of the van Emde Boas layout is proposed, whose expected
block transfers between any two levels of the memory hierarchy arbitrarily close
to [lg e + O(lg lg B/ lg B)] logB N + O(1). This quantity approaches lg e + o(1) ≈
1.443 as B increases. The expectation is relative to the initial placement of the
�rst element of the structure in memory.

As searching in the Disk Access Model (DAM) can be performed in logB N+1
block transfers, this result shows a separation between the 2-level DAM and
cache-oblivious memory-hierarchy models. By extending the DAM model to k
levels, multilevel memory hierarchies can be modelled. It is shown that as k
grows, the search costs of the optimal k-level DAM search structure and of the
optimal cache-oblivious search structure rapidly converge. This demonstrates
that for a multilevel memory hierarchy, a simple cache-oblivious structure almost
replicates the performance of an optimal parameterized k-level DAM structure.

Keywords: disk access model; cache oblivious; lower bound; search

Joint work of: López-Ortiz, Alejandro; Bender, Michael A.; Brodal, Gerth
Stølting; Fagerberg, Rolf; Ge, Dongdong; He, Simai; Hu, Haodong; Iacono, John

External Memory Algorithms for Diameter and All-Pairs
Shortest Paths on Sparse Graphs

Ulrich Carsten Meyer (MPI für Informatik)

We develop I/O-e�cient algorithms for diameter and all-pairs shortest-paths
(APSP). For general undirected graphs G(V,E) with non-negative edge weights
and E/V = o(B/ log V) our approaches are the �rst to achieve o(V 2) I/Os. We
also show that for unweighted undirected graphs, APSP can be solved with just
O(V · sort(E)) I/Os.

Cache-Oblivious and Cache-Aware Algorithms 9

Both our weighted and unweighted approaches require O(V 2) space. For di-
ameter computations we provide I/O-space tradeo�s. In the paper, we also pro-
vide improved results for both diameter and APSP computation on directed
planar graphs.

Keywords: external memory; diameter; all-pairs shortest paths; sparse graphs;
planar graph; I/O-e�cient algorithms

Joint work of: Arge, Lars; Meyer, Ulrich Carsten; Toma, Laura

On the Adaptiveness of Quicksort

Gabriel Moruz (Aarhus University)

Hoare in 1961 introduced Quicksort as a simple randomized sorting algorithm.
Hoare proved that the expected number of comparisons performed by the algo-
rithm is O(n log n). In practice the running time is strongly dependent on the
number of element swaps performed, a�ecting the running time up to a factor of
two. In this paper it is proved that Quicksort performs expected O(n log(Inv/n))
element swaps, where Inv denotes the number of inversions in the input se-
quence. Experimental results are presented con�rming the in�uence of the num-
ber of inversions on the running time.

Keywords: quicksort; randomized algorithm; sort; inversions

Joint work of: Moruz, Gabriel; Brodal, Gerth S.; Fagerberg, Rolf

Will the I/O model survive till the 22nd century?

Rasmus Pagh (The IT University of Copenhagen)

This rather philosophical talk considers the possibility of a memory model that
allows many pieces of data to be fetched at the same time even if not spatially
close. The main argument is that there is no inherent physical reason why mem-
ory devices should perform better on algorithms with spatially local access to
data. The performance of the model on sorting and BFS is considered.

Keywords: Models of computation; memory model; sorting; breadth-�rst search

10 L. Arge, M. A. Bender, E. Demaine, Ch. Leiserson, K. Mehlhorn

An Experimental Comparison of Empirical and
Model-driven Evaluation

Keshav Pingali (Cornell University)

A key step in program optimization is the estimation of optimal values for pa-
rameters such as tile sizes and loop unrolling factors.

Traditional compilers use simple analytical models to compute these values.
In contrast, library generators like ATLAS use global search over the space of
parameter values by generating programs with many di�erent combinations of
parameter values, and running them on the actual hardware to determine which
values give the best performance.

It is widely believed that traditional model-driven optimization cannot com-
pete with search-based empirical optimization because tractable analytical mod-
els cannot capture all the complexities of modern high-performance architec-
tures, but few quantitative comparisons have been done to date.

To make such a comparison, we replaced the global search engine in AT-
LAS with a model-driven optimization engine, and measured the relative per-
formance of the code produced by the two systems on a variety of modern high-
performance architectures. Since both systems use the same code generator, any
di�erences in the performance of the code produced by the two systems can
come only from di�erences in optimization parameter values used by the two
systems. Our experiments on ten di�erent platforms show that model-driven op-
timization can be surprisingly e�ective, and can generate code with performance
comparable to that of code generated by ATLAS using global search.

Keywords: compiler; ATLAS; optimization; code generation

Joint work of: Pingali, Keshav; Yotov, Kamen; Li, Xiaoming; Ren, Gang;
Garzaran, Maria; Padua, David; Stodghill, Paul

Cache-Oblivious Shortest Paths in Graphs Using Bu�er
Heap

Vijaya Ramachandran (Univ. of Texas at Austin)

We present the Bu�er Heap (BH), a cache-oblivious priority queue that supports
Delete-Min, Delete, and Decrease-Key operations in O((1/B) log(N/M)) amor-
tized block transfers from external memory, where N is the number of elements.

Using the Bu�er Heap we present cache-oblivious algorithms for undirected
and directed single-source shortest path (SSSP) problems on graphs with non-
negative edge-weights. On a graph with V vertices and E edges, our algorithm
for the undirected case performs O(V + (E/B) log(V/M)) block transfers and
for the directed case performs O((V + E/B) log(V/M)) block transfers.

Cache-Oblivious and Cache-Aware Algorithms 11

For both priority queue with Decrease-Key operation, and for single-source
shortest path problem on general graphs, our results give the �rst non-trivial
cache-oblivious bounds.

Finally, we brie�y describe a very recent result on a variant of the Bu�er
Heap called the Slim Bu�er Heap, and its application to the all-pairs shortest
path problem on weighted undirected graphs.

The results on Bu�er Heap were presented at the 2004 ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). The extension to the Slim
Bu�er Heap and weighted APSP are included in a paper that will be presented at
the 2005 ACM-SIAM Symposium on Discrete Algorithms (SODA). That paper
also includes the results described in the abstract of the Dagstuhl talk by the
�rst author.

Keywords: bu�er heap; cache oblivious; priority queue; external memory;
single-source shortest path; all-pairs shortest paths; data structure

Joint work of: Chowdhury, Rezaul; Ramachandran, Vijaya

Cache-Optimizations for Numerical Algorithms

Ulrich Rüde (Universität Erlangen-Nürnberg)

We will present strategies and techniques for tuning the performance of nu-
merical algorithms for cache-based systems. One example will be the multigrid
method which is an asymptotically optimal method for solving sparse linear sys-
tems arising from the discretization of partial di�erential equations. The second
example will be the Lattice Boltzmann method, an algorithm based on cellular
automata for simulating �uid �ow.

Both classes of applications are fundamentally limited by bandwidth and
latency restrictions of modern computer architectures. One of the di�culties is
the interference between the CPU micro architecture and the memory system
design that makes it very di�cult to predict the observed performance and
consequently to design truly cache-oblivious algorithms in practice.

Keywords: cache optimization; numerical algorithms; multigrid; sparse linear
systems; Lattice Boltzmann method; �uid �ow

Lower bounds for I/O complexity of range search

Vasilis Samoladas (TU Crete - Chania)

There is increased interest in the I/O compexity of range search problems. We
review lower bounds techniques and results for a number of planar range search
problems. We demonstrate that in many cases the I/O complexity is dictated
by data placement constraints rather than search costs. We present the model
of Indexability and explore space-time trade-o�s.

12 L. Arge, M. A. Bender, E. Demaine, Ch. Leiserson, K. Mehlhorn

Keywords: external; data structure; lower bound; range search; space; I/O-
complexity

Joint work of: Sanders, Peter; Samoladas, Vasilis

Cache-aware List Ranking

Jop Frederik Sibeyn (Universität Halle-Wittenberg)

List-ranking is a central problem in many applications. Once solved, a list can be
turned into an array on which operations can be performed in a cache-friendly
way. For a list of length n, the simplest algorithm performs poorly due to its 4∗n
cache misses. It is easy to reduce this number to 2 ∗ n. For further reductions,
one might adapt external-memory algorithms, but due to their considerably
increased complexity in other respects, this is not pro�table at the current cost
of cache misses. However, there is an algorithm performing 1 ∗ n cache misses,
which o�ers a good compromise. In practice, this algorithm is almost 50% faster
than the 2 ∗ n algorithm. The analysis in the talk is based on a simple three-
parameter cost-model, which has proven to be su�ciently accurate to predict
which of several possible algorithms will perform best on the available hardware.

Keywords: list ranking; cache aware; algorithm; external memory

New Cache-Aware Algorithms for Sparse-Matrix
Factorizations

Sivan Toledo (Tel Aviv University)

In the talk I will describe two issues concerning cache-e�cient factorizations of
sparse symmetric matrices. The �rst part of the talk will describe a new cache-
aware, but not cache-oblivious schedules for these factorizations. These schedules
were designed for out-of-core implementions. They present interesting challenges
both in terms of �nding equivalent cache-oblivious algorithms, and in terms of
designing a cache-e�cient but parallel schedules.

In the second part of the talk I will focus on the cache e�ciency of individual
operations on nodes of the tree within the same tree model. I will describe two
common algorithms, the multifrontal algorithm and the left-looking algorithm.
I will show that on some matrices one algorithm achieves a high level of data
reuse but the other does not, while on other matrices the situation is reversed.
The problem of �nding an algorithm that always performs at least as well as
the best of the two is open, as well as characterizing optimal cache e�ciency in
these algorithms.

Keywords: cache aware; algorithm; sparse matrix; factorization; out of core

Cache-Oblivious and Cache-Aware Algorithms 13

I/O-E�cient Planar Topological Sort

Laura I. Toma (Bowdoin College - Brunswick)

We present I/O-e�cient algorithms for topologically sorting a planar directed
acyclic graph (DAG) in O(sort(N)) I/Os, where sort(N) is the number of I/Os
needed to sort N elements. First we describe an O(sort(N)) algorithm that
exploits properties of the dual graph using ideas from the PRAM topological
sort algorithm. We also describe a simpli�ed algorithm that runs in O(scan(N))
I/Os if a B2-partition of the graph is given. The algorithm exploits the acyclicity
of the input graph and reduces the problem to the same problem on a substitute
graph de�ned on the separator vertices. These results are the �rst progress on
the long-standing open problem of topological sorting.

Keywords: planar graph; topological sort; I/O-e�cient algorithms; dag; PRAM

Joint work of: Toma, Laura I.; Arge, Lars; Zeh, Norbert

A Simple Algorithm for I/O-e�ciently Pruning Dense
Spanners

Jan Vahrenhold (Universität Münster)

Given a geometric graph G = (S, E) in Rd with constant dilation t, and a positive
constant ε, we show how to construct a (1 + ε)-spanner of G with O(|S|) edges
using O(sort(|E|)) I/O operations.

Keywords: dense spanners; spanner; pruning; I/O-e�cient algorithms

Joint work of: Gudmundsson, Joachim; Vahrenhold, Jan

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2005/156

Paradigms for Programming Matrix Algorithms: Processor
Obliviousness

David Wise (Indiana University)

In my tangential approach to cache-oblivious matrix algorithms, the quadtree de-
composition of common factorizations, I uncovered a new perspective on proces-
sor scheduling that, for this group, might be called �processor oblivious� coding.

The recursive decomposition of Cholesky factorization naturally yields three
(maybe four) mutually recursive functions, each side-e�ecting a block. One of
these�the rank-k update� is performed

(
n
3

)
times at the base case, where there

are n× n base blocks. This, alone accounts for the cubic �op rate. Remarkably,

http://drops.dagstuhl.de/opus/volltexte/2005/156

14 L. Arge, M. A. Bender, E. Demaine, Ch. Leiserson, K. Mehlhorn

however, its results can be held in memory visible only to a single processor
until they are ��nalized� there by another function (triangularSolve), executed
only

(
n
2

)
times. That is, even in scheduling distributed multiprocessors, we can

much relax the choreography of data communication simply by following the
block-recursive paradigm for programming.

Keywords: cache oblivious; algorithm; matrix; processor scheduling; processor
oblivious; Cholesky factorization

Bounded-Weight I/O-E�cient Shortest Paths

Norbert Zeh (Dalhousie University)

We present I/O-e�cient algorithms for shortest paths in undirected graphs.
These algorithms are based on a re�nement of Mehlhorn/Meyer's clustering
idea used to speed-up undirected breadth-�rst search. The �rst, very simple,
algorithm achieves I/O-complexity O(

√
(V E lg W)/B + sort(V + E)) for ran-

dom edge weights between 1 and W . A re�nement of the algorithm achieves
the same complexity in the worst case for edge weights in the same range. For
random edge weights between 0 and 1, the complexity of the algorithm becomes
O(

√
V E/B + ((V + E) lg B)/B + sort(V + E)).

Keywords: Shortest paths, graph algorithms, I/O-e�cient algorithms; shortest
paths

Joint work of: Meyer, Ulrich; Zeh, Norbert

	04301 Abstracts Collection Cache-Oblivious and Cache-Aware Algorithms --- Dagstuhl Seminar ---
	 Lars Arge, Michael A. Bender, Erik Demaine, Charles Leiserson and Kurt Mehlhorn

