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Abstract. An important strategic element in the planning process of
public transportation is the development of a line concept, i.e. to find
a set of paths for operating lines on them. So far, most of the models
in the literature aim to minimize the costs or to maximize the number
of direct travelers. In this paper we present a new approach minimizing
the travel times over all customers including penalties for the transfers
needed. This approach maximizes the comfort of the passengers and will
make the resulting timetable more reliable. To tackle our problem we
present integer programming models and suggest a solution approach
using Dantzig-Wolfe decomposition for solving the LP-relaxation. Nu-
merical results of real-world instances are presented.
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1 Motivation and related literature

In the strategic planning process of a public transportation company one im-
portant step is to find a suitable line concept, i.e. to define the routes of the
bus or railway lines. Given a public transportation network PTN = (S, E) with
its set of stations S and its set of direct connections E, a line is defined as a
path in this network. The line concept is the set of all lines offered by the public
transportation company, together with their frequencies, where the frequency
fl of a line l contains the number of vehicles serving line l within the planning
period considered. The frequency of an edge e, on the other hand, is the number
of vehicles running along the edge.

The line planning problem has been well studied in the literature. For an early
contribution we refer to Dienst, see [1]. The many models given after this time
can be roughly classified into the following two types. In a cost-oriented approach
the goal is to find a line concept serving all customers and minimizing the costs
for the public transportation company. The basic cost model has been suggested
in Claessens et al., see [2], where a binary (linear) programming formulation has
been given. A solution approach by branch and cut has been developed in [3].
In [4] an alternative formulation with integer variables has been proposed. In [5]
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Bussieck et al. present a fast solution approach combining nonlinear techniques
with integer programming.

In [6] and [7] the authors get rid of the assumption that the passengers are
assigned a priori for example by modal split to different types of trains. This
is done by assigning a certain type to every node in the PTN, representing for
example the size of the station.Then the type of a line determines the stations
they pass. For example a line of type 1 stops at every station it passes, a line
of type 2 will not halt at a station of type 1 but at every station of type 2 or
higher. Several models, correctness and equivalence proofs are presented.

Recently, a fast heuristic variable fixing procedure which combines nonlinear
techniques with integer programming is proposed in [5].

[6] presents a model that reconsiders the stations at which the trains stop
for a given line plan. This model is used to determine the halting stations in
such a way that the total travel time of passengers is minimized. Lagrangian
relaxation is used to find lower bounds on this problem. Preprocessing and tree
search techniques augment the efficiency of the branch&bound framework.

A second class of models are the customer-oriented approaches. In the direct
travelers approach by Bussieck et al. [8] (see also [4]) the goal is to maximize
the number of direct travelers (i.e. customers that need not change the line to
reach their destination). As constraint, the number of vehicles running along an
edge is restricted for each edge in the PTN, i.e. upper and lower bounds on the
allowed frequencies on each edge are taken into account. The model maximizes
the amount of one group of customers but without considering the remaining
ones which might have very many transfers during their trips. It also does not
take into account the travel times for the customers: Sometimes it is preferable
to have a transfer but reach the destination earlier instead of sitting in the same
line for the whole trip but having a large detour. This is done in recent models by
[9,10,11,12] in which the goal is to design lines in such a way that the traveling
time of the customers is minimized. The special case of locating one single line
so as to maximize the number of passengers is treated in [13]. None of these
models includes the number of transfers of customers in the objective function,
which will be the basic feature of the model presented in this paper.

Another approach is to take into account that the behavior of the customers
depends on the design of the lines. A first cost-oriented model including such
demand changes was treated with simulated annealing in two diploma theses in
cooperation with Deutsche Bahn, see [14,15]. Finally, we want to mention the
work by Quak [16] in which lines are not taken out of a given line pool as done
by all other publications mentioned here, but constructed from the scratch.

In our work we develop a new model which allows to sum over all travel times
over all customers including penalties for the transfers needed. The first ideas
for this model have been presented in [17]. Here, we also show how different
frequencies of the lines can be taken into account. The remainder of the paper
is organized as follows. In Section 2 we introduce the new line planning model,
discuss its complexity in Section 3 and then describe and discuss five integer pro-
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gramming models in Section 4. We present two ways to solve the LP-relaxation,
one based on Dantzig-Wolfe decomposition (see Section 5). Finally, we present
numerical results based on a real-world application of German Rail (DB).

2 Basic definitions

A public transportation network is a finite, undirected graph PTN = (S, E) with
a node set S representing stops or stations, and an edge set E, where each edge
{u, v} indicates that there exists a direct ride from station u to station v (i.e., a
ride that does not pass any other station in between). For each edge {u, v} we
assume that the driving time tuv is known.

We assume the PTN as given and fixed. We further assume that a line pool
L is given, consisting of a set of paths in the PTN. Each line l ∈ L is specified
by a sequence of stations, or, equivalently, by a sequence of edges. Let E(l) be
the set of edges belonging to line l. Given a station u ∈ S we furthermore define
L(u) = {l ∈ L : u ∈ l} as the set of all lines passing through u.

Moreover, let R ⊆ S × S denote the set of all origin-destination pairs (s, t)
where wst is the number of customers wishing to travel from station s to station
t.

The line planning problem then is to choose a subset of lines L ∈ L, together
with their frequencies, which

– allows each customer to travel from its origin to its destination,
– is not too costly, and
– minimizes the “inconvenience” for the customers.

In the literature, the main customer-oriented approach dealing with the in-
convenience of the customers is the approach of [4] (see also [8]) in which the
number of direct travelers is maximized. In our paper, however, we deal with
the sum of all transfers over all customers. On a first glance, the problem to
minimize the number of transfers seems to be similar to maximizing the number
of direct travelers, but it can easily be demonstrated that both models are in
fact different.

Note that considering the number of transfers only would lead to solutions
with very long lines, serving all origin-destination pairs directly but having large
detours for the customers. To avoid this we determine not only a line concept,
but also a path for each origin-destination pair and count the number of transfers
and the length of the paths in the objective function. This is specified next.

Given a set of lines L ⊆ L, a customer can travel from its origin s to its
destination t, if there exists an s-t-path P in the PTN only using edges in {E(l) :
l ∈ L}. The “inconvenience” of such a path is then approximated by the weighted
sum of the traveling time along the path and the number of transfers, i.e.

inconvenience(P ) = k1TimeP + k2TransfersP .
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On the other hand, the cost of the line concept L ⊆ L is calculated by
adding the costs Cl for each line l ∈ L, assuming that such costs Cl are known
beforehand.

The line planning problem hence is to find a feasible set of lines L ⊆ L
together with a path P for each origin-destination pair, such that the costs of
the line concept do not exceed a given budget B and such that the sum of all
inconveniences over all paths is minimized.

Since the capacity of a vehicle is not arbitrarily large, we have to extend the
basic problem to include frequencies of the lines. This makes sure that there
are enough vehicles along each edge to transport all passengers. If each origin-
destination pair can be served, the line concept is called feasible. We remark that
often the number of vehicles running along the same edge is also bounded from
above, e.g., for safety reasons.

3 Complexity Results

In this section we first show that the line planning problem as defined above
is NP-hard, even in a very simple case, corresponding to k1 = 0 in the above
definition.

Theorem 1. The line planning problem is NP-complete, even if

– we only count the number of transfers in the objective function,
– the PTN is a linear graph.
– all costs Cl are equal to one.

Proof. In the decision version, the line planning problem in the above case can
be written as follows:

Given a graph PTN =(S, E) with weights ce for each e ∈ E, origin-destination
pairs R, and a budget B, does there exist a feasible set of B lines with less than
K transfers?

We reduce the set covering problem to the line planning problem: Given a
set covering problem in its integer programming formulation

min{1nx : Ax ≥ 1m, x ∈ {0, 1}n}

with an 0-1 m×n matrix A, and 1k ∈ IRk the vector with a 1 in each component,
we construct a line planning problem as follows:

We define the PTN as a linear graph with 2m nodes S = {s1, t1, s2, t2 . . . , sm, tm}
and edges E = {(s1, t1), (t1, s2), (s2, t2), (t2, s3), . . . , (sm, tm)}. We define an origin-
destination pair for each row of A,

R = {(si, ti) : i = 1, . . . ,m}.

For column j of A we construct a line lj passing through nodes si and ti if
aij = 1.



Line Planning with Minimal Traveling Time 5

As an example, Figure 1 shows the line planning problem obtained from a
set covering problem with

A =


1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 1 0



s1 t1 s2 t2 s3 t3 s4 t4 s5 t5 s6 t6

l1 l2

l3

l4

Fig. 1. Construction of the line planning problem in the proof of Theorem 1.

Setting K = 0 we hence have to show that a cover with less than B elements
exists if and only if the line planning problem has a solution in which all pas-
sengers can travel without changing lines. Due to our construction this is true
and hence the theorem holds.

A question that might arise in this context, is what happens if the lines need
not be chosen from a given line pool, but can be constructed as any path. Some
of the basic cost models become very easy in this case, but unfortunately, the
complexity status of the line planning problem treated in this paper does not
change which can be shown by reduction to the Hamiltonian path problem (see
[18]).

4 Models for the line planning problem

To model the line planning problem as integer program we use the PTN to
construct a directed graph, the so-called change&go network GCG = (V, E) as
follows:

We extend the set S of stations to a set V of nodes with nodes representing
either station-line-pairs (change&go nodes: VCG) or the origins and destinations
of the customers (origin-destination nodes: VOD), i.e. V := VCG ∪ VOD with

– VCG := {(s, l) ∈ S × L : l ∈ L(s)} (set of all station-line-pairs)
– VOD := {(s, 0) : (s, t) ∈ R or (t, s) ∈ R} (origin-destination nodes)
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The new set of edges E consists of directed edges between nodes of the same
stations (representing that customers board or unboard a vehicle or change lines)
and edges between nodes of the same line (representing the driving activities):

E := Echange ∪ EOD ∪ Ego

with

– Echange := {((s, l1), (s, l2)) ∈ VCG × VCG} (changing edges)
– El := {((s, l), (s′, l) ∈ VCG × VCG : (s, s′) ∈ E} (driving edges of line l ∈ L)
– Ego :=

⋃
l∈L El (driving edges)

– EOD := {((s, 0), (s, l)) ∈ VOD×VCG and ((t, l), (t, 0)) ∈ VCG×VOD : (s, t) ∈
R} (origin-destination edges)

We define weights on all edges e ∈ E of the change&go network representing
the inconvenience customers have when using edge e. Given a set of lines L ⊆ L
we then can determine the lines the customers are likely to use by calculating a
shortest path in the change&go network for each single origin-destination pair.
Therefore the choice of the edge costs ce is very important. We give two examples:

1. Customers only count transfers:

ce =
{

1 : e ∈ Echange

0 : else

Note that in this case, it is possible to shrink the change&go network to a
network with |L|+ |S| nodes and |Echange|+ |EOD| edges.

2. Real travel time:

ce =

0 : e ∈ EOD

travel time in minutes : e ∈ Ego

time needed for changing platform : e ∈ Echange

More specific, to model the line planning problem as defined in Section 2,
we set

ce =

0 if e ∈ EOD

k1tuv if e = ((u, l), (v, l)) ∈ Ego

k2 if e ∈ Echange

Since we assume that customers behave selfish we need an implicit calculation of
shortest paths (with respect to the weights ce) within our model. This is obtained
by solving the following network flow problem for each origin-destination pair
(s, t) ∈ R.

θxst = bst,

where

– θ ∈ ZZ|V|×|E| is the node-arc-incidence matrix of GCG,
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– bst ∈ ZZ|V| is defined by

bi
st =

 1 : i = (s, 0)
−1 : i = (t, 0)

0 : else

– and xe
st ∈ {0, 1} are the variables, where xe

st = 1 if and only if edge e is used
on a shortest dipath from node (s, 0) to (t, 0) in GCG.

To specify the lines in the line concept we introduce variables yl ∈ {0, 1} for
each line l ∈ L, which are set to 1 if and only if line l is chosen to be in the line
concept. Our model, Line Planning with Minimal Travel Times (LPMT) can
now be presented.

(LPMT1)

min
∑

(s,t)∈R

∑
e∈E

wst ce xe
st (1)

s.t.
∑

(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L (2)

θxst = bst ∀ (s, t) ∈ R (3)∑
l∈L

Clyl ≤ B (4)

xe
st, yl ∈ {0, 1} ∀ (s, t) ∈ R, e ∈ E , l ∈ L (5)

Constraint (2) makes sure that a line must be included in the line concept if
the line is used by some origin-destination pair. Constraint (3) models the selfish
behavior of the customers, i.e., that customers use shortest paths according to
the weights ce.

Having only constraints (2) and (3), the best line concept from a customer-
oriented point of view would be to introduce all lines of the line pool. This is
certainly no option for a public transportation company, since running a line is
costly. Let Cl be an estimation of the costs for running line l and let B be the
budget the public transportation company is willing to spend. Then the budget
constraint (4) takes the economic aspects into account.

The objective function we use is customer-oriented: We sum up the costs∑
e∈E

wst ce xe
st

of a shortest path from s to t for each origin-destination pair (s, t) ∈ R, i.e., we
minimize the average costs of the customers.
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We get three alternative formulations of this problem by substituting con-
straints (2) by one of the following constraints∑

(s,t)∈R

xe
st ≤ |R|yl ∀ l ∈ L, e ∈ E l (6)

∑
e∈El

xe
st ≤ |E l|yl ∀ l ∈ L, (s, t) ∈ R (7)

xe
st ≤ yl ∀ (s, t) ∈ R, e ∈ E l : l ∈ L (8)

We denote the formulation using constraints (6) (LPMT2), using (7) (LPMT3),
and using (8) (LPMT4). As shown in [19], these formulations are equivalent, i.e.
they are valid IP formulations for the same integer set X of feasible solutions of
the line planning problem. Nevertheless the bounds provided by the correspond-
ing LP-relaxations differ. This will be analyzed next.

Let X ⊆ Zn be a set of feasible solutions, and let two polyhedrons PA and
PB be valid formulations for X, i.e., X = PA ∩ Zn = PB ∩ Zn. Then PA. is said
to be a stronger formulation than PB if PA ⊂ PB , see, e.g., [20]. In this case,

min
x∈X

cx ≥ min
x∈PA

cx ≥ min
x∈PB

cx,

i.e., the bound provided by the stronger formulation PA is better than the bound
provided by PB .

We can use this theory to analyze the strengthness of the four formulations
presented for the line planning problem.

Theorem 2. The convex hull of the integer set described by formulation (LPMT1)
is denoted by P1. The corresponding polyhedra described by formulation (LPMT2),
(LPMT3), and (LPMT4) are denoted by P2, P3, and P4, respectively. Then, the
following holds:

– P4 is stronger than P1, P2, and P3.
– P3 is stronger than P1.
– P2 is stronger than P1.
– Comparing P3 and P2, none of them is stronger than the other.

The proof can be found in [19]. Note that in real world instances (LPMT3)
comes out to be in most cases stronger than (LPMT2), see Section 5.1.

In (LPMT) we implicitly assume that all customers traveling from station s
to station t choose the same path in the change&go network, i.e., the same set of
lines. This can be done if edge capacities are neglected in (LPMT). In practice,
this is usually not the case, since each vehicle only can transport a limited
number of customers and usually there is only a limited number of vehicles
possible along each line (e.g. due to safety rules). In the following, we therefore
present an extension of (LPMT) taking into account the number of vehicles on
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each line in a given time period. Consequently, this formulation allows to split
customers along different paths from s to t in the change&go network GCG.

Let N denote the capacity of a vehicle and let the new variables fl ∈ IN
contain the frequency of line l, i.e., the number of vehicles running along line
l within a given time period. Furthermore we choose variables xe

st ∈ IN and
change the vector bst to

bi
st =

 wst if i = (s, 0)
−wst if i = (t, 0)

0 else

Then the Line Planning Model with minimal transfers and frequencies (LPMTF)
is the following:

(LPMTF)

min
∑

(s,t)∈R

∑
e∈E

ce xe
st (9)

s.t.
1
N

∑
(s,t)∈R

xe
st ≤ fl ∀ l ∈ L, e ∈ El (10)

θxst = bst ∀ (s, t) ∈ R (11)∑
l∈L

Clfl ≤ B (12)∑
l∈L:k∈El

fl ≤ fmax
k ∀ k ∈ E (13)

xe
st, fl ∈ IN ∀ (s, t) ∈ R, e ∈ E , l ∈ L (14)

Constraints (10) make sure that the frequency of a line is high enough to
transport the passengers. If fl = 0, the line l is not chosen in the line concept.
Constraints (11) are flow conservation constraints routing the passengers on the
shortest possible paths. Note that the xe

st variables can take integer values, such
that passengers may choose different paths for the same origin-destination pair.
Constraint (12) is again the budget constraint but with costs for each vehicle of
a line (which are multiplied by the frequency to get the costs of the line).The
capacity constraint (13) may be included if upper bounds for the frequencies are
present.

5 Solving the LP-relaxation

As we have shown in Section 3 the line planning problem is NP-hard, and,
moreover in real-world instances, gets huge. But fortunately the formulations of
(LPMT) and (LPMTF) have block diagonal structure with only few coupling
constraints. Moreover, in both models, all blocks are totally unimodular since
they represent network flow problems.



10 A. Schöbel, S. Scholl

In Section 5.1 we identify cases in which the solution of the LP-relaxation
can be found by solving shortest path problems. If this does not work we have
to take advantage of the block diagonal structure by using a Dantzig-Wolfe
decomposition, which is shown in Section 5.2.

5.1 Using the trivial solution

Definition 1. A trivial solution (x̄, ȳ1), (x̄, ȳ2), (x̄, ȳ3), (x̄, ȳ4) of (LPMT1),
(LPMT2), (LPMT3), (LPMT4), respectively, is defined as the solution x̄e

st of
the shortest path problems

θxst = bst ∀ (s, t) ∈ R

on the change&go-network constructed of all lines of the line pool and

ȳ1
l :=

∑
(s,t)∈R

∑
e∈El x̄e

st

|E l||R|
∀ l ∈ L (for (LPMT1))

ȳ2
l :=

maxe∈El

∑
(s,t)∈R x̄e

st

|R|
∀ l ∈ L (for (LPMT2))

ȳ3
l :=

max(s,t)∈R
∑

e∈El x̄e
st

|E l|
∀ l ∈ L (for (LPMT3))

ȳ4
l := max

(s,t)∈R
max
e∈El

x̄e
st ∀ l ∈ L (for (LPMT4))

It is in general not unique and need not to be feasible in the sense that it fulfills
the budget constraint.

In real world instances it appears quite often that a trivial solution is an opti-
mal solution of the LP-relaxation of (LPMT1). This is clear since the right hand
sides |R||E l| of the coupling constraints (2) are chosen such that all passengers
could use all edges of all lines. In real world only few edges of the network are
used and so Kl :=

∑
(s,t)∈R

∑
e∈El xe

st is much smaller than |R||E l|, hence∑
l∈L

Clȳ
1
l =

∑
l∈L

Cl
Kl

|E l||R|
≤ B

is often satisfied.
The following Lemma generalizes this for the other formulations. The proof

can be found in [19].

Lemma 1. Let i ∈ {1, 2, 3, 4} and let (x̄, ȳi) be a trivial solution of (LPMTi),
as defined in Definition 1. If

Ti :=
∑
l∈L

Clȳ
i
l ≤ B

is satisfied, the trivial solution (x̄, ȳi) is an optimal solution of (LPMTi).
Note that for i = 4 the solution (x̄, ȳ4) of the LP-relaxation of (LPMT4) is
integer and thus if T4 ≤ B holds, the trivial solution is an optimal solution to
the original problem.
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In Table 1 we see the Ti-values for different line pool sizes, where the line
costs are set to one. Note that in this case a value below one means that the
trivial solution is always the optimal solution independently of the choice of
the budget. Only if the given budget is smaller than the Ti value, the trivial
solution is not a feasible solution of the LP-relaxation of (LPMTi). Thus, table
1 demonstrates the difference of the strength of the formulations. The higher the
Ti-value, the better the lower bound provided by the corresponding formulation.

We see that in real world instances the bound provided by (LPMT3) is much
stronger than (LPMT2) even if we could not show this in general. This is due
to the fact that there exists an instance in which (LPMT2) is stronger than
(LPMT3) but in real world this hardly ever happens.

Regarding the T4-values, we recall that in this formulation the ȳ4
l are integer

valued and since all Cl = 1 this means that if we are allowed to choose more
than T4 lines out of the line pool, every passenger can travel on shortest path. If
our budget is smaller, some passengers have a detour. In this case we have to use
other methods to solve the problem like the Dantzig-Wolfe approach explained
in the next section.

No. |L| obj.val. T1 T2 T3 T4

1 10 2271.3 0.69 0.99 9.53 10
2 50 9459.9 0.20 0.35 25.31 48
3 100 24780.0 0.13 0.29 41.83 96
4 132 31654.2 0.11 0.26 53.12 129
5 200 15128.9 0.07 0.19 54.89 197
6 250 19096.0 0.05 0.16 61.07 235
7 275 20118.2 0.04 0.15 63.47 252
8 300 26598.3 0.06 0.19 72.35 282
9 330 26817.7 0.04 0.16 74.44 302

10 350 26450.0 0.07 0.23 90.04 331
11 375 27517.8 0.06 0.20 90.75 345
12 400 34781.3 0.06 0.20 100.05 370
13 423 35135.5 0.06 0.20 102.19 389

Table 1. Minimal budgets such that trivial solution is an optimal solution of the

LP-relaxation of the different formulations of the (LPMT), see Lemma 1.

5.2 Using Dantzig-Wolfe decomposition

In this section we present an approach for solving the LP-relaxation of the
(LPMT) formulations using Dantzig-Wolfe decomposition. The method can also
be applied for solving (LPMTF) since the model structure is very similar. How-
ever, the numerical results deal with (LPMT). We will present two different
decompositions. Since the blocks in both decompositions are totally unimodu-
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lar, we know that the bound provided by the Master formulations is as good as
the bound of the LP-relaxation (see [20]).

One block for each origin-destination pair (LPMT1(LP))

min
∑

(s,t)∈R

∑
e∈E

ce
stx

e
st (15)

∑
(s,t)∈R

∑
e∈l x

e
st ≤ |R||E l|yl ∀ l ∈ L∑

l∈L Clyl ≤ B
coupling constraints

Xs1,t1

Xs2,t2

. . .

Xsr,tr

 |R| blocks

where Xst := {xst ∈ IR|E| : θxst = bst, 0 ≤ xe
st ≤ 1, ∀ e ∈ E}

The coupling constraints can be written as

−AY y +
∑

(s,t)∈R AX xst ≤ 0
Cy ≤ B

where

– AX is an |L|×|E| matrix given by elements ale = 1, if e ∈ El, zero otherwise.
It is equal for each origin-destination pair.

– AY is an |L| × |L| diagonal matrix containing |R||E l| as its lth diagonal
element.

– C is the line cost vector (C1, . . . , C|L|).

So, we get the following coefficient matrix of (LPMT1):
−AY AX . . . AX

C
θ

. . .
θ


Defining the weight-cost-parameters ce

st := wstce, we get the following Master
Problem corresponding to decomposition (15):
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(Master 1)
z = min

∑
(s,t)∈R

∑
i(cst x

(i)
st )αi

st

s.t.
∑

(s,t)∈R
∑

i(AX x
(i)
st )αi

st −AY y + Iv = 0∑
l∈L Clyl ≤ B∑
i αi

st = 1 ∀ (s, t) ∈ R
yl ≥ 1 ∀ l ∈ L
vl, α

i
st, yl ≥ 0

where the |L|-vector v are slack variables, and x
(i)
st are the extreme points of Xst.

This problem has |L|+ 1 coupling constraints and |R| convexity constraints.

For each (s, t) ∈ R we obtain the following subproblem:

zst = min (cst − πAX)xst − µst

s.t. xst ∈ Xst

where {πi}i∈L are the dual variables of the coupling constraints, and {µst}(s,t)∈R
are the dual variables of the convexity constraints.

The Xst blocks correspond to shortest path problems which are known to
be totally unimodular, hence the x

(i)
st -values are in {0, 1}|E|. The formulations

(LPMT2), (LPMT3), (LPMT4) as well as (LPMTF) can be reformulated anal-
ogously.

One block for all origin-destination pairs If we treat the Xst-blocks as one
block we get the following reformulation:

(LPMT1(LP))

min
∑
e∈E

cexe (16)

∑
e∈l x

e ≤ |R||E l|yl ∀ l ∈ L∑
l∈L Clyl ≤ B

coupling constraints

X 1 block

with X := {x ∈ IR|E| : xe =
∑

(s,t)∈R xe
st ∀e ∈ E , xst ∈ Xst} and ce :=∑

(s,t)∈R ce
st.

The Master Program corresponding to decomposition (16) is

(Master 2)

z = min
∑

i(c x(i))αi

s.t.
∑

i(AX x(i))αi −AY y + Iv = 0∑
l∈L C(l)yl ≤ B∑
i αi = 1

vl, α
i, yl ≥ 0
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where the |L|-vector v are slack variables, and x(i) are the extreme points
of X. This problem has |L|+1 coupling constraints and one convexity constraints.

The subproblem of the X-block is

z = min
∑

(s,t)∈R(cst − πAX)xst − µ

s.t. xst ∈ Xst

where xe :=
∑

(s,t)∈R xe
st and {πi}i∈L are the dual variables of the coupling

constraints, µ is the dual variable of the convexity constraint.

As in the previous formulation, the x(i)-values are integer because they are
the component wise sum over shortest path problem solution which are in {0, 1}.
In this decomposition we loose the information of the exact paths of the cus-
tomers which are needed in (LPMT3), (LPMT4) and (LPMTF) and thus this
Master cannot be adapted to these formulations.

Implementation We implemented the Dantzig-Wolfe decomposition approach
of (LPMT) using Xpress MP 2003 and Microsoft Visual C++ 6.0. The CPU
times of this section are based on a 3.06 GHz Intel4 processor with 512 MB
RAM. The subproblems where solved with Dijkstra´s shortest path algorithm.

In column ‘CPU1’ of table 2 we see the CPU times in seconds for solving
the LP-relaxation of (LPMT1) using Dantzig-Wolfe approach with (Master2)
for different line pool sizes of the network of German long distance trains. In
column ‘CPU2’ we see the CPU times in seconds for solving the LP-relaxation
of (LPMT3) using Dantzig-Wolfe approach with (Master1). We have mentioned
that the lower bound provided by (LPMT3) is stronger than (LPMT1) and so
the computation times increase in this case. We see, that using our approach it
is possible to solve the LP-relaxation of (LPMT3) for medium sized networks
within reasonable time. Note that the size of the problem not only depends on
the size of the line pool but on the number of origin-destination pairs and the
size of the PTN which may be much smaller e.g. in urban underground networks.
Solving the LP-relaxation of the weaker (LPMT1) formulation is possible even
for big real world instances like the long distance network of German railway
within two and a half hours.

As we have seen, the main problem of our approach is the size of the change&go-
network depending mainly on the size of the line pool. A wise choice of a possibly
small line pool is therefore advisable. On the other hand it makes sense to an-
alyze the underlying PTN. For example if two lines go parallel for a long time,
it is sufficient to add changing edges only at the first and the last station. Also
arcs between stations without changing possibility can be shrunken to decrease
the size of the network.
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No. |L| |R| CPU1 CPU2

0 3 2 0.05 0.1
1 10 2602 1 228
2 50 4766 3 606
3 100 11219 16 8706
4 132 18238 48 M
5 200 10126 78 M
6 250 13246 329 M
7 275 14071 691 M
8 300 17507 1171 M
9 330 18433 1911 M

10 350 17095 1814 M
11 375 18350 2727 M
12 400 22191 4789 M
13 423 22756 8715 M

Table 2. CPU times of the LP-relaxation of (LPMT1) and (LPMT3) using Dantzig-

Wolfe approach with (Master2) and (Master1), respectively, for different line pool sizes.

M denotes ”‘out of memory”’.

6 Conclusions

We developed integer programming models for the line planning problem with
the goal to minimize the travel times over all customers including penalties for
the transfers needed and proposed an extension that includes frequencies. We
showed that the problem is NP-hard. Since the problem gets huge, a straight-
forward solution of the LP relaxation is not possible. We showed that in many
real world cases the trivial solution is optimal or, if it is infeasible, it can be
found by a solution approach based on Dantzig-Wolfe decomposition. Computa-
tional results for various real world instances and different decompositions were
presented.

We are currently working on a branch&price algorithm and heuristics to get
an integer solution.
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