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Abstract. Line planning is an important step in the strategic plan-
ning process of a public transportation system. In this paper, we discuss
an optimization model for this problem in order to minimize operation
costs while guaranteeing a certain level of quality of service, in terms of
available transport capacity. We analyze the problem for path and tree
network topologies as well as several categories of line operation that
are important for the Quito Trolebts system. It turns out that, from a
computational complexity worst case point of view, the problem is hard
in all but the most simple variants. In practice, however, instances based
on real data from the Trolebtis System in Quito can be solved quite well,
and significant optimization potentials can be demonstrated.

1 Introduction

The major cities of South America are facing an enormous and constantly in-
creasing demand for transportation and, unfortunately, also increase vehicular
congestion, with all its negative effects. In Quito, the elongated topography of
the city with 1.8 millions inhabitants (the urban area being 60 km long and 8 km
wide) aggravates vehicular congestion even more, such that traffic almost com-
pletely breaks down during rush hours. As a consequence, the local government
faces the necessity of improving the public mass transit system.

A low-cost option that has produced satisfactory results in recent years has
been the implementation of major corridors of transportation. These corridors
consist of street tracks that are reserved exclusively for high-capacity bus units,
which, in this way, can operate independently of the rest of the traffic. Even
though the topology of a corridor is extremely simple (just a path), bus oper-
ation on it is non-trivial. In fact, it is usually organized in a complex system
of several dozen lines, which cover, in an overlapping way, different parts of the
corridor, and which can operate in different ways, e.g., as “normal lines” or as
“express lines” (stopping only at distinguished express stations), as “open lines”
(unidirectional) or “closed lines” (bidirectional lines), and in any combination of
these categories. The corridor lines are often complemented by feeding lines that
transport passengers between special transshipment terminals of the corridor
and the nearby neighborhoods.
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Fig. 1: Trolebis system and feeder line system in Quito.

In Quito, the most important of such corridors is the so-called Trolebis Sys-
tem (TS), see Figure 1. TS is currently the largest public transportation system
in Quito, carrying around 250,000 passengers daily. However, the dramatic in-
crease in transportation demand has had a negative impact on the quality of
service, with overcrowded buses and long waiting times being commonly experi-
enced by passengers. At the same time, operation costs have been continuously
increasing. With the aim of contributing to the improvement of this situation,
we have been working on optimization models that can be applied to improve
the operation of the TS and similar corridor transportation systems. The ques-
tion that we investigate is whether the design of the corridor line system can be
optimized using mathematical methods in order to improve the quality of service
and/or lower operation costs by a better vehicle utilization.

Mathematical optimization approaches to line planning have received grow-
ing attention in the operations research and the mathematical programming
community in the last two decades, see Odoni, Rousseau, and Wilson [1] and
Bussieck, Winter, and Zimmermann [2] for an overview. In particular, integer
programming approaches to line planning have been considered since the late
nineties. Bussieck, Kreuzer, and Zimmermann [3] (see also Bussieck [4]) and
Claessens, van Dijk, and Zwaneveld [5] both propose cut-and-branch approaches
to select lines from a previously generated pool of potential lines. Both articles
are based on a “system-split” of the demand, i.e., an a priori distribution of the
passenger flow on the arcs of the transportation network; these “aggregated de-
mands” are then covered by lines of sufficient capacity. Bussieck, Lindner, and
Liibbecke [6] extend this work by incorporating nonlinear components. Goossens,
van Hoesel, and Kroon [7,8] improve the models and algorithms and show that
real-world railway problems can be solved within reasonable time and quality.
Approaches that integrate line planning and passenger routing have recently



been proposed by Borndérfer, Grotschel, and Pfetsch [9,10], and by Schébel and
Scholl [11,12]. The latter authors consider an expanded line-network that allows
to minimize the number of transfers or the transfer time.

All of these articles consider general network topologies, but do not analyze
line operation categories such as express lines, or open lines, probably because
the line planning problem on general graphs is already hard without them. The
corridor topology, however, opens up a chance to investigate complex line oper-
ation categories in a practically relevant setting. It also brings up the question
whether perhaps some cases associated with different line operation categories
can be solved in polynomial time. It will turn out in Section 3 that this is in-
deed the case if only closed lines and a homogeneous vehicle fleet are used; in all
other cases, however, the problem is hard (there is one open case left). From a
practical point of view, however, TS instances can be solved quite well. Indeed,
our results show significant optimization potentials with respect to the currently
operated solution, see Section 4.

2 A Flow-Based Model for Line Planning

We consider a bus transportation network as a digraph D = (V, A), where each
bus station is represented by a node v € V and arcs represent direct links between
stations, i.e., (i,7) € A if and only if some bus may visit station j directly after
station 7. The fleet of buses is often heterogeneous; for instance, in Quito it
contains trolley-buses and several other types of buses used for the feeding lines.
We call a specific type of bus a transportation mode and define M to be the
set of all transportation modes in the system, where each transportation mode
m € M has a specific capacity k,, € ZT. For each m € M, certain stations
referred to as terminals are identified, where buses of mode m may start or end
a service route. An open line for a mode m is a directed path whose first and last
nodes are different terminals. Similarly, a closed line for m is a circuit containing
at least one terminal. We consider for each m € M a line pool L™, i.e., a set
of a priori selected (open or closed) lines that can potentially be established.
We denote by £ := Up,enm £™ the set of all possible lines and by L* the set of
lines of mode m using arc a. For a line £ € £, ¢, € Ry is the cost of a single
trip via £. Transportation demand is usually expressed in terms of an origin-
destination matrix (d,,) € ZKXV, where each entry d,, indicates the number of
passengers traveling from station u to station v within a certain time horizon T.
In the following we assume that each passenger has been routed along some
specific directed (u,v)-path in a preprocessing step, such that an aggregated
transportation demand g, on each arc a of the network has been computed.
We will consider three network topologies that are related to the TS struc-
ture. On the main corridor, trolley-buses move on a single path and are usually
not allowed to overtake. This suggests to define a transportation network con-
sisting of two directed paths (one for each transportation direction). Any line
moving from a station w to a station v must stop at all intermediate stations.
We call such a network topology a Quito-Graph (QG). However, transport au-



thorities are considering the possibility of allowing trolley-buses to overtake at
certain segments of the main corridor in the future. This would make it possible
to introduce express lines that stop only at certain stations. The trips between
two express stations can be modeled using respectively longer arcs. We call a
network of this type a Quito-Hopping-Graph (QHG). Finally, when considering
both feeding lines and the main corridor together, we observe that the TS net-
work can be modeled as a tree, since feeding lines are simple paths that start at
transshipment stations along the main corridor.

The line planning problem is to choose a set of lines L C £ and frequencies
for the lines in L in such a way that there is enough transportation capacity to
cover the aggregated demand on each arc of the network. It can be formulated
as an integer programming problem, that we denote by Demand Covering Model
with Fized Costs (DCM-FC):

min Y Y (e fo+ Keye) (1)

meM LeLm
subject to
SN km o> ga Vaec A (2)
meMLeLT
0< fe < fi"™ e VeieLl (3)
fe €l veie Ll (4)
ye € {0,1} VielL. (5)

Here, f; is an integer variable representing the frequency assigned to line £ € L,
and y, is a 0/1-variable that indicates whether a line is chosen in the solution
(ye = 1) or not (y¢, = 0). The cost of line £ € L involves a fixed component K,
as well as an operating cost ¢y f; that depends on the frequency. The objective
function (1) aims at minimizing the total operation costs. Constraints (2) ensure
that the aggregated transportation demand is covered. Constraints (3) couple
the line selection variables y, and the frequency variables f; and they impose
upper bounds fj***, for all £ € £ on line frequencies. Finally, (4) and (5) are
integrality constraints for the frequencies.

When fixed costs are zero (K; = 0, ¥/ € L), the model simplifies to the
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following form, that we denote by Demand Covering Model (DCM):

min Z Z Cy fg (6)

meM LeLm
subject to
Z Zﬁmfgzga, Vaec A (7)
meM LeLm
0< fo < fi"™ vVieLl (8)
fe€Zy Vel (9)

DCM is a simplified version of the models appearing in Claessens, van Dijk, and
Zwaneveld [5] and Bussieck, Kreuzer, and Zimmermann [3].



3 Computational Complexity

Solving DCM is NP-hard for general graphs, as the problem includes the Set
Covering Problem as a special case (k = 1,9 = 1, f™* = 1), see also Schobel
and Scholl [11]. We now investigate how the network topology and several other
factors affect the computational complexity of the model.

3.1 Fixed Costs are Hard

We first observe that fixed costs make the problem difficult. A reduction from
the 0/1 Knapsack Problem can be used to prove:

Proposition 1 DCM-FC is NP-hard, even if the underlying transportation net-
work is a Quito graph consisting of two nodes joined by an arc, only closed lines
are allowed, and there is only one transportation mode.

3.2 Multiple Modes are Hard

It will turn out in Section 3.5 that the homogenous fleet case (|M]| = 1) allows a
further simplification of the model DCM that leads to special complexity results.
We therefore first discuss the case of multiple modes (]JM| > 2). Before doing
this, however, let us consider an undirected version of the problem for Quito
graphs.

Observe that if the line pool contains only closed lines, then each line using
an arc a = (u,v) must also use the arc @ = (v, u), on which the bus is traveling
in the opposite direction. Hence, both the arc set of the network and the arc set
of each line can be partitioned into pairs of antiparallel arcs. Substituting these
pairs by undirected edges, any instance of DCM with closed lines can be reduced
to an equivalent undirected instance on an undirected graph G = (V, E), where
new aggregated demands on the edges are computed as follows:

G 1= Max{g(u,v)» Y(v,u) }» for all (u,v) € A.

In this version of the problem, the lines correspond to simple undirected paths
in G, having the same costs. The task is to assign frequencies to these paths
to cover the edge demands at minimum cost. Figure 2 gives an example of this
problem transformation.

Using a reduction from the 3-Dimensional Matching Problem, one can prove:

Proposition 2 If (M| > 2, then DCM is NP-Hard even for undirected Quito
graphs and if fized costs are zero.
3.3 Trees are Hard

Feeding line systems transport passengers from the main corridor to the neigh-
borhoods. Each feeding line starts at a transshipment terminal, visits a set of
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Fig. 2: Constructing the undirected version of DCM on a Quito graph. The closed
lines (v1,v2,vs,v2,v1) and (v2, vs, va,vs,v2) in D are substituted by simple undirected
paths in G.

consecutive stations up to certain turn-over station, and returns back to the
transshipment terminal stopping at the same stations on the way. Since only
closed lines are admissible, there is again an undirected version of the DCM
involving feeder lines. The underlying graph for this problem is a tree, with sev-
eral terminals as initial nodes, and simple paths starting from it. Thus, each
line is represented by an undirected path linking one terminal with a certain
node where the turn-over takes place. The following result can be proved using
a reduction from the 3-Dimensional Matching Problem.

Proposition 3 DCM on trees is NP-hard, even if only closed lines and a ho-
mogeneous transportation fleet (|M| = 1) is used and fized costs are zero.

3.4 Hopping is Hard

In this section we consider the Quito Hopping Graph topology. To this end let
D = (V, A) be defined by the set V' = {v1,v9,...,v,} of nodes representing all
bus stations in the sequence along the path, and let Vx C V be a subset of
express stations. Similarly, there are express terminals, where express buses are
allowed to start or end their routes.

Express lines are allowed to stop only at nodes from Vx, while normal (i.e.,
non-express) lines visit any node. Two nodes are joined by an arc if the corre-
sponding stations can be visited consecutively by some line. Hence, the set of
arcs is partitioned into three classes: a subset Ay containing arcs that may only
be used by normal lines, a set Ax of arcs that may only be used by express lines,
and a set Ag of “shared arcs”. We assume that a transportation demand has been
previously assigned to each arc of the network using some system split method.
Using a reduction from 3-Dimensional Matching similar as for Proposition 2, one
can prove:

Proposition 4 DCM on Quito Hopping Graphs is NP-hard, even if only closed
lines are considered and fized costs are zero.

3.5 Easy and Open Cases

We investigate now the Demand Covering Model on Quito graphs for a homo-
geneous transportation fleet (]JM| = 1) and fixed costs of zero. This model, that



we denote by Demand Covering Model with Homogeneous Fleet (DCM-HF), can
be further simplified and formulated in the following matrix form:

min ' f (10)
subject to
Anf =g (11)
f< g (12)
fezlth (13)

Here, g, := [92] for all a € A, are the transformed aggregated demands,

c € RI£l is the vector of line (operating) costs, f™** € Zlfl denotes the vector of
upper bounds on the frequencies, and Ag € {0, 1}|A|X|£‘ is the arc-line incidence
matrix.
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Fig. 3: Transforming undirected DCM-HF on Quito graphs to a minimum cost flow
problem.

Closed Lines The undirected version of DCM-HF on Quito Graphs can be
reduced to a minimum cost flow problem as follows. Let G = (V, E) be an
undirected Quito Graph with n nodes v1,...,v,. We define B := max.cg{g.}
and define D = (V, A) to be a directed network on the node set of G, whose arc
set is the disjoint union of three subsets: a set Ay containing all “backward arcs”
of the form (v;,v;_1), for all i € {2,3,...,n}; a set Ay that contains one “line
arc” (v;,v;), with ¢ < j for every line having its ends points at v; and v;; and
a set As containing one “slack arc” (v;,v;41) for each edge {v;,v;+1} in G with
B — §e > 0. Flow demands are defined as follows (negative demands meaning
that the node is a source of flow):

-B,ifi=1,
by, =3 B, ifi=n,

i

0, otherwise.

Arc costs are equal to zero and capacities are set to infinity on the arcs belonging
to A;. For each arc in A representing a line ¢ € L, the cost is equal to ¢
and the capacity is set to f;***. Finally, each slack arc in Aj associated to an



edge e from G has capacity equal to B — g. and cost equal to zero. Figure 3
shows an example. Interpreting the values of a feasible flow on the line arcs as
transportation capacities of the respective lines is the key to proving:

Proposition 5 DCM-HF can be solved in polynomial time on undirected Quito
Graphs.

Open and Closed lines If both open and closed lines are present in the line
pool, the symmetry of the problem is broken and the reduction of the last section
does no longer work. We have not yet been able to determine the complexity of
this case, but we show next that this problem is at least as difficult as the Exact
Perfect Matching Problem, whose complexity is open.

The Ezact Perfect Matching Problem (EPMP, see e.g. [13]) is a perfect match-
ing problem defined on a bipartite graph with red and blue edges; there is also an
integer k given. The task is to determine whether there exists a perfect matching
containing exactly k blue edges. The complexity of this problem is unknown. We
have proven the following proposition.

Proposition 6 Every instance of EPMP can be transformed to an instance of
DCM-HF in polynomial time.

4 Optimizing the Trolebiis System

We have carried out a computational study with various DCM models for the
three network topologies considered in the previous section, based on data pro-
vided by the Trolebiis System operator. The models were solved using the IP-
solver SCIP [14] in its standard configuration, which was sufficient to obtain
optimal solutions within a few seconds. All experiments were performed on a 3.0
GHz Pentium 4 PC with 512 MB RAM running Suse Linux 10.0.

The total fleet of the TS consists of 113 trolley-buses for the corridor and 89
normal buses for two different types of the feeding lines. The transportation
network has 528 nodes, 52 of them located along the main corridor.

Table 1 reports some operational parameters for the line plan currently im-
plemented by the TS operator in the main corridor (QG) and in the feeder line
system (FLS): cost, average number of transfers per passenger, average travel
times, and the accumulated frequency. We refer to this line plan as the reference
plan. The statistics are given for time slices of one hour during the day. For the
time interval 06:00 07:00, the reference plan does not provide enough capacity
to cover the transportation demand with the nominal maximum capacity of a
trolley bus (x = 180); in fact, the solution requires 210 passengers to be trans-
ported by each bus unit on average, i.e., the buses are overcrowded. Passenger
transfers were computed using the method described in Bouma and Oltrogge [15]
(the frequency variables were fixed to the values given by the reference plan).
Traveling times between stations were taken from historical data for QG and



Table 1: The current operation of the Quito Trolebis System (main corridor and feeding lines).

Quito Graph

Feeding Lines

T Cost. # Tr. Travel Time ), . fe Cost # Tr. Travel Time ), . fe
06:00-07:00* 5379 - - 57 3806.8 0.478 49.66 59
07:00-08:00 7271 0 30.7 79 4144.6 0.457 46.32 65
08:00-09:00 7246 0 28.1 83 3330.4 0.456 44.94 53
09:00-10:00 5991 0 24.3 75 3251.0 0.506 44.74 52
12:00-13:00 4858 0.0140 21.1 62 2873.6 0.452 41.16 46
13:00-14:00 4941 0.0322 21.8 63 3323.6 0.504 45.18 52
16:00-17:00 4945 0.0150 28.3 62 3473.6 0.500 46.77 54
17:00-18:00 7188 0 30.9 81 3455.8 0.415 42.89 53
18:00-19:00 7457 0 30.1 85 3050.0 0.394 43.29 48
19:00-20:00 6044 0 28.3 79 3050.2 0.548 52.47 49
20:00-21:00 5343 0 30.6 72 2597.6 0.661 56.09 41
Table 2: Optimizing the Quito Trolebiis System using model DCM-HF on QG.
Closed Lines Closed+Open Lines
T Cost  # Tr. Travel Time Y, , fo |L] Cost  # Tr Travel Time ), . fe |L]
06:00-07:00 6275 0 30.02 79 19 4560.3 0 29.30 79 25
07:00-08:00 6911 0.00226 31.19 88 20 5232.7 0.00226 30.09 88 28
08:00-09:00 4792 0.00023 25.68 65 18 3785.8 0.00023 25.99 65 28
09:00-10:00 2992 0.00119 24.39 38 16 2522.2 0.00113 23.14 38 20
12:00-13:00 2230 0 20.05 26 10 2195.7 0 20.51 26 11
13:00-14:00 2342 0 21.54 28 11 2289.1 0 21.44 30 14
16:00-17:00 3234 0 26.33 39 13 2942.8 0 26.24 39 19
17:00-18:00 4847 0 29.02 58 16 4108.6 0 28.64 58 18
18:00-19:00 4625 0 27.08 58 17 3922.7 0.0116 26.79 60 20
19:00-20:00 3062 0 26.46 40 16 2667.2 0 26.50 41 17
20:00-21:00 1843 0 25.70 23 9 1711.4 0 26.10 24 10




FLS and estimated for express arcs in QHG. The transfer time for a change

from line ¢; to line ¢5 was estimated as %
2

As a first experiment, we carried out line planning for the main corridor based
on the DCM-HF model on QG. We considered each one-hour time slice as an
independent instance and ran two tests on it. In the first the line pool £ consists
of 66 closed lines and in the second one £ contains 66 closed lines and 132 open
lines. Table 2 reports the results obtained for this setting. Significant cost savings
were obtained even in the case when only closed lines are allowed. The cost of
our solution is smaller than that of the reference plan, with an average decrease
of $ 2,119.31 per hour and a global decrease of § 40,267. The total number of
transfers increased in the morning time intervals, but decreased dramatically
during midday and in the afternoon. The total number of transfers is 125, the
average travel time is 25.56 minutes, compared to 26.4 minutes in the reference
plan. If both open and closed lines are considered, solution costs are reduced
even more. This can be explained by an asymmetry in the demand data. In fact,
most passengers move in the S-N direction in the morning and return to their
homes traveling in the N-S direction in the afternoon. The number of transfers is
about the same as for the closed line scenario, except for time slices 15:00 16:00
and 18:00-19:00, where substantial increases are registered; the total number of
transfers is 453. Nevertheless, average travel time is only 25.38 minutes.

Table 3 shows the results for the QHG instances, i.e., if express lines are
considered. To this purpose, we identified 17 express stations along the main
corridor. We considered a line pool with 84 closed lines and 168 open lines, of
which 18 closed and 36 open lines were express lines.

In both scenarios (closed lines and closed+open lines) the cost increased com-
pared with the results obtained for QG. The global cost for the transportation
plan with only closed lines was $ 60,825, which still represents savings of 36%,
when compared to the current plan. The total number of transfers increased in
comparison to QG, mainly for time slices 11:00-12:00 (from 7 to 458 transfers)
and 21:00-22:00 (from 0 to 288 transfers) in the scenario with open+closed lines.
The increases in cost and number of transfers are, however, compensated by
better service for passengers, in terms that average travel time was reduced to
23.66 minutes if only closed lines are considered and 23.35 if closed and open
lines are included in L.

Our last experiment consisted in computing a line plan for the feeder line
system. The TS has three independent systems of feeder lines that intersect
the main corridor at three different transshipment terminals and contain 12,
17, and 13 turn-over stations, respectively. Currently, the vehicle fleet used for
serving the feeder lines is heterogeneous and contains two types of buses with
transportation capacities k1 = 90 and ko = 110. Two planning scenarios were
considered, depending on the number of “branches” that a feeder line is permitted
to visit. In the first scenario, feeder lines are required to visit only one branch,
i.e., they are paths having the transshipment terminal as one end node. In the
second scenario, up to two branches may be visited by the same line, i.e., feeder
lines are paths that contain the terminal in any position. In the first scenario,
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Table 3: Optimizing the Quito Trolebiis System using express lines.

Closed Lines

Closed+Open Lines

T Cost  # Tr. Travel T. >, _ . fi |L] Cost # Tr. Travel T 37, fi |L]
06:00-07:00 6284 0 27.42 79 24 4892.2 0.0028 25.09 80 30
07:00-08:00 7092 0 27.66 87 21 5924.0 0 26.07 94 27
08:00-09:00 5167 0.00176 22.91 65 18 4556.6 0 22.91 74 25
09:00-10:00 3207 0.00251 21.82 39 19 2898.5 0.0102 21.58 42 21
12:00-13:00 2431 0 18.75 29 12 2407.6 0 18.60 29 13
13:00-14:00 2462 0.00365 20.10 28 12 2433.2 0 20.16 29 15
16:00-17:00 3772 0 23.48 44 16 3297.9 0.0017 23.44 44 23
17:00-18:00 5255 0.00214 25.75 61 16 4429.5 0.0067 25.70 61 22
18:00-19:00 5125 0 24.25 62 20 4257.9 0.0187 24.18 62 26
19:00-20:00 3446 0 24.22 43 18 2939.5 0.0092 24.49 44 24
20:00-21:00 2083 0.00702 24.45 26 14 1899.7 0.0136 24.29 26 15
Table 4: Optimizing the Quito Trolebis System including the feeder line systems.
One Branch One+Two Branches
T Cost # Tr. >, fi |L| T. Time CPU Cost # Tr. 3", ., fi |L| T. Time CPU Gap
06:00-07:00 3142.4 0.501 59 44  53.08 0.01 2562.4 0.496 30 28  56.03 10000 6.96
07:00-08:00 3434.0 0.454 65 43 49.23 0.04 2794.0 0.454 33 32 54.31 10000 7.03
08:00-09:00 2740.8 0.481 53 42  48.60 0.02 2220.8 0.449 27 26 51.24 10000 6.21
09:00-10:00 2698.8 0.501 52 39 49.04 0.01 2198.8 0.499 27 24 51.76 0.23 3.25
12:00-13:00 2341.2 0.444 46 37  44.78 0.03 1881.2 0.425 23 22 47.80 0.66 4.68
13:00-14:00 2707.6 0.496 52 35 46.81 0.01 2207.6 0.494 27 24 49.80 10000 8.29
16:00-17:00 2804.6 0.496 53 37  48.88 0.01 2289.0 0.473 27 24 51.40 1.544.75
17:00-18:00 2837.8 0.409 54 41  46.20 0.01 2309.0 0.405 28 28  49.29 10000 7.42
18:00-19:00 2464.6 0.386 47 39  45.83 0.01 2002.4 0.383 24 24 4837 1.38 4.33
19:00-20:00 2579.4 0.531 49 38  55.79 0.02 2110.6 0.521 26 24 58.02 1.38 4.33
20:00-21:00 2279.0 0.631 43 35 63.84 0.04 1872.2 0.622 22 22 68.34 0.23 3.01
Average 2443.6 0.549 46.2 36.1  55.42 0.020 1997.5 0.532 23.822.8  58.43 3692.0 4.99
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a total of 84 lines were considered in the line pool (containing all three feeder
systems), while in the second scenario 470 new lines were added. In our runs, we
allowed an optimality gap of 5% and set a time limit of 10000 for each instance.

Table 4 reports the results (aggregated for all three feeder systems). As ex-
pected, the average number of transfers is much larger than in the previous
experiments, since trips of the form “feeding line-main corridor-feeding line”,
which involve at least two transfers, are common in the solution. In both the
“one branch” and “two branches” scenarios, the cost was reduced in comparison
to the currently implemented solution by about 18% (one branch) and 32% (two
branches). On the other hand, these savings are related to larger travel times for
the passengers, which are slightly increased in all instances.

Closed Lines
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Fig. 4: Tradeoff cost vs. maximum number of lines.

The dramatic cost decrease in our solutions over the reference solution can
be explained by two factors. First, our DCM model does not impose a limit on
the number of lines in a solution. In practice, however, it is not desirable to have
too many lines, as the whole system becomes too complicated for the user and
the operator. Adding new binary variables to DCM that indicate whether a line
is chosen in the solution or not, we carried out new experiments for the QG
network topology limiting the allowed numbers of lines to a maximum between
five (the number of lines currently used by the TS operator) and 30. Figure 4
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summarizes the results for the whole day. As expected, the optimum solution
cost, increases as the number of allowed lines decrease, but the increase is less
than 10% from 30 to 5 lines. A second reason can be found in the planning
policies that the TS operator is currently using. Up to now, line planning has
been carried out in a single step together with duty scheduling for the bus drivers
by pre-assigning bus drivers to buses. It might be that this scheme is just too
inflexible, since hard laboral constraints might discard some good solutions for
the line planning problem. It would certainly be worthwhile to compute a vehicle
and a duty schedule based on our line plans, in order to get a better assessment
of the operational consequences of such an optimization.
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