
Fast, predictable and low energy memory references
through architecture-aware compilation1

Peter Marwedel1, Lars Wehmeyer1, Manish Verma1, Stefan Steinke2, and Urs Helmig1

1 University of Dortmund, Germany
2 Kostal GmbH & Co KG, Lüdenscheid, Germany

Abstract. The design of future high-performance embedded systems is ham-
pered by two problems: First, the required hardware needs more energy than is
available from batteries. Second, current cache-based approaches for bridging the
increasing speed gap between processors and memories cannot guarantee pre-
dictable real-time behavior. A contribution to solving both problems is made in
this paper which describes a comprehensive set of algorithms that can be applied
at design time in order to maximally exploit scratch pad memories (SPMs). We
show that both the energy consumption as well as the computed worst case exe-
cution time (WCET) can be reduced by up to to 80% and 48%, respectively, by
establishing a strong link between the memory architecture and the compiler.

Keywords: Embedded system, compiler, energy efficiency, low power, WCET, scratch-
pad, memory access

1 Introduction

The design of embedded systems is very much driven by applications. It is expected
that future applications will require significantly more processing power, due to audio
and video applications and high computational demands for channel coding [7]. As
a result, more powerful processors have to be used in embedded systems. However,
the electrical energy available in embedded systems (especially in portable systems) is
strictly limited. This has been seen as the most important constraint in the design of
future embedded systems [8]. A significant amount of research on low-power design
techniques has been performed, but the 100 to 1000 fold improvement demanded by
De Man [7] has not yet been achieved, making additional techniques necessary.

Increased processor speeds will also bring a problem to embedded systems which
has so far mainly affected the design of PCs and mainframes: the speed gap between
high end processors and memories is widening. While processor speeds are currently
improving between 50 and 100% per year, the speed of memories is only increasing at
7% per year. Accessing main memory will soon cost as many cycles as a page miss did
in the first computer using virtual memory [21].

For any given technology, access times as well as the energy required per memory
access are a function of the memory size: The larger the memory, the larger the access

(1) This work has been partially supported by grants from the German research foundation (DFG)
under contracts Ma 943/6-3 and Ma 943/8-2.

Dagstuhl Online Proceedings 03471
http://drops.dagstuhl.de/opus/volltexte/6



times and the energy consumed per access. Note that the energy consumption per access
shown in fig. 1 differs by a factor of up to α � 24, whereas the access time differs by
a value of up to β � 2 � 7. The increasing energy consumption and access times for
larger memories can be confirmed using the CACTI tool [4, 34]. In general, due to the
increasing sizes of applications and the corresponding memory sizes, α and β can be
expected to become even larger in the future. Due to these facts, it does make sense
to map hot spots in applications to smaller memories instead of using just one large,
homogeneous memory.

��� ����� �
	
� 	���� ��� �
� ��� ��� ���
� �
�
� �����
�
�
�
�
�
	
�
�
�
�

���
�
�
���

��������� ����� �!� "#���������� �%$�&'&(��)*)
+�, ���

-/.�02143'576�8 9
.;:#<=5?>@.%A�B

C D
EFG
HI D
JK

L MM
ENN
OP Q
EI D
NK

Fig. 1. Energy consumption and access time as a function of the memory size

Caches have been established as the key solution to ease the problem for PCs and
mainframes. Unfortunately, currently available cache technologies have mostly been
designed to improve the average case timing behavior, not the worst case timing be-
havior. Furthermore, a certain percentage of main memory references is still required
and may be the limiting factor for future technologies. This potential future problem
became known as the memory wall [35].

Many embedded systems are real-time systems. For such systems, it is necessary
to guarantee meeting real-time constraints. Accordingly, worst case execution times
(WCETs) must be derived in order to prove a real-time system to have required proper-
ties. In some cases, it is possible to prove that caches improve the worst case execution
time. However, many caches contain features which make this difficult. For example, it
is difficult to model conflicts between instruction and data references for unified caches.
Also, the effect of some (e.g. random) replacement policies is difficult to predict at de-
sign time. Puschner and Burns [25] provide an overview of the state of the art in WCET
prediction. Systems which allow the derivation of WCETs that are close to the actual
execution times are said to have a predictable timing behavior. The design of predictable
high-performance embedded systems is a major challenge of the future. This was stated
by Xu and Parnas [36] as follows:

2 P. Marwedel et al.



For satisfying timing constraints in hard-real-time systems, predictability of the sys-
tem’s behavior is the most important concern; pre-run-time scheduling is often the only
practical means of providing predictability in a complex system.

Accordingly, predictable real-time operating systems sometimes follow the time-
triggered approach suggested by Kopetz [15] instead of the usual event-triggered ap-
proach. The key idea of this approach is to remove the unpredictability that is caused
by many of the schedulers in operating systems.

One of the ideas of this paper is to remove the unpredictable cache access times
by using scratch pad memories (SPMs) and by letting compilers compute memory ac-
cess times at design time. Scratch pad memories are small memories that are mapped
into the address space of the hardware. They are accessed whenever addresses in the
corresponding address range are used. Tags (as needed for caches) are not required.
Accordingly, the energy per access to a SPM is lower than the energy for an access to
a cache. Fig. 2 compares the energies of accesses to different types of caches against
an SPM. It is obvious that the SPM consumes the least amount of energy per access,
even compared to the simple direct mapped cache organization. Direct mapped caches
are not very well suited for caching data since their simplicity tends to provoke cache
thrashing.

��� ����� ����� �	��� ��
���� ��
���� ��
�
�� ����
��


�� �
�

��� �
�

��� �
�

��� �
�

�	� �
�

��� �

����������� �����
����������� ����������������  �!"�#%$

&('*),+*-/.1032 4�'65�78.:9�'<;>=

? @
ABC
DE
AB
F GG
AHH
I @J
K

Fig. 2. Comparison between the energy consumption of caches and SPMs

SPMs (also called ’Tightly Coupled Memories’ or TCMs) are available with some
processor cores [1] and they are being used in industry. However, there is no compre-
hensive tool support which maximizes the benefits that can be achieved with SPMs.
This paper describes a research effort that aims at providing a comprehensive set of
tools required to exploit the presence of SPMs.

The remainder of this paper is structured as follows: a description of related work is
provided in section 2. Section 3 describes the different contributions that were made by
our group, putting previously published work into perspective and also providing new

Fast, predictable and low energy memory references through architecture-aware compilation 3



results (especially on predictability issues). Results are described together with each
contribution. The paper closes with a description of future work and a conclusion.

2 Related work

Most of the previous work on SPM usage is restricted to storing data elements, such
as arrays accessed in innermost loops, in the SPM. In [24], an architecture contain-
ing both cache and scratch pad is assumed. Arrays that are too large to fit in the SPM
are therefore kept in main memory and are accessed through the data cache. A gener-
alized memory hierarchy where each level has a cache and a scratch pad memory is
also considered. The authors of [6] use the SPM (or, as it is called in their publication,
compiler controlled memory) as a cheap alternative to spilling register values to main
memory. An optimal algorithm to statically distribute data among several memory par-
titions based on profiling of applications and solving a binary linear equation system is
presented in [3]. The possibility of distributing the stack to different memories is also
investigated. The authors of [12] use so-called Presburger formulas to determine which
set of data should be kept in the SPM. In contrast to earlier work, they not only consider
a static allocation of elements to the different levels of the memory hierarchy, but also
consider copying data elements from e.g. main memory to the SPM at runtime. This is
also true for [33], which uses a combination of well-known loop optimizations with the
consideration of limited scratch pad capacity in order to minimize data traffic between
the SPM and the main memory during runtime.

An approach to store both data and instructions on the SPM was first presented
in [29]. This work was extended to also consider copying instructions at runtime [28].
Using graph coloring (as in register allocation) [23] to solve this problem is possible,
but not straightforward, since the performance of graph coloring is poor when assigning
many values to a small storage location. Also, the scope of register allocation usually
does not exceed the function level, whereas the scratch pad allocation problem has to
consider global data and function-call relations. In order to allow a maximum number
of instructions and data objects to be placed on the SPM, large arrays are partitioned
in [31]. The arrays to be partitioned along with their respective splitting points are
determined and the most beneficial objects are moved to the SPM. Detailed information
about these approaches will be presented in section III.

Several approaches for WCET estimation frameworks have been proposed. They
range from straightforward models to nearly completely automated estimation frame-
works taking into account information about the software as well as architectural hard-
ware features.

In order to compute the WCET of an application, the programmer usually needs
to provide information about the number of loop iterations and feasible control paths.
Information about the execution time of each assembly instruction is also required.
Using a compiler, the high level information has to be transformed down to the assembly
code level. Optimizing compilers can complicate this mapping. Some approaches have
dealt with this problem [13], while others only consider the assembly level in their
analysis [5, 22].

4 P. Marwedel et al.



More sophisticated WCET analysis tools take into account detailed information
concerning the hardware, including pipelines [20] and caches [10]. In general, it can
be stated that modern complex processors are difficult to handle with respect to WCET
computation. This is partly due to the fact that the market demands an increase in av-
erage (not worst case) performance. On the other hand, hardware vendors are trying
to protect their intellectual property by not providing detailed information about the
hardware architecture and exact timing to customers [14].

Pipelines are being used to speed up the execution by interleaving e.g. instruction
prefetch and execution phases in two pipeline stages. However, WCET computation has
to consider the possibility of e.g. branch penalties. If the currently executed instruction
leads to a change of control flow, then the already fetched instruction has to be discarded
and a new instruction fetch access to memory is required. Considering this and other
effects in WCET computation is not trivial [37].

Other architectural features often used in processors are instruction and/or data
caches. In order to avoid a loose WCET bound by assuming all cache accesses to
be misses, more complicated analyses have to be included in the WCET framework.
Information concerning conflicting objects and the cache organization needs to be con-
sidered to determine a more realistic, yet safe upper bound for the execution time of an
application [18]. Methods for instruction caches have considered different cache orga-
nizations, e.g. direct mapped and set associative [19]. Data caches require even more
complex analyses since the data address referenced in one assembly instruction usually
changes over time (e.g. by using register-offset addressing). This makes the hit/miss
ratio of data caches hard to determine. Some of these issues have also been tackled
in [19].

In this context, scratch pad memories [24] not only reduce execution times, but also
simplify WCET computation. Since no misses can occur, all accesses to the SPM can
be treated like regular memory accesses, albeit with a considerable reduction in wait
cycles due to the short access times of small scratch pad memories. This improved
performance has a direct impact on the execution time as well as the WCET estimate,
which comes at no extra cost during analysis. The fact that engineers of safety-critical
real-time systems will have to take care to assure a predictable and robust timing be-
havior in the future [14] makes the integration of SPMs into such embedded systems a
very promising approach.

3 Compiler support for scratch pads

3.1 The knapsack model

In order to simplify the discussion, we will initially consider the case of a single SPM
and a single main memory. We will try to identify those locations of a program that
should be allocated to the SPM.

We can model instructions and data in a consistent manner if we define memory
segments to be contiguous blocks of memory locations holding either variables or in-
structions. In the case of variables, each variable forms its own segment. In the case
of instructions, we first consider only complete functions and the corresponding code
blocks as segments.

Fast, predictable and low energy memory references through architecture-aware compilation 5



Now, for each of the segments, we can compute the energy gain Egi resulting from
the allocation of segment i to the SPM. Let us assume that the energy required for an
access to the main memory is Em and that the energy for an access to the SPM is Es.
Furthermore, assume that we know from static analysis or profiling that we have ni

memory accesses for memory segment i. Then, the gain resulting from the allocation of
i to the scratch pad is Egi

��� Em � Es ��� ni. Assume that the size of memory segment i
is si and that the size of the SPM is K. In order to compute the set of segments mapped
to the SPM, we introduce decision variables xi for each segment i, with xi

� 1 if seg-
ment i is mapped to the SPM, and xi

� 0 otherwise. Then, minimization of the energy
consumption can be expressed as the problem of maximizing the gain:

G � ∑
i

xi � Egi (1)

while respecting the size constraint

∑
i

xi � si � K (2)

This problem is a special instance of the knapsack problem [26]. The knapsack
model can also be used to minimize the execution time. In the above model, we just
have to replace the energy gain by the corresponding execution time gain Tgi . Let Tm be
the number of wait cycles for accesses to the main memory and let Ts be the number of
wait cycles for accesses to the SPM. Then, Tgi is equal to � Tm � Ts ��� ni.

There are many algorithms for solving knapsack problems. In our work, we have
mapped the knapsack problem to an integer programming (IP) problem. Equations 1
and 2 are indeed also a special case of an IP problem. A key advantage of IP models
is that they can be easily extended to more general cases, which will be shown in the
following section. The number of IP variables corresponds to the number of functions
and variables. These numbers are small enough to avoid any run-time problems for IP
solvers.

Fig. 3 shows the energy savings and the performance gain that can be obtained using
various scratch pad sizes for the multi sort benchmark which includes some frequently-
used sorting algorithms in one application(1). It can be observed that the algorithm is
not capable of taking advantage of a very small 64 byte SPM, since all of the functions
and data elements (e.g. arrays) in the benchmark are too large to fit.

3.2 Extensions: Migration of basic blocks, sets of adjacent basic blocks, the
run-time stack and fractions of arrays

The model described so far can be extended by also considering basic blocks and sets
of adjacent basic blocks as segments. In this case, the optimization problem becomes
slightly more complex: if individual basic blocks are moved to the SPM, additional
jumps have to be generated for branching into and out of the address space of the SPM.
The additional cost of these jumps must be considered in the cost model [29]. However,

(1) This benchmark was used as a running example throughout this paper

6 P. Marwedel et al.



� ��� ����� ����� �	��� ��
 ��
 ��
 �	

�

�
�����
�������
�������
�������
�������
�������
� �����
�������
�������
���������
���
�����

�����
� ���
� ����� �� 

!#"%$�&('�"*),+(&*-,!/. 0�132�465('�16798

: ;
<=>
?@ A
BC

D <=
E F=
GH;
I<
@ J
K ?
IL
<M
NO
PP
C

Fig. 3. Energy consumption and performance vs. the size of the scratch pad

no additional jumps are required between two adjacent blocks that are both moved to
the SPM.

The run-time stack can contain local variables, function parameters, the current
function’s return address as well as spilled register values. It can also be migrated to
the SPM, provided a safe upper bound on its maximum size can be derived. Since ac-
cess to the stack is realized through stack-pointer relative addressing, moving the stack
area to the SPM only requires setting the stack pointer register to an SPM address [27].
Keeping only parts of the stack in the SPM (i.e. manually modifying the stack pointer
at runtime) is also possible.

As an example, we have used the AT91EB01 evaluation board by ATMEL Corp. [2]
containing an ARM7TDMI processor and an onchip SPM. For this board, the energy
required for a 32-bit load instruction of the THUMB instruction set can be reduced by
a factor of about α � 7, if both instructions and data are stored in an onchip SPM [30].
This means that ideally, the energy consumption of an application could be reduced
to about 14% of the energy required for an architecture without SPM. In practice, re-
ductions to about 20% have been observed for the algorithms described so far. This
means that it is possible to get close to the optimum energy reduction. The algorithms
described below aim at getting closer to the optimum and to do this for a larger set of
applications.

Fig. 4 shows the gain obtained by allocating not only functions and data, but also
considering basic blocks, sets of adjacent basic blocks and the stack to the SPM. Even
for the smallest scratch pad size of 64 bytes, a 30% reduction in energy can be observed,
in contrast to the case where only functions were being moved. Especially for small
SPMs, the granularity of considered objects does make a big difference.

Only being able to move arrays as a whole into the SPM is a restriction that can
hamper maximum utilization of the SPM. It is therefore desirable to also move as much
as possible of an array into the SPM. An algorithm for the required partitioning of arrays
is presented in [31]. The algorithm first chooses a candidate array A, then determines
whether it is worthwhile to partition A. At the same time, all possible splitting points for

Fast, predictable and low energy memory references through architecture-aware compilation 7



� ��� ����� ����� �	��� ��
 ��
 �	
 �	

�

�������
�
�����
�
�����
�������
�
�����
�������
� �����
�������
�������
���������
���������

������� ���
� ����� ���

���! #"%$��'&)(*"'+)�-, .0/21�354*$6/57%8

9 :
;<=
>? @
AB

C ;<
D E<
FG:
H;
? I
J >
HK
;L
MN
OO
B

Fig. 4. Performance in number of cycles vs. the size of the scratch pad

array A are considered. If the array is to be split, then the original program is modified
in such a way that one of the array partitions (along with the selected basic blocks) is
moved to the SPM and accesses to the split array are redirected to one of the two array
partitions, depending on the access index. This of course adds some overhead to the
code. Despite this overhead, improvements in energy consumption of up to 17% with
an average of 10% compared to the approach described in section III A are reported.
In order to reduce the overhead and further improve performance, post-pass high-level
optimizations were performed which help normalize the control flow when split arrays
are accessed from within nested loops.

For the model considered so far, there is no copying of segments in and out of the
SPM at run-time. We call this the static case.

3.3 Worst case execution times and the scratch pad

In addition to providing fast and low energy memory references, SPMs also improve
the worst case execution time. This can be demonstrated for the bubble-sort program
that has been used in the literature on worst case execution time bounds [13]:

#define N_EL 10
int arr[] = { ... }
int main(void){
int x; int i, j, temp;
for (i=N_EL; i>1; i--) {

for (j=2; j<=i; j++) {
if (arr[j-1] < arr[j]) {
temp=arr[j-1]; arr[j-1]=arr[j];
arr[j]=temp;

}}} return(0); }

8 P. Marwedel et al.



The worst case input pattern can be easily determined for this example: it is an input
array sorted in ascending order whereas the resulting array is to be sorted in descending
order. The method for computing WCETs is that of Li et al. [17]. We computed the
corresponding WCETs for an ARM7TDMI using three memory architectures:

1. an architecture with just a main memory,
2. an architecture with cache and main memories and
3. an architecture with an SPM and a main memory.

For architecture 1, we are using the CPU cycles from the ARM documentation. For
the memory, we assume 2 wait-states (note that future processors are likely to have a
much higher number of wait-states). The resulting number of cycles is shown in table 1.

Table 1. Cycles for architecture 1

Instruction CPU IF DF Total cycles
LDR 3 2 2 7
STR 2 2 2 6

arithm./log. 1 2 0 3
Pipeline stall overhead: 6 cycles

The resulting WCET is 5,197 cycles, whereas the actual execution time in simula-
tions is 4,676 cycles. The difference can be attributed to the pessimistic assumption that
pipeline stalls occur at every basic block entry.

For architecture 2, we are using a 64 byte unified cache. The corresponding number
of cycles is shown in table 2. Since instruction and data references may interfere, and
since ARM cores also supports caches with a random replacement policy, we assume
misses on all fetches. The time required to fill a cache line is assumed to be 12 cycles
for 16 bit THUMB instructions and 6 cycles for 32 bit data.

Table 2. Cycles for architecture 2

Instruction CPU IF DF Total cycles
LDR 3 12 6 21
STR 2 12 3 17

arithm./log. 1 12 0 13
Pipeline stall overhead: 6 cycles

The resulting WCET is 19,737 cycles, whereas the actual execution time in simu-
lations is 4,257 cycles for the actual run and 16,881 cycles if all misses are assumed.
The relatively poor performance of the cache is a result of the small cache size which
results in a large number of conflict misses, the large penalty for cache line fills and the

Fast, predictable and low energy memory references through architecture-aware compilation 9



Table 3. Cycles for architecture 3

Instruction CPU IF DF Total cycles
LDR 3 0 2 5
STR 2 0 2 4

arithm./log. 1 0 0 1
Pipeline stall overhead: 2 cycles

fact that no split cache is used, which leads to additional misses due to the interference
of data and instructions.

For architecture 3, we are using a 64 byte SPM with no wait cycles and the static
memory allocation technique described above. The corresponding number of cycles is
shown in table 3. We assume all instructions to be allocated to the SPM, whereas the
array remains in the main memory.

The resulting WCET is 2,688 cycles, whereas the actual execution time in simula-
tions is 2,292 cycles. Fig. 5 shows the resulting number of cycles in context. A decrease
in the computed WCET of 48% compared to the system with only main memory can
be established. Using a cache, the computed WCET goes up significantly. This loose
estimate can only be improved by further cache-related analyses, an effort that is not
required if SPMs are used.

����� ��������	�
 � 
�������� ����
 �������������
�

�������
� �����
�������
�������
� �������
� �������
��� �����
� �������
� �������
���������

�! #"%$'&)( *'+-,.��/10
243 "%&'5 67( *4+80�3 "-*

9;:=<?>=@BADCE@GFIH%J K#:LF�K!M%@G:

N O
PQ R
PS
TU
VO
W X
Y Z
V[ O
\]

Fig. 5. Results for WCET versus Simulation

It can be expected that the benefits of the SPM become larger as the speed gap
between processor and memory widens.

3.4 Combining scratch pads and caches

In the previously discussed approaches, SPMs are used to replace the more popular
caches. In many modern processors, both caches and SPMs are available. If this is the

10 P. Marwedel et al.



case, then the algorithm presented above may not yield acceptable results since it does
not consider the behavior of the cache. This is solved by the “Cache Aware Scratch pad
Algorithm” CASA [32]. It assumes a Harvard architecture with the SPM at the same
level as the instruction cache. The instruction cache behavior is modeled using a conflict
graph, where two nodes (corresponding to memory objects) are connected by an edge
whenever they might be placed in the same cache line, i.e. if the two memory objects
might result in a conflict in the cache. Nodes and edges are weighted with the number
of instruction fetches and the number of cache misses, respectively. These values are
obtained using profiling. The energy model considers the cache hit energy to be much
lower than the cache miss energy. By modeling the dependencies in the conflict graph as
an integer programming (IP) problem, the compiler can decide which objects actually
contribute most to the application’s energy consumption, including the effect of cache
misses caused by conflicting memory objects. After solving the IP problem, the selected
memory objects are copied (not moved!) to the SPM, leaving holes in the main memory
address space. This is necessary in order to avoid the main memory addresses to be
changed by the linker, which would invalidate the cache behavior analysis results. Using
this new algorithm, improvements of 8 – 29% in instruction memory energy compared
to the previously mentioned techniques were obtained. Comparing the approach to the
similar loop cache architecture [16, 9], average savings of 20 – 44% were achieved with
respect to the energy consumption of the instruction memory subsystem.

3.5 Compiler-controlled block copying

In addition to considering only a static placement of memory objects onto the SPM, it
is also possible to dynamically copy parts of the program from the main memory to the
SPM [28]. The compiler has to insert program code to do the actual copying at runtime.
The advantage of this approach compared to the static methods previously explained is
that for a large application, the SPM may not be large enough to hold all the hotspots.
The disadvantage is that the processor-driven copying from main memory to the SPM
is slower and more energy consuming than a cache line fill. This is compensated by
the better choice of copied memory objects: Only beneficial memory objects are ever
copied to the SPM. This is in clear contrast to a cache which stores all objects, even
those that are only accessed once.

The compiler’s task consists of finding the objects to be copied to the SPM (in
our example, we are only considering instructions) as well as the position of the copy
functions within the program. A copy function can only lead to an energy saving if the
copied instructions are executed more frequently than the copy function itself. Copy
functions are therefore only considered at loop entries in the program. In this way, the
instructions within the loop can be copied to the SPM once, and they will be executed
many times within the loop. After having determined the possible copy function lo-
cations in the program for each basic block, the energy for copying memory objects
using each possible copy function location is calculated. This copy cost has to be sub-
tracted from the energy gain that is achieved by moving memory objects to the SPM.
The resulting equations are again formulated as an IP problem which is solved using a
commercial IP solver [11].

Fast, predictable and low energy memory references through architecture-aware compilation 11



Fig. 6 compares the results of the dynamic allocation technique with a 4 way set-
associative cache commonly found in the processors of the ARM7 family.

��� ����� �	��� �	��� ��
���� ��
���� ��
����



��
�
�

��
�
�


�
�
�

��
�
�

��
�
�

��
�
�

� 
�
�

��
�
�

��
�
�

��
�
�
�


���������
����� ����� ������ ��! ����"�� �

#%$�&('*) +-,/. 0	$-1�23+546$3798

: ;
<=>
?@ A
BC

Fig. 6. Cache vs. dynamic scratch pad allocation [28]

Average energy savings of 29.9% and performance improvements of 25.2% were
determined for this approach compared to a cache of the same capacity as the SPM.
Compared to the static approach described above, energy was reduced by up to 38% for
one benchmark [28].

3.6 Hardware-support for block copying

Inserting copy functions into the code at compile time as described in the previous
paragraph leads to a substantial overhead, especially concerning the code size. For the
benchmarks considered in [28], the dynamic approach increased the code size by at
least 50% compared to the static approach. In order to prevent this, a functional unit
can be used that is capable of copying instructions from main memory to the SPM,
similar to a DMA unit. The compiler only needs to insert code to activate this unit by
writing its memory mapped registers with the source and target addresses as well as the
number of instructions to be copied. Once triggered, the unit will copy the instructions,
whereas the processor can be put in a low power mode to preserve energy.

The DMA unit was modeled in VHDL, simulated and synthesized. Results indicate
that the size of the additional unit only makes up 4% of the area of an ATM7TDMI
processor using the same feature size. In addition, copy functions are usually executed
infrequently and the unit can be put to sleep when it is unused. Code size reductions
of up to 23% for a 256 byte SPM were determined using the DMA unit instead of the
dynamic approach that uses processor instructions for copying.

3.7 Multiple scratch pads

Due to the characteristics of memories, energy and access time savings can also be
expected from using multiple SPMs, as shown in fig. 7.

12 P. Marwedel et al.



"main" memory

scratch pad 2, 16 k entries

scratch pad 1, 2 k entries

scratch pad 0, 256 entries
0

ad
dr

es
se

s

Fig. 7. Using multiple scratch pads

Let E j be the energy per access to memory j, let K j be its size and let ni be the
number of accesses to segment i. Let x j � i denote the mapping of memory segments to
memories, with x j � i

� 1 if segment i is mapped to memory j, and x j � i
� 0 otherwise.

Note that memory segments are mapped to only one memory. The corresponding opti-
mization problem for the minimization of the energy has the following form:

Minimize

C � ∑
j

E j � ∑
i

x j � i � ni (3)

Subject to the constraints

�
j : ∑

i
x j � i � si � K j (4)

�
i : ∑

j

x j � i
� 1 (5)

Note that the problem is formulated as a minimization problem of the total energy
now since there is no “reference memory” that could be used to express the “gain”
achieved by moving an object to a different memory. Also, we are no longer using
the knapsack formulation. In order to model leakage currents, additional cost factors
representing idle memories can be added. This would enable the compiler to select a
subset of the initial number of memories that yield optimal results with respect to energy
consumption.

Fig. 8 shows a setup where partitioning one 256 byte SPM into two 128 byte scratch
pads is beneficial, whereas further memory splitting leads to an increase in overall en-
ergy. This may either be due to the required additional jumps, or the 64 byte SPMs are
too small to hold the most promising memory objects.

4 Future work

Future work will also consider the use of SPMs in a multi-process context. Space in
the SPMs may be shared among multiple processes. Furthermore, the case of multiple
SPMs may be extended to also include dynamic mapping of all kinds of memory seg-
ments to multiple SPMs. Also, more advanced methods for design space exploration of
scratch pad architectures are needed. WCET computation needs to be done for larger

Fast, predictable and low energy memory references through architecture-aware compilation 13



����� �������	����� ��
�� ��
�� ��
�� ��

�

�����
�
�����
�������
�������
�������
�������
�������

������

������
�������
�������
�������
�������
� �����
� �����
�������
�������

������� ���

�����! #"%$'&)(�"	*�+ *�+  #,.-

/ 0
12
3 4
5 6
78

Fig. 8. Energy for using multiple SPMs

examples, and parts of the analysis should be automated and integrated into the com-
piler.

5 Conclusion

Achieving high-speed, low-energy memory accesses with predictable access times is
one of the important problems in the design of embedded systems. This problem can
be expected to become more severe as the speed gap between processors and memo-
ries widens and the memory sizes of applications increase. Scratch pad memories can
potentially ease the problems. This paper gives a comprehensive overview over a set of
approaches for exploiting the presence of scratch pad memories in compilers. In the case
of an ATMEL evaluation board, energy savings of up to about 80% can be achieved.
Run-times can be improved by about 50%. The computed WCET can be reduced by
48% when considering a scratch pad memory instead of main memory.

References

1. ARM Ltd. ARM946E-S: Embedded core with flexible cached memory system & DSP in-
struction set extensions. http://www.arm.com/armtech/ARM946E S?OpenDocument.

2. Atmel. Atmel Corporation Homepage. http://www.atmel.com, 2003.
3. O. Avissar, R. Barua, and D. Stewart. An Optimal Memory Allocation Scheme for Scratch-

Pad-Based Embedded Systems. ACM Transactions on Embedded Computing Systems,
1(1):6–26, November 2002.

4. R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad Memory:
A Design Alternative for Cache On-chip Memory in Embedded Systems. In 10th Int. Symp.
on Hardware/Software Codesign (CODES), May 2002.

5. M. Chen. A Timing Analysis Language - (TAL) - Programmer’s Manual. Technical report,
Dept. of Computer Sciences, University of Texas, Ausin, TX, USA, 1987.

6. K.D. Cooper and T.J. Harvey. Compiler-Controlled Memory. In Architectural Support for
Programming Languages and Operating Systems, pages 2–11, 1998.

14 P. Marwedel et al.



7. H. De Man. Keynote session at DATE’02. http://www.date-conference.com/conference/
keynotes/ index.htm, 2002.

8. L. Eggermont. Embedded Systems Roadmap. Technical report, STW, http://www.stw.nl/
progress/ESroadmap/index.html, 2002.

9. S.C.A. Gordon-Ross and F. Vahid. Exploiting Fixed Programs in Embedded Systems: A
Loop Cache Example. Computer Architecture Letters, January 2002.

10. Y. Hur, Y.H. Bea, S. Kin, B. Rhee, W.L. Min, C.Y. Park, M. Lee, H. Shin, and C.S. Kim.
Worst Case Timing Analysis of RISC Processors: R3000/R3010. In Proceedings of the 16th
Real-Time Systems Symposium, pages 308–319, 1995.

11. ILOG. CPLEX. http://www.ilog.com/products/cplex.
12. M. Kandemir, I. Kadayif, and U. Sezer. Exploiting Scratch-Pad Memory Using Presburger

Formulas. In Proceedings of the 14th Internation Symposium on System Synthesis ISSS, page
7ff, 2001.

13. R. Kirner and P. Puschner. Consideration of Optimizing Compilers in the Context of WCET
Analysis. In Proc. Deutsche Informatiktage 2000, Bad Schussenried, pages 123–126. GI
Gesellschaft für Informatik e.V., Oct. 2000.

14. R. Kirner and P. Puschner. International Workshop on WCET Analysis - Summary. Research
Report 12/2002, Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 2002.

15. H. Kopetz. Real-Time Systems – Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers, 1997.

16. L. H. Lee, B. Moyer, and J. Arends. Instruction Fetch Energy Reduction Using Loop Caches
For Embedded Applications with small Tight Loops. In Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED), San Diego, CA, USA, August
1999.

17. Y.-T.S. Li, S. Malik, and A. Wolfe. Efficient Microarchitecture Modeling and Path Analysis
for Real-Time Software. In Proceedings of the IEEE Real-Time Systems Symposium, pages
298–307, December 1995.

18. Y.-T.S. Li, S. Malik, and A. Wolfe. Performance Estimation of Embedded Software with
Instruction Cache Modeling. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pages 380–387, November 1995.

19. Y.-T.S. Li, S. Malik, and A. Wolfe. Cache Modeling for Real-Time Software: Beyond Direct
Mapped Instruction Caches. In Proceedings of the IEEE Real-Time Systems Symposium,
December 1996.

20. S. Lim, Y.H. Bea, G.T. Jang, B. Rhee, S.L. Min, C.Y. Park, H. Shin, and C.S. Kim. An
Accurate Worst Case Timing Analysis for RISC Processors. In Proceedings of the 15th
Real-Time Systems Symposium, pages 97–108, 1994.

21. P. Machanik. Approaches to Addressing the Memory Wall. Technical Report, November,
Univ. Brisbane, 2002.

22. A.K. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat. Evaluating Tight Execution Time
Bounds of Programs by Annotations. In Proc. of the 6th IEEE Workshop on Real-Time
Operating Systems and Software, pages 74–80, 1989.

23. S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers, San Francisco, California, 1997.

24. P. R. Panda, N. D. Dutt, and A. Nicolau. Memory Issues in Embedded Systems-On-Chip.
Kluwer Academic Publishers, 1999.

25. P. Puschner and A. Burns. A review of Worst-Case Execution-Time Analysis (Editorial).
Journal of Real-Time Systems, 18:115–128, 1999.

26. R. Sedgewick. Algorithms. Addison Wesley, Massachusetts, 1988.

Fast, predictable and low energy memory references through architecture-aware compilation 15



27. S. Steinke. Investigation of the Potential for Energy Savings in Embedded Systems enabled
by Energy Optimizing Compilers. PhD thesis, (in German), Embedded Systems Group, CS
Dept., University of Dortmund, Dortmund, Germany, 2003.

28. S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, and P. Marwedel.
Reducing Energy Consumption by Dynamic Copying of Instructions onto Onchip Memory.
Int. Symp. on System Synthesis (ISSS), pages 213–218, 2002.

29. S. Steinke, L.Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning Program and Data Objects
to Scratchpad for Energy Reduction. Design, Automation and Test in Europe (DATE), pages
409–417, 2002.

30. M. Theokharidis. Energiemessung von ARM7TDMI Prozessor-Instruktionen. Master’s the-
sis, (in German), Embedded Systems Group, CS Dept., University of Dortmund, Dortmund,
Germany, 2000.

31. M. Verma, S. Steinke, and P. Marwedel. Data Partitioning for Maximal Scratchpad Usage.
In Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC),
page 77, January 2003.

32. M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware Scratchpad Allocation Algorihm.
In Proceedings of Design, Automation and Test in Europe (DATE 2004) (to be published),
February 2004.

33. L. Wang, W. Tembe, and S. Pande. A Framework for Loop distribution on Limited On-
Chip Memory Processors. In Proceedings of the 9th International Conference on Compiler
Construction, CC/ETAPS’00, volume 1781 of LNCS, pages 141–156, 2000.

34. S. Wilton and N. Jouppi. CACTI: An enhanced access and cycle time model. Int. Journal
on Solid State Circuits, 31(5):677–688, 1996.

35. W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the Obvious.
Computer Architecture News, 1995.

36. J. Xu and D. L. Parnas. On Satisfying Timing Constraints in Hard-Real-Time Systems.
ACM SIGSOFT Software Engineering Notes, Proceedings of the Conference on Software for
Critical Systems, 16(5):132–146, September 1991.

37. N. Zhand, N.A. Burns, and M. Nicholson. Pipelined Processors and Worst Case Execution
Times. Real-Time Systems, 4(5):319–343, 1993.

16 P. Marwedel et al.


