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t. Line planning is an important step in the strategi
 plan-ning pro
ess of a publi
 transportation system. In this paper, we dis
ussan optimization model for this problem in order to minimize operation
osts while guaranteeing a 
ertain level of quality of servi
e, in terms ofavailable transport 
apa
ity. We analyze the problem for path and treenetwork topologies as well as several 
ategories of line operation thatare important for the Quito Trolebús system. It turns out that, from a
omputational 
omplexity worst 
ase point of view, the problem is hardin all but the most simple variants. In pra
ti
e, however, instan
es basedon real data from the Trolebús System in Quito 
an be solved quite well,and signi�
ant optimization potentials 
an be demonstrated.1 Introdu
tionThe major 
ities of South Ameri
a are fa
ing an enormous and 
onstantly in-
reasing demand for transportation and, unfortunately, also in
rease vehi
ular
ongestion, with all its negative e�e
ts. In Quito, the elongated topography ofthe 
ity with 1.8 millions inhabitants (the urban area being 60 km long and 8 kmwide) aggravates vehi
ular 
ongestion even more, su
h that tra�
 almost 
om-pletely breaks down during rush hours. As a 
onsequen
e, the lo
al governmentfa
es the ne
essity of improving the publi
 mass transit system.A low-
ost option that has produ
ed satisfa
tory results in re
ent years hasbeen the implementation of major 
orridors of transportation. These 
orridors
onsist of street tra
ks that are reserved ex
lusively for high-
apa
ity bus units,whi
h, in this way, 
an operate independently of the rest of the tra�
. Eventhough the topology of a 
orridor is extremely simple (just a path), bus oper-ation on it is non-trivial. In fa
t, it is usually organized in a 
omplex systemof several dozen lines, whi
h 
over, in an overlapping way, di�erent parts of the
orridor, and whi
h 
an operate in di�erent ways, e.g., as �normal lines� or as�express lines� (stopping only at distinguished express stations), as �open lines�(unidire
tional) or �
losed lines� (bidire
tional lines), and in any 
ombination ofthese 
ategories. The 
orridor lines are often 
omplemented by feeding lines thattransport passengers between spe
ial transshipment terminals of the 
orridorand the nearby neighborhoods.
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Fig. 1: Trolebús system and feeder line system in Quito.In Quito, the most important of su
h 
orridors is the so-
alled Trolebús Sys-tem (TS), see Figure 1. TS is 
urrently the largest publi
 transportation systemin Quito, 
arrying around 250, 000 passengers daily. However, the dramati
 in-
rease in transportation demand has had a negative impa
t on the quality ofservi
e, with over
rowded buses and long waiting times being 
ommonly experi-en
ed by passengers. At the same time, operation 
osts have been 
ontinuouslyin
reasing. With the aim of 
ontributing to the improvement of this situation,we have been working on optimization models that 
an be applied to improvethe operation of the TS and similar 
orridor transportation systems. The ques-tion that we investigate is whether the design of the 
orridor line system 
an beoptimized using mathemati
al methods in order to improve the quality of servi
eand/or lower operation 
osts by a better vehi
le utilization.Mathemati
al optimization approa
hes to line planning have re
eived grow-ing attention in the operations resear
h and the mathemati
al programming
ommunity in the last two de
ades, see Odoni, Rousseau, and Wilson [1℄ andBussie
k, Winter, and Zimmermann [2℄ for an overview. In parti
ular, integerprogramming approa
hes to line planning have been 
onsidered sin
e the latenineties. Bussie
k, Kreuzer, and Zimmermann [3℄ (see also Bussie
k [4℄) andClaessens, van Dijk, and Zwaneveld [5℄ both propose 
ut-and-bran
h approa
hesto sele
t lines from a previously generated pool of potential lines. Both arti
lesare based on a �system-split� of the demand, i.e., an a priori distribution of thepassenger �ow on the ar
s of the transportation network; these �aggregated de-mands� are then 
overed by lines of su�
ient 
apa
ity. Bussie
k, Lindner, andLübbe
ke [6℄ extend this work by in
orporating nonlinear 
omponents. Goossens,van Hoesel, and Kroon [7,8℄ improve the models and algorithms and show thatreal-world railway problems 
an be solved within reasonable time and quality.Approa
hes that integrate line planning and passenger routing have re
ently
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been proposed by Borndörfer, Gröts
hel, and Pfets
h [9,10℄, and by S
höbel andS
holl [11,12℄. The latter authors 
onsider an expanded line-network that allowsto minimize the number of transfers or the transfer time.All of these arti
les 
onsider general network topologies, but do not analyzeline operation 
ategories su
h as express lines, or open lines, probably be
ausethe line planning problem on general graphs is already hard without them. The
orridor topology, however, opens up a 
han
e to investigate 
omplex line oper-ation 
ategories in a pra
ti
ally relevant setting. It also brings up the questionwhether perhaps some 
ases asso
iated with di�erent line operation 
ategories
an be solved in polynomial time. It will turn out in Se
tion 3 that this is in-deed the 
ase if only 
losed lines and a homogeneous vehi
le �eet are used; in allother 
ases, however, the problem is hard (there is one open 
ase left). From apra
ti
al point of view, however, TS instan
es 
an be solved quite well. Indeed,our results show signi�
ant optimization potentials with respe
t to the 
urrentlyoperated solution, see Se
tion 4.2 A Flow-Based Model for Line PlanningWe 
onsider a bus transportation network as a digraph D = (V, A), where ea
hbus station is represented by a node v ∈ V and ar
s represent dire
t links betweenstations, i.e., (i, j) ∈ A if and only if some bus may visit station j dire
tly afterstation i. The �eet of buses is often heterogeneous; for instan
e, in Quito it
ontains trolley-buses and several other types of buses used for the feeding lines.We 
all a spe
i�
 type of bus a transportation mode and de�ne M to be theset of all transportation modes in the system, where ea
h transportation mode
m ∈ M has a spe
i�
 
apa
ity κm ∈ Z

+. For ea
h m ∈ M, 
ertain stationsreferred to as terminals are identi�ed, where buses of mode m may start or enda servi
e route. An open line for a mode m is a dire
ted path whose �rst and lastnodes are di�erent terminals. Similarly, a 
losed line for m is a 
ir
uit 
ontainingat least one terminal. We 
onsider for ea
h m ∈ M a line pool Lm, i.e., a setof a priori sele
ted (open or 
losed) lines that 
an potentially be established.We denote by L := ∪m∈MLm the set of all possible lines and by Lm
a the set oflines of mode m using ar
 a. For a line ℓ ∈ L, cℓ ∈ R+ is the 
ost of a singletrip via ℓ. Transportation demand is usually expressed in terms of an origin-destination matrix (duv) ∈ Z

V ×V
+ , where ea
h entry duv indi
ates the number ofpassengers traveling from station u to station v within a 
ertain time horizon T .In the following we assume that ea
h passenger has been routed along somespe
i�
 dire
ted (u, v)-path in a prepro
essing step, su
h that an aggregatedtransportation demand ga on ea
h ar
 a of the network has been 
omputed.We will 
onsider three network topologies that are related to the TS stru
-ture. On the main 
orridor, trolley-buses move on a single path and are usuallynot allowed to overtake. This suggests to de�ne a transportation network 
on-sisting of two dire
ted paths (one for ea
h transportation dire
tion). Any linemoving from a station u to a station v must stop at all intermediate stations.We 
all su
h a network topology a Quito-Graph (QG). However, transport au-
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thorities are 
onsidering the possibility of allowing trolley-buses to overtake at
ertain segments of the main 
orridor in the future. This would make it possibleto introdu
e express lines that stop only at 
ertain stations. The trips betweentwo express stations 
an be modeled using respe
tively longer ar
s. We 
all anetwork of this type a Quito-Hopping-Graph (QHG). Finally, when 
onsideringboth feeding lines and the main 
orridor together, we observe that the TS net-work 
an be modeled as a tree, sin
e feeding lines are simple paths that start attransshipment stations along the main 
orridor.The line planning problem is to 
hoose a set of lines L ⊆ L and frequen
iesfor the lines in L in su
h a way that there is enough transportation 
apa
ity to
over the aggregated demand on ea
h ar
 of the network. It 
an be formulatedas an integer programming problem, that we denote by Demand Covering Modelwith Fixed Costs (DCM-FC):
min

∑

m∈M

∑

ℓ∈Lm

(cℓ fℓ + Kℓ yℓ) (1)subje
t to
∑

m∈M

∑

ℓ∈Lm
a

κm fℓ ≥ ga, ∀ a ∈ A (2)
0 ≤ fℓ ≤ fmax

ℓ yℓ ∀ ℓ ∈ L (3)
fℓ ∈ Z+ ∀ ℓ ∈ L (4)
yℓ ∈ {0, 1} ∀ ℓ ∈ L. (5)Here, fℓ is an integer variable representing the frequen
y assigned to line ℓ ∈ L,and yℓ is a 0/1-variable that indi
ates whether a line is 
hosen in the solution(yℓ = 1) or not (yℓ = 0). The 
ost of line ℓ ∈ L involves a �xed 
omponent Kℓas well as an operating 
ost cℓ fℓ that depends on the frequen
y. The obje
tivefun
tion (1) aims at minimizing the total operation 
osts. Constraints (2) ensurethat the aggregated transportation demand is 
overed. Constraints (3) 
ouplethe line sele
tion variables yℓ and the frequen
y variables fℓ and they imposeupper bounds fmax

ℓ , for all ℓ ∈ L on line frequen
ies. Finally, (4) and (5) areintegrality 
onstraints for the frequen
ies.When �xed 
osts are zero (Kℓ = 0, ∀ℓ ∈ L), the model simpli�es to thefollowing form, that we denote by Demand Covering Model (DCM):
min

∑

m∈M

∑

ℓ∈Lm

cℓ fℓ (6)subje
t to
∑

m∈M

∑

ℓ∈Lm
a

κm fℓ ≥ ga, ∀ a ∈ A (7)
0 ≤ fℓ ≤ fmax

ℓ ∀ ℓ ∈ L (8)
fℓ ∈ Z+ ∀ ℓ ∈ L. (9)DCM is a simpli�ed version of the models appearing in Claessens, van Dijk, andZwaneveld [5℄ and Bussie
k, Kreuzer, and Zimmermann [3℄.
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3 Computational ComplexitySolving DCM is NP-hard for general graphs, as the problem in
ludes the SetCovering Problem as a spe
ial 
ase (κ ≡ 1, g ≡ 1, fmax ≡ 1), see also S
höbeland S
holl [11℄. We now investigate how the network topology and several otherfa
tors a�e
t the 
omputational 
omplexity of the model.3.1 Fixed Costs are HardWe �rst observe that �xed 
osts make the problem di�
ult. A redu
tion fromthe 0/1 Knapsa
k Problem 
an be used to prove:Proposition 1 DCM-FC is NP-hard, even if the underlying transportation net-work is a Quito graph 
onsisting of two nodes joined by an ar
, only 
losed linesare allowed, and there is only one transportation mode.3.2 Multiple Modes are HardIt will turn out in Se
tion 3.5 that the homogenous �eet 
ase (|M| = 1) allows afurther simpli�
ation of the model DCM that leads to spe
ial 
omplexity results.We therefore �rst dis
uss the 
ase of multiple modes (|M| ≥ 2). Before doingthis, however, let us 
onsider an undire
ted version of the problem for Quitographs.Observe that if the line pool 
ontains only 
losed lines, then ea
h line usingan ar
 a = (u, v) must also use the ar
 a = (v, u), on whi
h the bus is travelingin the opposite dire
tion. Hen
e, both the ar
 set of the network and the ar
 setof ea
h line 
an be partitioned into pairs of antiparallel ar
s. Substituting thesepairs by undire
ted edges, any instan
e of DCM with 
losed lines 
an be redu
edto an equivalent undire
ted instan
e on an undire
ted graph G = (V, E), wherenew aggregated demands on the edges are 
omputed as follows:
g′uv := max{g(u,v), g(v,u)}, for all (u, v) ∈ A.In this version of the problem, the lines 
orrespond to simple undire
ted pathsin G, having the same 
osts. The task is to assign frequen
ies to these pathsto 
over the edge demands at minimum 
ost. Figure 2 gives an example of thisproblem transformation.Using a redu
tion from the 3-Dimensional Mat
hing Problem, one 
an prove:Proposition 2 If |M| ≥ 2, then DCM is NP-Hard even for undire
ted Quitographs and if �xed 
osts are zero.3.3 Trees are HardFeeding line systems transport passengers from the main 
orridor to the neigh-borhoods. Ea
h feeding line starts at a transshipment terminal, visits a set of
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v1 v2 v3 v4

g(v1v2)

g(v2v1)

D

v1 v2 v3 v4

g′

v1v2

GFig. 2: Constru
ting the undire
ted version of DCM on a Quito graph. The 
losedlines (v1, v2, v3, v2, v1) and (v2, v3, v4, v3, v2) in D are substituted by simple undire
tedpaths in G.
onse
utive stations up to 
ertain turn-over station, and returns ba
k to thetransshipment terminal stopping at the same stations on the way. Sin
e only
losed lines are admissible, there is again an undire
ted version of the DCMinvolving feeder lines. The underlying graph for this problem is a tree, with sev-eral terminals as initial nodes, and simple paths starting from it. Thus, ea
hline is represented by an undire
ted path linking one terminal with a 
ertainnode where the turn-over takes pla
e. The following result 
an be proved usinga redu
tion from the 3-Dimensional Mat
hing Problem.Proposition 3 DCM on trees is NP-hard, even if only 
losed lines and a ho-mogeneous transportation �eet (|M| = 1) is used and �xed 
osts are zero.3.4 Hopping is HardIn this se
tion we 
onsider the Quito Hopping Graph topology. To this end let
D = (V, A) be de�ned by the set V = {v1, v2, . . . , vn} of nodes representing allbus stations in the sequen
e along the path, and let VX ⊆ V be a subset ofexpress stations. Similarly, there are express terminals, where express buses areallowed to start or end their routes.Express lines are allowed to stop only at nodes from VX , while normal (i.e.,non-express) lines visit any node. Two nodes are joined by an ar
 if the 
orre-sponding stations 
an be visited 
onse
utively by some line. Hen
e, the set ofar
s is partitioned into three 
lasses: a subset AN 
ontaining ar
s that may onlybe used by normal lines, a set AX of ar
s that may only be used by express lines,and a set AS of �shared ar
s�. We assume that a transportation demand has beenpreviously assigned to ea
h ar
 of the network using some system split method.Using a redu
tion from 3-Dimensional Mat
hing similar as for Proposition 2, one
an prove:Proposition 4 DCM on Quito Hopping Graphs is NP-hard, even if only 
losedlines are 
onsidered and �xed 
osts are zero.3.5 Easy and Open CasesWe investigate now the Demand Covering Model on Quito graphs for a homo-geneous transportation �eet (|M| = 1) and �xed 
osts of zero. This model, that
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we denote by Demand Covering Model with Homogeneous Fleet (DCM-HF), 
anbe further simpli�ed and formulated in the following matrix form:
min cT f (10)subje
t to

AHf ≥ g̃ (11)
f ≤ fmax (12)
f ∈ Z

|L|
+ . (13)Here, g̃a := ⌈ ga

κ
⌉ for all a ∈ A, are the transformed aggregated demands,

c ∈ R
|L| is the ve
tor of line (operating) 
osts, fmax ∈ Z

|L|
+ denotes the ve
tor ofupper bounds on the frequen
ies, and AH ∈ {0, 1}|A|×|L| is the ar
-line in
iden
ematrix.

v1 v2 v3 v4

c1

c2

B B g̃e < B

(∞, 0) (∞, 0) (∞, 0)
v1 v2 v3 v4

(fmax
ℓ1

, cℓ1
)

(fmax
ℓ2

, cℓ2
)

−B B

(B − g̃e, 0)

(u, c)

Fig. 3: Transforming undire
ted DCM-HF on Quito graphs to a minimum 
ost �owproblem.Closed Lines The undire
ted version of DCM-HF on Quito Graphs 
an beredu
ed to a minimum 
ost �ow problem as follows. Let G = (V, E) be anundire
ted Quito Graph with n nodes v1, . . . , vn. We de�ne B := maxe∈E{g̃e}and de�ne D̂ = (V, Â) to be a dire
ted network on the node set of G, whose ar
set is the disjoint union of three subsets: a set Â1 
ontaining all �ba
kward ar
s�of the form (vi, vi−1), for all i ∈ {2, 3, . . . , n}; a set Â2 that 
ontains one �linear
� (vi, vj), with i < j for every line having its ends points at vi and vj ; anda set Â3 
ontaining one �sla
k ar
� (vi, vi+1) for ea
h edge {vi, vi+1} in G with
B − g̃e > 0. Flow demands are de�ned as follows (negative demands meaningthat the node is a sour
e of �ow):

bvi
=











−B, if i = 1,

B, if i = n,

0, otherwise.Ar
 
osts are equal to zero and 
apa
ities are set to in�nity on the ar
s belongingto Â1. For ea
h ar
 in Â2 representing a line ℓ ∈ L, the 
ost is equal to cℓand the 
apa
ity is set to fmax
ℓ . Finally, ea
h sla
k ar
 in Â3 asso
iated to an
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edge e from G has 
apa
ity equal to B − g̃e and 
ost equal to zero. Figure 3shows an example. Interpreting the values of a feasible �ow on the line ar
s astransportation 
apa
ities of the respe
tive lines is the key to proving:Proposition 5 DCM-HF 
an be solved in polynomial time on undire
ted QuitoGraphs.Open and Closed lines If both open and 
losed lines are present in the linepool, the symmetry of the problem is broken and the redu
tion of the last se
tiondoes no longer work. We have not yet been able to determine the 
omplexity ofthis 
ase, but we show next that this problem is at least as di�
ult as the Exa
tPerfe
t Mat
hing Problem, whose 
omplexity is open.The Exa
t Perfe
t Mat
hing Problem (EPMP, see e.g. [13℄) is a perfe
t mat
h-ing problem de�ned on a bipartite graph with red and blue edges; there is also aninteger k given. The task is to determine whether there exists a perfe
t mat
hing
ontaining exa
tly k blue edges. The 
omplexity of this problem is unknown. Wehave proven the following proposition.Proposition 6 Every instan
e of EPMP 
an be transformed to an instan
e ofDCM-HF in polynomial time.4 Optimizing the Trolebús SystemWe have 
arried out a 
omputational study with various DCM models for thethree network topologies 
onsidered in the previous se
tion, based on data pro-vided by the Trolebús System operator. The models were solved using the IP-solver SCIP [14℄ in its standard 
on�guration, whi
h was su�
ient to obtainoptimal solutions within a few se
onds. All experiments were performed on a 3.0GHz Pentium 4 PC with 512 MB RAM running Suse Linux 10.0.The total �eet of the TS 
onsists of 113 trolley-buses for the 
orridor and 89normal buses for two di�erent types of the feeding lines. The transportationnetwork has 528 nodes, 52 of them lo
ated along the main 
orridor.Table 1 reports some operational parameters for the line plan 
urrently im-plemented by the TS operator in the main 
orridor (QG) and in the feeder linesystem (FLS): 
ost, average number of transfers per passenger, average traveltimes, and the a

umulated frequen
y. We refer to this line plan as the referen
eplan. The statisti
s are given for time sli
es of one hour during the day. For thetime interval 06:00�07:00, the referen
e plan does not provide enough 
apa
ityto 
over the transportation demand with the nominal maximum 
apa
ity of atrolley bus (κ = 180); in fa
t, the solution requires 210 passengers to be trans-ported by ea
h bus unit on average, i.e., the buses are over
rowded. Passengertransfers were 
omputed using the method des
ribed in Bouma and Oltrogge [15℄(the frequen
y variables were �xed to the values given by the referen
e plan).Traveling times between stations were taken from histori
al data for QG and
8



Table 1: The 
urrent operation of the Quito Trolebús System (main 
orridor and feeding lines).Quito Graph Feeding LinesT Cost # Tr. Travel Time P

ℓ∈L
fℓ Cost # Tr. Travel Time P

ℓ∈L
fℓ06:00-07:00∗ 5379 � � 57 3806.8 0.478 49.66 5907:00-08:00 7271 0 30.7 79 4144.6 0.457 46.32 6508:00-09:00 7246 0 28.1 83 3330.4 0.456 44.94 5309:00-10:00 5991 0 24.3 75 3251.0 0.506 44.74 5212:00-13:00 4858 0.0140 21.1 62 2873.6 0.452 41.16 4613:00-14:00 4941 0.0322 21.8 63 3323.6 0.504 45.18 5216:00-17:00 4945 0.0150 28.3 62 3473.6 0.500 46.77 5417:00-18:00 7188 0 30.9 81 3455.8 0.415 42.89 5318:00-19:00 7457 0 30.1 85 3050.0 0.394 43.29 4819:00-20:00 6044 0 28.3 79 3050.2 0.548 52.47 4920:00-21:00 5343 0 30.6 72 2597.6 0.661 56.09 41Table 2: Optimizing the Quito Trolebús System using model DCM-HF on QG.Closed Lines Closed+Open LinesT Cost # Tr. Travel Time P

ℓ∈L
fℓ |L| Cost # Tr Travel Time P

ℓ∈L
fℓ |L|06:00-07:00 6275 0 30.02 79 19 4560.3 0 29.30 79 2507:00-08:00 6911 0.00226 31.19 88 20 5232.7 0.00226 30.09 88 2808:00-09:00 4792 0.00023 25.68 65 18 3785.8 0.00023 25.99 65 2809:00-10:00 2992 0.00119 24.39 38 16 2522.2 0.00113 23.14 38 2012:00-13:00 2230 0 20.05 26 10 2195.7 0 20.51 26 1113:00-14:00 2342 0 21.54 28 11 2289.1 0 21.44 30 1416:00-17:00 3234 0 26.33 39 13 2942.8 0 26.24 39 1917:00-18:00 4847 0 29.02 58 16 4108.6 0 28.64 58 1818:00-19:00 4625 0 27.08 58 17 3922.7 0.0116 26.79 60 2019:00-20:00 3062 0 26.46 40 16 2667.2 0 26.50 41 1720:00-21:00 1843 0 25.70 23 9 1711.4 0 26.10 24 10
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FLS and estimated for express ar
s in QHG. The transfer time for a 
hangefrom line ℓ1 to line ℓ2 was estimated as T
2fℓ2

.As a �rst experiment, we 
arried out line planning for the main 
orridor basedon the DCM-HF model on QG. We 
onsidered ea
h one-hour time sli
e as anindependent instan
e and ran two tests on it. In the �rst the line pool L 
onsistsof 66 
losed lines and in the se
ond one L 
ontains 66 
losed lines and 132 openlines. Table 2 reports the results obtained for this setting. Signi�
ant 
ost savingswere obtained even in the 
ase when only 
losed lines are allowed. The 
ost ofour solution is smaller than that of the referen
e plan, with an average de
reaseof $ 2,119.31 per hour and a global de
rease of $ 40,267. The total number oftransfers in
reased in the morning time intervals, but de
reased dramati
allyduring midday and in the afternoon. The total number of transfers is 125, theaverage travel time is 25.56 minutes, 
ompared to 26.4 minutes in the referen
eplan. If both open and 
losed lines are 
onsidered, solution 
osts are redu
edeven more. This 
an be explained by an asymmetry in the demand data. In fa
t,most passengers move in the S-N dire
tion in the morning and return to theirhomes traveling in the N-S dire
tion in the afternoon. The number of transfers isabout the same as for the 
losed line s
enario, ex
ept for time sli
es 15:00�16:00and 18:00-19:00, where substantial in
reases are registered; the total number oftransfers is 453. Nevertheless, average travel time is only 25.38 minutes.Table 3 shows the results for the QHG instan
es, i.e., if express lines are
onsidered. To this purpose, we identi�ed 17 express stations along the main
orridor. We 
onsidered a line pool with 84 
losed lines and 168 open lines, ofwhi
h 18 
losed and 36 open lines were express lines.In both s
enarios (
losed lines and 
losed+open lines) the 
ost in
reased 
om-pared with the results obtained for QG. The global 
ost for the transportationplan with only 
losed lines was $ 60,825, whi
h still represents savings of 36%,when 
ompared to the 
urrent plan. The total number of transfers in
reased in
omparison to QG, mainly for time sli
es 11:00-12:00 (from 7 to 458 transfers)and 21:00-22:00 (from 0 to 288 transfers) in the s
enario with open+
losed lines.The in
reases in 
ost and number of transfers are, however, 
ompensated bybetter servi
e for passengers, in terms that average travel time was redu
ed to
23.66 minutes if only 
losed lines are 
onsidered and 23.35 if 
losed and openlines are in
luded in L.Our last experiment 
onsisted in 
omputing a line plan for the feeder linesystem. The TS has three independent systems of feeder lines that interse
tthe main 
orridor at three di�erent transshipment terminals and 
ontain 12,17, and 13 turn-over stations, respe
tively. Currently, the vehi
le �eet used forserving the feeder lines is heterogeneous and 
ontains two types of buses withtransportation 
apa
ities κ1 = 90 and κ2 = 110. Two planning s
enarios were
onsidered, depending on the number of �bran
hes� that a feeder line is permittedto visit. In the �rst s
enario, feeder lines are required to visit only one bran
h,i.e., they are paths having the transshipment terminal as one end node. In these
ond s
enario, up to two bran
hes may be visited by the same line, i.e., feederlines are paths that 
ontain the terminal in any position. In the �rst s
enario,

10



Table 3: Optimizing the Quito Trolebús System using express lines.Closed Lines Closed+Open LinesT Cost # Tr. Travel T. P

l∈L
fl |L| Cost # Tr. Travel T P

l∈L
fl |L|06:00-07:00 6284 0 27.42 79 24 4892.2 0.0028 25.09 80 3007:00-08:00 7092 0 27.66 87 21 5924.0 0 26.07 94 2708:00-09:00 5167 0.00176 22.91 65 18 4556.6 0 22.91 74 2509:00-10:00 3207 0.00251 21.82 39 19 2898.5 0.0102 21.58 42 2112:00-13:00 2431 0 18.75 29 12 2407.6 0 18.60 29 1313:00-14:00 2462 0.00365 20.10 28 12 2433.2 0 20.16 29 1516:00-17:00 3772 0 23.48 44 16 3297.9 0.0017 23.44 44 2317:00-18:00 5255 0.00214 25.75 61 16 4429.5 0.0067 25.70 61 2218:00-19:00 5125 0 24.25 62 20 4257.9 0.0187 24.18 62 2619:00-20:00 3446 0 24.22 43 18 2939.5 0.0092 24.49 44 2420:00-21:00 2083 0.00702 24.45 26 14 1899.7 0.0136 24.29 26 15Table 4: Optimizing the Quito Trolebús System in
luding the feeder line systems.One Bran
h One+Two Bran
hesT Cost # Tr. P

l∈L
fl |L| T. Time CPU Cost # Tr. P

l∈L
fl |L| T. Time CPU Gap06:00-07:00 3142.4 0.501 59 44 53.08 0.01 2562.4 0.496 30 28 56.03 10000 6.9607:00-08:00 3434.0 0.454 65 43 49.23 0.04 2794.0 0.454 33 32 54.31 10000 7.0308:00-09:00 2740.8 0.481 53 42 48.60 0.02 2220.8 0.449 27 26 51.24 10000 6.2109:00-10:00 2698.8 0.501 52 39 49.04 0.01 2198.8 0.499 27 24 51.76 0.23 3.2512:00-13:00 2341.2 0.444 46 37 44.78 0.03 1881.2 0.425 23 22 47.80 0.66 4.6813:00-14:00 2707.6 0.496 52 35 46.81 0.01 2207.6 0.494 27 24 49.80 10000 8.2916:00-17:00 2804.6 0.496 53 37 48.88 0.01 2289.0 0.473 27 24 51.40 1.54 4.7517:00-18:00 2837.8 0.409 54 41 46.20 0.01 2309.0 0.405 28 28 49.29 10000 7.4218:00-19:00 2464.6 0.386 47 39 45.83 0.01 2002.4 0.383 24 24 48.37 1.38 4.3319:00-20:00 2579.4 0.531 49 38 55.79 0.02 2110.6 0.521 26 24 58.02 1.38 4.3320:00-21:00 2279.0 0.631 43 35 63.84 0.04 1872.2 0.622 22 22 68.34 0.23 3.01Average 2443.6 0.549 46.2 36.1 55.42 0.020 1997.5 0.532 23.8 22.8 58.43 3692.0 4.99
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a total of 84 lines were 
onsidered in the line pool (
ontaining all three feedersystems), while in the se
ond s
enario 470 new lines were added. In our runs, weallowed an optimality gap of 5% and set a time limit of 10000 for ea
h instan
e.Table 4 reports the results (aggregated for all three feeder systems). As ex-pe
ted, the average number of transfers is mu
h larger than in the previousexperiments, sin
e trips of the form �feeding line-main 
orridor-feeding line�,whi
h involve at least two transfers, are 
ommon in the solution. In both the�one bran
h� and �two bran
hes� s
enarios, the 
ost was redu
ed in 
omparisonto the 
urrently implemented solution by about 18% (one bran
h) and 32% (twobran
hes). On the other hand, these savings are related to larger travel times forthe passengers, whi
h are slightly in
reased in all instan
es.Closed Lines
Open+Closed Lines

Fig. 4: Tradeo� 
ost vs. maximum number of lines.The dramati
 
ost de
rease in our solutions over the referen
e solution 
anbe explained by two fa
tors. First, our DCM model does not impose a limit onthe number of lines in a solution. In pra
ti
e, however, it is not desirable to havetoo many lines, as the whole system be
omes too 
ompli
ated for the user andthe operator. Adding new binary variables to DCM that indi
ate whether a lineis 
hosen in the solution or not, we 
arried out new experiments for the QGnetwork topology limiting the allowed numbers of lines to a maximum between�ve (the number of lines 
urrently used by the TS operator) and 30. Figure 4
12



summarizes the results for the whole day. As expe
ted, the optimum solution
ost in
reases as the number of allowed lines de
rease, but the in
rease is lessthan 10% from 30 to 5 lines. A se
ond reason 
an be found in the planningpoli
ies that the TS operator is 
urrently using. Up to now, line planning hasbeen 
arried out in a single step together with duty s
heduling for the bus driversby pre-assigning bus drivers to buses. It might be that this s
heme is just tooin�exible, sin
e hard laboral 
onstraints might dis
ard some good solutions forthe line planning problem. It would 
ertainly be worthwhile to 
ompute a vehi
leand a duty s
hedule based on our line plans, in order to get a better assessmentof the operational 
onsequen
es of su
h an optimization.Referen
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