
Simplicity Considered Fundamental to

Design for Predictability

Wolfgang A. Halang

Fachbereich Elektrotechnik und Informationstechnik

FernUniversität Hagen, Germany

Abstract. Complexity is the core problem of contemporary information

technology, as the “artificial complicatedness” of its artefacts is explod-

ing. Intellectually easy and economically feasible predictability can be

achieved by selecting simplicity as fundamental design principle. Pre-

dictability of system behaviour is identified as the central concept for

the design of real-time and embedded systems, since it essentially im-

plies the other requirements timeliness and dependability holding for

them. Practically all dynamic and “virtual” features aiming to enhance

the average performance of computing systems as well as the traditional

categories and optimality criteria are found inadequate and are, thus,

considered harmful. In mainstream research on scheduling the gap be-

tween academic research and reality has grown so wide that research

results are doomed to irrelevance. Instead, useful scheduling research

ought to employ utmost simplicity as optimality criterion, and strive to

minimise software size and complexity. Computing should embrace other

disciplines’ notions and technologies of time. Programming and verifica-

tion methods for safety-related applications are identified on the basis

of their simplicity and ergonomic aptitude. It is advocated to utilise the

permanent advances in microelectronics to solve long untackled problems

and to foster simplicity and predictability by hardware support.

Keywords: Design for predictability, simplicity, dependability, safety, real-time
and embedded systems, design concepts.

Complexity is the core problem of contemporary information technology, as the
complexity — or better: the artificial complicatedness — of its artefacts is ex-
ploding. Thus, for instance, the standard document DIN 19245 of the fieldbus
system Profibus consists of 750 pages, and a telephone exchange, which burned
down in Reutlingen, had an installed software base of 12 millions lines of code.
The problem was already addressed in a 1989 speech by Dijkstra, in which he
said:

Computing’s core challenge is how not to make a mess of it.

Prevention is better than cure, in particular if the illness is unmastered
complexity, for which no cure exists.

Dagstuhl Online Proceedings 03471
http://drops.dagstuhl.de/opus/volltexte/4



... we better learn how not to introduce complexity in the first place.

It is only too easy to design resource sharing systems with such inter-
twined allocation strategies that no amount of applied queueing theory
will prevent most unpleasant performance surprises from emerging. The
designer that counts performance predictability among his responsibili-
ties tends to come up with designs that need no queueing theory at all.

... both the final product and the design process (must) reflect a theory
that suffices to prevent a combinatorial explosion of complexity from
creeping in.

It is time to unmask the computing community as a Secret Society for

the Creation and Preservation of Artificial Complexity.

These views were complemented by Biedenkopf in a 1994 paper:

Complexity is a bureaucratic instrument of dominance (power).

The stock of complicated solutions needs to be overcome.

Simple solutions are the most difficult ones: they require high innovation
and complete intellectual penetration of issues.

Progress is the road from the primitive via the complicated to the simple.

Therefore, the ethics of IT professionals (Endres, 2003) include to take care that
programs and systems remain intellectually tractable, to prefer simple structures
and solutions for their clarity, to fight complexity, and to resist the many fashions,
i.e., in other words, to obey the rule Keep It Small and Simple!

Stankovic and Ramamritham (1990) defined predictability by the possibil-
ity to show, demonstrate, or prove that requirements are met subject to any
assumptions made, e.g., concerning failures and workloads. As all digital com-
puters work fully deterministically, this notion of predictability needs to be for-
mulated more precisely by taking the economical and intellectual effort necessary
to show the fulfillment of the requirements into consideration. Intellectually easy
and economically feasible predictability can then be achieved by using simplicity
as fundamental design principle, which also yields dependability.

According to DIN 44 300 (1972 resp. 1985), real-time operation is the oper-
ating mode of a computer system in which the programs for the processing of
data arriving from the outside are permanently ready, so that their results will be
available within predetermined periods of time. The arrival times of the data can
be randomly distributed or be already a priori determined depending on different
applications. Thus, real-time systems must keep pace with their environments, in
which they are embedded, resulting in the fundamental requirements timeliness,
i.e., no tardiness is permitted, simultaneity, predictability, and dependability to
hold under worst-case conditions. Real-time systems are (almost) always safety-
related, and there is no functional correctness without correct timing.

Preconditions for dependable behaviour are functional correctness, robust-

ness, also with respect to inappropriate handling, and permanent readiness. The
latter is implied by the definition of real-time operation and calls for fault-
tolerance and graceful degradation, i.e., predictable reduction, of performance in

2 W. Halang



cases of error. It is a misconception to conclude from random distributions of
data arrivals that real-time systems should behave non-deterministically. On the
contrary, all computer reactions must the precisely planned and predictable in
every detail. This holds, in particular, for situations of conflict and error. Only
systems behaving deterministically are safety-licensable. Thus, predictability of

system behaviour is the central concept for the design of real-time systems, since
it essentially implies the other three requirements.

Sources of unpredictable delays and unbounded contention in contemporary
computers are the use of synchronisation methods without a notion of time,
interrupt inhibition, operating system overhead, direct memory access, caching,
pipelining, dynamic storage allocation, virtual storage, garbage collection, multi-
tasking, static priority scheduling, probabilistic arbitration and communication
protocols etc., i.e., practically all dynamic and “virtual” features aiming to en-
hance the average performance of non-real-time systems which are, therefore,
considered harmful. As, in general, program execution and system response times
are completely unpredictable and totally unknown, the state-of-the-art in ver-
ifying the performance of real-time systems is still Hope and Pray (Stankovic,
1990).

Inappropriate categories and optimality criteria widely employed in systems
design are probabilistic and statistical terms, fairness in task processing, and
minimisation of average reaction time. In contrast to this, the view adequate for
real-time systems can be characterised by observation of hard timing constraints
and worst cases, prevention of deadlocks, prevention of features taking arbitrarily
long to execute, static analysis, and recognition of the constraints imposed by
the real, i.e., physical, world.

In mainstream research on scheduling maximum processor utilisation is a

category of the 1940s which refuses to die. The original raison d’être of schedul-
ing was cost minimisation and, indeed, in the 1940s and 1950s processors were
the most expensive components of computer systems. In the meantime, however,
cost relations have turned around totally. Thus, the gap between academic re-
search and reality has grown so wide that research results on unrealistic problems
with (subliminal) load and resource utilisation models are doomed to irrelevance,
in particular for embedded real-time systems, on which people depend. Conse-
quently, it is nonsense to regard this kind of scheduling as a viable research
topic because, for instance, it is actually detrimental for system dependability
to allocate a single CPU to several control loops. A realistic, holistic assess-
ment must include safety aspects, value of the environment, and reliability and
predictability of system behaviour. Then, hardware costs are negligible in first
approximation: one hour production stoppage of a medium-size plant costs, e.g.,
some e 50,000 in contrast to some e 150 for a processor board, e 5 for a powerful
TMS320LF240X signal processor, or even only e 0.99 for an ST7lite microcon-
troller. Since, on the other hand, one hour work of a software engineer, which
is equivalent to just a single line of tested and documented code, costs e 100 or
more, software is the area where considerable savings can be achieved. If trade-

3 Simplicity Considered Fundamental to Design for Predictability



offs have to be made, suboptimal processor utilisation is a cheap price to be paid
for simplicity, predictability and dependability.

Based on the above, useful scheduling research ought to employ utmost sim-

plicity as optimality criterion. New algorithms should support low complexity
task execution schedules featuring minimisation of context-switches, inherent
deadlock-prevention with implicit resource-access synchronisation, incorporation
of inter-task and network communication, methods to determine required pro-
cessor capacity, and cost minimisation according to the “bottom-line approach”,
i.e., taking all cost factors into account. The most pressing economical question
in the optimisation of real-time computing systems with the largest potential for
cost reductions and, at the same time, predictability gains is minimising software

size and complexity. The current interest in minimising power consumption is a
stray of hope that scheduling research is turning to feasible problems.

In process control, the duration between sampling and resulting actuation
is generally unpredictable. The problem is exercarbated by handling multiple
control loops with multi-tasking. Such delays are not negligible for reasons of
control quality, stability, and robustness. There was no attempt, yet, to solve
this problem with the help of suitable computer architectures.

The notion of time is suggested in a natural way by the flow of occurrences
in the world surrounding us. As the 4th dimension of our (Euclidian) space of
experience, time is already a model defined by law and technically represented by
Universal Time Co-ordinated (UTC). Time is an absolute measure and a practi-
cal tool allowing to easily and predictably plan processes and future events with
their mutual interactions requiring no further synchronisation. This is contrasted
by the conceptual primitivity of computing, whose central notion algorithm is
time-independent, where time is reduced to predecessor-successor relations and is
abstracted away even in parallel systems, where no absolute time specifications
are possible, where the timing of actions is left implicit in real-time systems,
where there are no time-based synchronisation schemes, and where “Time (is
even) Considered Irrelevant for Real-Time Systems” (Turski). As a result, the
poor state of the “art” is characterised by computers using interval timers and
software clocks with low (and in operation decreasing) accuracy, which are much
more primitive than wrist watches. Moreover, meeting temporal conditions can-
not be guaranteed, timer interrupts may be lost, every interrupt causes overhead,
and clock synchronisation in distributed systems is still assumed to be a serious
problem, although radio receivers for official date and time signals, as already
available for some 100 years and widely used for many purposes, providing the
precise and worldwide only legal time UTC could easily and cheaply be provided
in each node.

Society increasingly depends on computerised systems for control and au-
tomation functions in safety-critical applications. For economical reasons, it
is desirable to replace hardwired logic by programmable electronic systems in
safety-related automation. Hardware has already reached a far higher degree of
dependability than software (Hatton, 1995):

4 W. Halang



We are now faced with a society in which the amount of software is
doubling about every 18 months in consumer electronic devices, and in
which software defect density is more or less unchanged in the last 20
years.

Hence, the software dependability problem needs to be solved by reducing com-
plexity. Software must be valid and correct. It is correct if it fulfills its problem
specification. For the validity of specifications there is no more authority of con-
trol — except the developers’ wishes, or more or less vaguely formulated requests.
In principle, automatic verification is possible. Validation, on the other hand, is
inherently hard, because it involves the human element to a high extent.

Software is intellectually difficult and complicated to develop. It contains only
design errors always being present, and needs correctness proofs, as tests cannot
show the absence of errors. Safety licensing of systems whose behaviour is largely
program-controlled is still an unsolved problem, whose severity is increased by
the legal requirement that verification must be based on object code. The still too
big a semantic gap between specifications and the too low a level programming
constructs available can be coped with by the-other-way-around approach, viz.,
to select programming and verification methods of utmost simplicity and, hence,
highest trustworthiness, and custom-tailor execution platforms for them.

Descartes (1641) pointed out the very nature of verification, which is neither
a scientific nor a technical, but a cognitive process:

Verum est quod valde clare et distincte percipio.

Verification is also a social process, since mathematical proofs rely on consensus
between the members of the mathematical community. To verify safety-related
computerised systems, this consensus ought to be as wide as possible. Further-
more, verification has a legal quality as well, in particular for embedded systems
whose malfunctioning can result in liability suits. Simplicity can be used as
the fundamental design principle to fight complexity and to create confidence.
Based on simplicity, easy understandability of software verification methods —
preferably also for non-experts — is the most important pre-condition to prove
software correctness.

Design-integrated verification with the quality of mathematical rigour and
oriented at the comprehension capabilities of non-experts ought to replace testing
to facilitate safety-licensing. It should be characterised by simple, inherently
safe programming — better specification, re-use of already licensed application-
oriented modules, graphics instead of text, and rigorous — but not necessarily
formal — verification methods understandable for non-experts such as judges.
The more safety-critical a function is, the more simple the related software and
its verification ought to be. Based on their simplicity, clarity and ergonomic
aptitude, programming and verification methods for the higher Safety Integrity
Levels according to IEC 61508-1 should be selected as follows:

SIL Programming Method Verification Method
4 Rule base tables Inspection
3 Function block diagrams Diverse back translation

with verified libraries

5 Simplicity Considered Fundamental to Design for Predictability



Microelectronics can now place some 1 billion transistors on a single chip.
According to the classical mainstream approach one could use them to preserve
the von Neumann dogma and to create more (artificial) complexity resulting in
unsurmountable problems for verification, packaging, pinning etc. It would be
better, however, to utilise these hardware capabilities to solve long untackled
problems by removing obsolete auxiliary artefacts, replacing virtual features by
real ones, providing resource adequacy (Lawson, 1992), enabling “thin” inter-
faces, providing secure computing environments, allowing for optimum design
decisions, and fostering simplicity and predictability. Hardware-support is a fea-
sible means to achieve predictability, as was already shown by the following
systems implemented in form of prototypes:

• parallel event processor for a real-time operating system kernel,
• elaborate timing unit with permanent UTC synchronisation,
• peripherals for jitter-free handling of time-tagged I/O data,
• dedicated processors for execution of SIL 3/4 software,
• registerless memory-integrated processor relinquishing caches,
• high-level-language oriented embedded system on a chip,
• DMA without degradation of processor performance,
• fieldbus without data repetitions in case of error,
• non-intrusive testbed for distributed real-time systems, and
• security mechanisms preventing malware.

In 1991, the author said in a keynote speech:

Future real-time control systems will only be able to meet the demands
of society if they will be dependable. Therefore, they must be simple,

behaviourally predictable, and safety-licensable.

Obviously, the last 13 years were wasted to achieve this goal, as academia con-
tinues to solve non-problems, and industry follows fashions.

6 W. Halang


