Proceedings of the 8" Python in Science Conference (SciPy 2009)

PMI - Parallel Method Invocation

Olaf Lenz (1enzo@mpip-mainz.mpg.de) — Max Planck Institute for Polymer Research, Postfach 3148, D-55021 Mainz

GERMANY

The Python module “pmi*“ (Parallel Method Invo-
cation) is presented. It allows users to write simple,
non-parallel Python scripts that use functions and
classes that are executed in parallel.

The module is well suited to be employed by other
modules and packages that want to provide func-
tions that are executed in parallel. The user of such
a module does not have to write a parallel script,
but can still profit from parallel execution.

Introduction

All modern CPUs provide more than one core, so that
they can execute several tasks in parallel. Still, most
software, and in particular self-written scripts, do not
exploit this capability. The reason for this is mainly,
that parallel programming is significantly harder than
writing serials programs.

In particular in a scientific environment, one often has
to use computationally intensive functions that could
greatly benefit from parallelism. Still, scientific pack-
ages (like SciPy) usually provide only serial implemen-
tations of these functions, as providing a parallel func-
tion would mean that the user would have to call it
from a parallel program.

When parallelizing a program, one usually has the
choice between two fundamental models: the shared-
memory thread model and the distributed-memory
message-passing model [Bar07] .

In the shared-memory thread model, the different par-
allel threads have access to shared variables that they
can use to exchange information. Programming in the
world of threads is relatively simple, however, it is
also relatively simple to produce problems like dead-
locks and race conditions, or to create highly inefficient
code, as all communication between the threads hap-
pens implicitly via the shared variables. Furthermore,
the model can only be employed efficiently on machines
that provide shared memory that can be accessed by
all threads.

In the distributed-memory message-passing model, the
parallel tasks (or processes) all have an independent
data space. To exchange information, the tasks have
to use explicit message-passing functions. Writing
message-passing programs is more tedious than writ-
ing threaded programs, as all communication has to
be made explicit. On the other hand, message-passing
programs are less error-prone, as each task has its own,
independent data space, so that certain kinds of dead-
locks and race conditions can not happen. Another
advantage of using message-passing parallelization is
that it can be used on distributed-memory machines,
but that it can also be easily and efficiently mapped

to shared-memory platforms, while it is not possible
to map threaded programs onto distributed-memory
machines.

Therefore, when using a shared-memory machine, the
choice between the models is mostly a choice of the
programming style, but it does not influence how an
algorithm is parallelized. Many algorithms, in partic-
ular in scientific computing where large datasets are
processed, are algorithms that can profit from data
parallelism. In data-parallel programs, the different
tasks do not execute completely independent opera-
tions, instead each task does the same operation, but
on a different piece of data. In particular, most con-
trol structures and the program logic is the same in
all tasks. This can greatly simplify writing parallel
programs [Boy08].

Data-parallel programming can be used in both par-
allelization models. In the world of C/C++ and
FORTRAN, data-parallel programming in the shared-
memory thread model is supported by the fork-join
programming model of OpenMP [OpenMP] [CDKO01]
. In this model, the programmer marks regions of the
program to be executed in parallel, while the rest of
the program is running in a serial fashion. At the be-
ginning of this region, the flow of control is forked, and
the code of the region is executed on all threads in par-
allel. If not marked otherwise, all variables are shared,
so that all threads can access the same data, and can
work on their piece of data. At the end of the parallel
region, all threads are joined back, and it returns to
a single flow of control. Using OpenMP is relatively
simple and has a few nice properties. In particular, it
is easy to synchronize the threads and to implement
control structures and the program logic, as these can
be implemented in serial fashion, so that only the time-
consuming parts have to be parallelized. On the other
hand, in the parallel regions, the programmer is ex-
posed to all dangers of threaded programming, like
race conditions, deadlocks and inefficient access to the
shared memory.

Data-parallel programming in the message-passing
model is supported by the standardized library MPI
(Message Passing Interface) [MPI] [MPIF09]. Each
parallel task runs completely independent, however
MPI provides advanced communication operations
that allows the tasks to explicitly communicate. Writ-
ing data-parallel algorithms in this framework is some-
what more tedious, as it requires a lot of explicit com-
munication, in particular when it comes to implement-
ing the program logic and control structures. On the
other hand, it is not so easy to fall into the traps of
parallel programming, like producing inefficient code
or race conditions.

O. Lenzin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 48-51 48

Proceedings of the 8 Python in Science Conference (SciPy 2009)

When writing data-parallel programs, it would be good
if one could combine at least some of the advanta-
geous features of both programming models. To this
end, it helps to understand that the fork-join model of
OpenMP makes it simple to implement control struc-
tures and the program logic is independent of the
underlying parallel programming model. The notion
of parallel regions could be used in both the shared-
memory thread model, where the threads have ac-
cess to shared variables, as well as in the distributed-
memory message-passing model, where the different
tasks can exchange messages. However, to the au-
thor’s best knowledge, combining the fork-join model
with message-passing for data-parallel programming
has not been done so far.

The PMI module

In the course of the ESPResSo++ [ESPResSo| project,
the module pmi (Parallel Method Invocation) [PMI]
has been developed. It is a pure Python module that
tries to combine the fork-join model with message-
passing. Like this, it allows the user to write the
program logic and control structures in the fashion of
OpenMP, while it still uses the less error-prone MPI
for the actual parallelization. The only requirement
of the module is a working MPI module (for example
mpidpy [mpidpy] or boostmpi [boostmpi].

PMI does not go so far to allow a programmer to sim-
ply mark certain regions of the program to be run in
parallel. Instead, it allows users to call - from a se-
rial script - arbitrary Python functions to be executed
in parallel (e.g. on multicore CPUs or on large par-
allel machines). Once called, the different invocations
of the function can communicate via MPI. When the
function returns, the flow of control is returned to the
serial script. Furthermore, PMI allows to create paral-
lel object instances, that have a corresponding instance
in all parallel tasks, and to call arbitrary methods in
these objects.

PMI has two possible areas of use: on the one hand,
it allows modules or packages to provide parallel func-
tions and classes. A user can call these from a sim-
ple, apparently serial Python script, that in fact runs
parallel code, without the user having to care about
parallelization issues. On the other hand, PMI could
be used within a GUI that is used to control parallel
code.

Other than modules that base on thread paralleliza-
tion, scripts using PMI and MPI can be used on mul-
ticore machines as well as on convenience clusters with
fast interconnects and big high-performance parallel
machines.

When comparing PMI to the standard multithread-
ing or multiprocessing modules, it must be stressed
that PMI has all the advantages that message-passing
parallelization has over thread-parallelization: it can
work on both shared-memory as well as on distributed

memory-machines, and it provides the less error-prone
parallelization approach.

When comparing PMI to using the pure MPI mod-
ules or other message-passing solutions (like PyPar
[PyPar]), it has the advantage that it doesn’t require
the programmer to write a whole parallel script to use
a parallel function. Instead, only those functions that
actually can use parallelism have to be parallelized.
PMI allows a user to hide the parallelism in those func-
tions that need it.

To the best knowledge of the author, the only other
solution that provides functionality comparable to
PMI are the parallel computing facilities of IPython
[[Python]. Using these, it would be possible to write
parallel functions that can be called from a serial
script. Note, however, that IPython is a significantly
larger package and the parallel facilities have a num-
ber of strong dependencies. These dependencies make
it hard to run it on some more exotic high-performance
platforms like the IBM Blue Gene, and prohibit its use
within simple libraries.

Parallel function calls

Within PMI, the task executing the main script is
called the controller. On the controller, the pmi com-
mands call(), invoke() or reduce() can be called,
which will execute the given function on all workers
(including the task running the controller itself). The
three commands differ only in the way they handle
return values of the called parallel functions. Further-
more, the command exec_() allows to execute arbi-
trary Python code on all workers.
In the following example, we provide the outline of the
module mandelbrot_pmi that contains a function to
compute the Mandelbrot fractal in parallel:

import pmi

import the module on all workers

pmi.exec_(’import mandelbrot_pmi’)

This is the parallel function that is
called from mandelbrot ()
def mandelbrot_parallel((x1l, y1), (x2, y2),
(w, h), maxit):
??’Compute the local slice of the
mandelbrot fractal in parallel.’’’
Here we can use any MPI function.

This is the serial function that can be
called from a (serial) user script
def mandelbrot(cl, c2, size, maxit):
return pmi.call(
’mandelbrot_pmi.mandelbrot_parallel’,
cl, c2, size, maxit)

A user can now easily write a serial script that calls
the parallelized function mandelbrot:

49

http://conference.scipy.org/proceedings/SciPy2009/paper_7

PMI - Parallel Method Invocation

import pmi, mandelbrot_pmi
Setup pmi
pmi.setup()

Call the parallel function
M = mandelbrot_pmi.mandelbrot(
(-2.0, -1.0), (1.0, 1.0),

(300, 200), 127)

Parallel class instances

pmi.create() will create and return a parallel in-
stance of a class. The methods of the class can be
invoked via call (), invoke () or reduce (), and when
the parallel instance on the controller is used as an ar-
gument to one of these calls, it is automatically trans-
lated into the corresponding instance on the worker.
Taking the following definition of the class Hello in
the module hello:
from mpi4py import MPI
class Hello(object):
def __init__(self, name):
self.name = name
get the number of the parallel task
self.rank = MPI.COMM_WORLD.rank
def printmsg(self):
print("Hello %s, I’m task %d!" %
(self.name, self.rank))

Now, one could write the following script that creates
a parallel instance of the class and call its method:
import pmi
pmi.setup()
pmi.exec_(’import hello’)
hw = pmi.create(’hello.Hello’, ’0laf’)
pmi.call(hw, ’printmsg’)

This in itself is not very useful, but it demonstrates
how parallel instances can be created and used.

Parallel class instance proxies

To make it easier to use parallel instances of a class,
PMI provides a metaclass Proxy, that can be used
to create a serial frontend class to a parallel instance
of the given class. Using the metaclass, the module
hello_pmi would be defined as follows:

import pmi

from mpi4py import MPI

pmi.exec_(’import hello_pmi’)

This is the class to be used in parallel
class HelloParallel(object):
def __init__(self, name):
self.name = name
self.rank = MPI.COMM_WORLD.rank
def printmsg(self):
print("Hello %s, I’m task %d!" %
(self.name, self.rank))

This is the proxy of the parallel class,
to be used in the serial script
class Hello(object):
__metaclass__ = pmi.Proxy
pmiproxydefs = \
dict(cls = ’HelloParallel’,
pmicall = [’printmsg’ 1)

Given these definitions, the parallel class could be used
in a script:

import pmi, hello_pmi

pmi.setup()

hello = hello_pmi.Hello(’0laf’)

hello.printmsg()

Summary

The PMI module provides a way to call arbitrary func-
tions and to invoke methods in parallel. Using it, mod-
ules and packages can provide parallelized functions
and classes to their users, without requiring the users
to write error-prone parallel script code.

References

[PMI] http://www.espresso-pp.de/projects/
pmi/

B. Barney, Introduction to Parallel Com-
puting, Lawrence Livermore National
Laboratory, 2007, http://www.llnl.gov/
computing/tutorials/parallel_comp/

C. Boyd, Data-parallel computing, ACM New
York, NY, USA, 2008, http://doi.acm.org/
10.1145/1365490.1365499
http://openmp.org/wp/

R. Chandra, L. Dagum, D. Kohr, D. Maydan,
J. McDonald, R. Menon, Parallel Program-
ming in OpenMP, Morgan Kaufmann Pub-
lishers Inc. San Francisco, CA, USA, 2001
http://www.mcs.anl.gov/research/
projects/mpi/

Message Passing Interface Forum, MPI: A
Message-Passing Interface Standard, Ver-
sion 2.2, High Performance Computing Cen-
ter Stuttgart, Germany, 2009, http://www.
mpi-forum.org/docs/docs.html
http://wuw.espresso-pp.de
http://mpidpy.scipy.org/
http://mathema.tician.de/software/
boostmpi

M. Ciedlik and C. Mura, PaPy: Parallel
and distributed data-processing pipelines in
Python, in Proc. SciPy 2009, G. Varoquaux,
S. van der Walt, J. Millman (Eds), pp.
17-24, http://sourceforge.net/projects/
pypar/

F. Perez and B. Granger: Ipython, a system
for interactive scientific computing, Com-
puting in Science & Engineering, 9(3), 21-
29, 2007 http://ipython.scipy.org/doc/
stable/html/parallel/index.html

[Bar07]

[Boy08]

[OpenMP]
[CDKO1]

[MP1]

[MPIF09)]

[ESPResSo]
[mpidpy]
[boostmpi]

[PyPar]

[IPython]

©2009, O. Lenz

50

