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1. INTRODUCTION 1

Abstract. Rational choice when preferences are not required to be transitive and complete

has been discussed in the literature for years. In this article transitivity and completeness

of the preference relation is also not assumed. It will be shown that nevertheless the ex-

istence of a competitive equilibrium can be proven when those properties are replaced by

a domination property which allows that there could be cicles among those alternatives

which are of less importance for the individual and which he or she would never choose if

better ones are available.

Moreover, one can show that the compensated demand function is continuous under very

weak conditions, and because of this, Shephard’s lemma follows without assuming tran-

sitivity and completeness of the underlying preferences.

Extended Abstract

1. Introduction

Preferences of the individuals in an economy are usually assumed to be transitive and

complete. In this article models of consumer behavior will be considered when preferences

do not possess these properties. This conception is realistic since we often are not aware

which of two alternatives we prefer, especially when they are of less importance for us or

when it is not possible to compare them directly with each other. An appealing example

when indifference is not transitive is the following one:

An individual may be indifferent between 1000 Euro and 1001 Euro, and he may be also

indifferent between 1001 Euro and 1002 Euro, and so on, but usually he will not be indif-

ferent between 1000 Euro and 10000 Euro.

In the following analysis two models of consumer behavior will be considered when pref-

erences are not assumed to be transitive and complete. We will see that nevertheless

appealing results can be deduced, as for instance continuity of the demand functions or
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the existence of a competitive equilibrium.

2. Existence of a Competitive Equilibrium

The existence of a competitive equilibrium without assuming transitivity and complete-

ness of the underlying preferences has been firstly investigated by Gale and Mas-Colell [1],

Mas-Colell [7] and Shafer and Sonnenschein [8]. These authors develop their analysis for

abstract economies. More recently, an article of Kim and Richter [6] is also concerned with

this problem. In this article instead of transitivity and completeness of the preferences

another property, defined in Definition 1, will be applied.

Therefore, let us consider a nonempty set of alternatives X, and a relation R on

X, representing the preferences of the individual. xRy means, in the opinion of the

individual, x is at least as good as y.

Definition 1: (Domination of alternatives): For any relation R on X, a finite set

{x1, ..., xm} ⊆ B is said to be ”dominated in B” if there exists an y ∈ B such that yRy

and yRxi for j = 1, ...,m.

The intuitive interpretation of Definition 1 is the following one: The individual is aware

that he appreciates the alternative y at least as much as the other alternative x1,...,xk,

but he may be undecided between some of the latter.

In order to recall what is meant by a competitive equilibrium in an economy we have

preliminarily to recall further definitions and results. Therefore, let us consider an

economic agent who in every price-income situation (p, M), (p, M)∈ IRn
++ × IR+

1),

chooses a commodity bundle h(p, M) out of a budget set B(p, M)= {x ∈ IRn
+ | px ≤ M}.

This function h : IRn
++× IR+ −→ IRn

+, x = h(p, M), describing consumer behavior, will be

called ”demand function”. More generally one can introduce a ”demand correspondence”

1)x ∈ IRn
+ ⇐⇒ x ≥ 0, x = (x1, ..., xn.), x ∈ IRn

++ ⇐⇒ x > 0.
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h : IRn
++ × IR+ −→ 2IRn

+ , where 2IRn

+ denotes the power set of IRn
+. In our interpretation

this means, that the individual can choose more than one commodity bundle out

of B(p, M) in the price-income situation (p, M). Throughout this paper we assume

h(p, M) 6= ∅, for all (p, M) ∈ IRn
++ × IR+. We will call a consumer ”rational” when in

every price-income situation he or she chooses the best alternatives out of B(p, M). This

also presumes, that the consumer reveals his or her preferences by the actions. Formally

it means

Definition 2: Given a demand correspondence h : IRn
++× IR+ −→ 2IRn

+ , and a relation R

on X ⊆ IRn
+. Then h is called ”rational” with respect to R iff for all (p, M) ∈ IRn

++× IR+,

h(p, M) = {x ∈ X | x ∈ B(p, M) ∧ ∀y ∈ X ∩B(p, M) : xRy}.

We will now consider a finite, non-empty set I of individuals and an exchange economy

E where every individual i has an initial equipment ei ∈ IRn
+ which he can sell. Given the

price system p ∈ IRn
++ the individual can earn pei =

∑n
j=1 pje

i
j amounts of money.

In order to make clear that the demand function of every individual depends on his or

her preference relation �i on IRn
+ and the initial equipment ei we follow Hildenbrand and

Kirman [5] and write ϕ(�i, e
i, p) instead of hi(p, M).

Every individual i ∈ I acts rationally with respect to �i, and his or her behavior is

described by a demand correspondence ϕ : p −→ ϕ(�i, e
i, p), where p ∈ IRn

++ is a price

vector and ϕ(�i, e
i, p) = {x ∈ IRn

+ | px ≤ pei ∧ ∀y ∈ IRn
+ : py ≤ pei ⇒ x �i y}.

A Walras-equilibrium ((x∗i)i∈I , p
∗) of an economy E = ((�i)i∈I , (e

i)i∈I , IR
n
+) is defined by

i) x∗i ∈ ϕ(�i, e
i, p∗) and

ii)
∑

i∈I x∗i ≤
∑

i∈I ei.

We will present conditions which imply the existence of a competitive equilibrium. The

proof bases heavily on the upper hemicontinuity of the demand correspondence which

has been proved in [2]. Upper hemicontinuity of a demand function can be defined in the
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following way [5]:

Let F : S −→ 2T , where S, T ⊆ IRn, then F is called ”upper hemicontinuous” at x0 ∈ S,

if for every < xk >, xk ∈ S, with limk→∞ xk = x0, and for every sequence < yk >

with yk ∈ F (xk), there exists a convergent subsequence < ykj > of < yk >, such that

limj→∞ ykj = y ∈ F (x0). F is called upper hemicontinuous if it is upper hemicontinuous

at every x ∈ S.

Now I will recall Theorem 3 in [2], where upper hemicontinuity of a demand correspon-

dence is shown, when the domain of h is B∗, i.e. the family of all competitive budget sets

B(p, M) = {x | x ∈ IRn
+ ∧ px ≤ M} for all p ∈ IRn

++ and M ∈ IR+. Instead of h(B(p, M))

one can write h(p, M).

Lemma 1 (see Theorem 3 in [2], p.752)) Consider R on IRn
+ such that R is continuous3)

on IRn
+ and let R(x) be convex for all x ∈ IRn

+. Furthermore, let every finite subset A ⊆ B

with cardinality n + 1 be dominated in B for every B ∈ B∗. Then there exists an upper

hemicontinuous choice correspondence h : IRn
++ × IR+ −→ 2IR

n

+ rational with respect to

R.

We will now demonstrate the existence of a competitive equilibrium when we assume

domination of alternatives instead of completeness and transitivity of the preferences.

The proof bases heavily on Hildenbrand’s and Kirman’s Proposition 3.1 ([5], p.93) where

these authors show certain properties of the demand functions which imply the existence

of a competitive equilibrium. It will be shown that these properties also hold under the

conditions of this article.

Theorem 2 Consider an economy E with every agent i ∈ I having a continuous and

2)In the proof of Theorem 3 in [2], p.75, line 16 from above write ”there exists z0 ∈ B(p0,M0)” instead

of ”there exists z0 ∈ h(p0,M0)”.
3)R is continuous on X, if for all x ∈ X, R(x) = {z | z ∈ X ∧ zRx} and R−1(x) = {z | z ∈ X ∧ xRz}

is closed in X.
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monotonic relation4) �i on IRn
+, and let Ri(x) = {y | y ∈ IRn

+ ∧ y �i x} be convex

for all x ∈ IRn
+. Moreover, let for every B ∈ B∗ every set A ⊆ B with | A | = n + 1

be dominated in B, and additionally assume
∑

i∈I ei > 0. Then there exists a Walras-

equilibrium
(
(x∗i)i∈I , (p

∗)
)

in E. If additionally, �i satisfies the following strict convexity

condition, x ∼i y ∧ x 6= y ⇒ λx + (1 − λ)y �i y, ∀λ ∈]0, 1[5), for all x, y ∈ IRn
+, then

xi = ϕ(�i, e
i, p∗) is fulfilled.

Proof. Application of Lemma 1 together with the definition of ϕ yields that ϕ(�i, e
i, ·)

is well-defined on IRn
++ and rational with respect to �i. Moreover, ϕ(�i, e

i, p) is compact,

since Ri(x, p) = {y ∈ IRn
+ | py ≤ pei ∧ y �i x} is compact, and therefore ϕ(�i, e

i, p) =

∩
x∈IRn

+
Ri(x, p) is compact. From the definition of ϕ we can also immediately conclude that

ϕ(�i, e
i, ·), is homogeneous of degree zero in prices. Upper hemicontinuity of ϕ(�i, e

i, ·),

immediately follows from Lemma 1. Next, one has to show the following property:

For every sequence < pk >, pk ∈ IRn
++:[

limk→∞ pk = p̄ ≥ 0 ∧ p̄ 6= 0 ∧ p̄ 6> 0
]
⇒ inf {‖ x ‖| x ∈ ϕ(�i, e

i, pk)} → ∞.

However, if we examine the proof of Hildenbrand and Kirman in order to show this

property we can see that transitivity or completeness of �i is nowhere used, and thus it

also holds under the present conditions.

Since Ri(x) is convex, we also have that Ri(x, p) is convex, and therefore

ϕ(�i, e
i, p) = ∩

x∈IRn

+
Ri(x, p) is convex. Finally, if �i satisfies the above strict convexity

condition, then ϕ is a function.

Based on the above properties which are only concerned with demand correspondences or

- if �i is strictly convex - with demand functions, the existence of a Walras-equilibrium

follows (see [5], Theorem 3.1 and 3.2).

We thus have seen that in the existence theorem of a Walras-equilibrium we can replace

transitivity and connectedness of the preference relation by the domination of alternatives.

4)A relation � on X is monotonic if x ≥ y ∧ x 6= y ⇒ λx + (1 − λ)y � y,∀λ ∈]0, 1[ where � is the

asymmetric part of � .
5)x ∼ y means, x � y ∧ y � x;x � y means, x � y ∧ ¬(y � x).
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3. Compensated Demand

Closely related to (direct) demand functions are compensated demand functions, defined

by g(p, x) = arg min {pz | z ∈ X ∧ z � x}, for (p, x) ∈ IRn
++ ×X, where X ⊆ IRn

+.

Hence, g(p, x) consists of those alternatives which according to the opinion of the

individual are at least as good as x and which are the cheapest ones in the price situation

p. One can show that compensated demand functions, or more generally, compensated

demand correspondences are defined under quite weak assumptions [3]. Therefore, let us

recall the following basic model of consumer behavior:

(A1) X ⊆ IRn
+, X 6= ∅, is supposed to be a closed set alternatives.

(A2) � is a reflexive relation on X.

(A3) � is upper semicontinuous on X, i.e. the set R(x) = {y ∈ X | y � x} is closed in

X for every x ∈ X.

Under these conditions the compensated demand correspondence

g : IRn
++ × X −→ 2X , g(p, x) ⊆ X is well defined. One can even show that under these

weak assumptions (A1) to (A3), g(·, x0) is upper hemicontinuous with respect to p. For

the proof recall that m(p, x) = min{pz | z ∈ X∧z � x} is known as income compensation

function.

Theorem 3 Under (A1) to (A3), g : IRn
++ ×X −→ 2X , g(p, x0) ⊆ X, is upper hemicon-

tinuous with respect to p for every x0 ∈ X.

Proof. Let < pk >, pk ∈ IRn
++ be a sequence, such that limk→∞ pk = p̃ ∈ IRn

++ and let

xk ∈ g(pk, x0). Since � is reflexive the definition of g(pk, x0) yields pkxk ≤ pkx0. Since

< pk > is convergent it is also bounded, and hence, in view of the previous inequality,

< xk > is also bounded. Thus there exists a subsequence < xkj > of < xk >, and

x̃ ∈ IRn
+ such that limj→∞ xkj = x̃. Since pkjxkj ≤ pkjx0, we obtain limj→∞ pkjxkj ≤ p̃x0.
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By definition of g(pkj , x0), xkj � x0, and hence in view of upper semicontinuity of �,

x̃ � x0. By definition of g(pk, x0) we have pkxk = m(pk, x0). By a former result (see [3],

Lemma 1) m(·, x0) is continous with respect to p, and thus p̃x̃ = limj→∞ pkj limj→∞ xkj =

limj→∞ pkjxkj = limj→∞m(pkj , x0) = m(p̃, x0).

Since we also have x̃ � x0, we thus obtain x̃ ∈ g(p̃, x0). This concludes our proof.

The above result is rather important, because based on it one can show that Shephard’s

Lemma holds, when g(p, x) is single-valued [4]. Single-valuedness of g(p, x) for instance

follows, when � is strictly convex.

4. Summary

In this article conditions were presented which imply the existence of a competitive equi-

librium without assuming transitivity and completeness of the underlying individual pref-

erences. These attributes are replaced by a domination property which is concerned with

the mostly preferred alternatives in the budget sets.

Moreover, one can show that under conditions still weaker than the above ones the com-

pensated demand correspondence also possesses important properties, which imply the

validity of Shephard’s Lemma.
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