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Abstract. The proposed algorithm has been developed as a pre-proces-
sing tool for inflating cortical surface meshes, which have been created
using segmentation and subsequent triangulation of magnetic resonance
images (MRI) [1]. It works directly on the triangulated surface and is
therefore completely independent from the underlying segmentation. It
needs no other information than the triangle mesh itself, which makes
it generally applicable for the removal of topological noise. The home-
omorphism between cortical surface and sphere is re-established by re-
moving handles and opening connections. Moreover, the presented ap-
proach guarantees a manifold mesh by locally examining connectivity
in the neighbourhood of each vertex and removing non-manifold com-
ponents. It will be embedded into the source reconstruction software
package CURRY (Compumedics Neuroscan, El Paso, TX, USA).

1 Introduction

CURRY is a multimodality neuroimaging tool, which allows the integration of
EEG, MEG or ECoG with other functional or anatomical imaging modalities,
such as MRI, CT, fMRI, SPECT and PET. Sources of brain activity are com-
puted from these data. The source reconstruction results are, besides other vi-
sualization techniques, directly mapped onto the triangulation of the cerebral
cortex. Due to the intrinsic complex structure and the folding pattern of the
cortical surface the visual inspection of neuronal activity, which is mapped di-
rectly onto the mesh, is difficult. Functional foci might be hidden inside sulci and
in addition, functionally widely separated foci on opposite walls of a sulcus might
appear to be close together. Hence, for visualization purposes, deformation tech-
niques like flattening, inflation or spherical inflation (see e.g. [2]) to unfold the
cortical surface are widely used in the nenroscience community. These methods
are based on a well known fact from Riemannian geometry: any 2-manifold, such
as the cerebral cortex (if the brain stem is artificially closed), without topological
artefacts can be mapped conformally onto a sphere and local parts thereof to a
disk in R? [3].
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Fig. 1. Handle connecting two potentially different gyri within three iteration steps
of the unfolding process, where (a) is the initial surface and (c) illustrates an almost
completely smoothed surface.
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However, due to imaging noise, image inhomogeneities and the partial volume
effect connections across potentially disparate parts of the cortex are produced
during segmentation or triangulation, respectively. These erroneous and anatom-
ically incorrect connections, so-called handles, lead to distortions in the unfolded
representation of the cortical surface (see fig. 1).

Thus, it is necessary to remove them in order to re-establish the homeomor-
phism between sphere and brain. During the last few years extensive research
has been aimed at producing topologically correct representations of the cor-
tex. Besides manual editing (see e.g. [2]), different automatic approaches for the
topologically correct reconstruction of cortical surfaces from MRI are presented
in the literature. They can be divided into three groups: there are (i) methods
that enforce topology constraints during segmentation (see e.g. [4]), (i) meth-
ods that correct the segmentation results directly on volumetric data (see e.g.
[5], [6]) and (4i7) methods that work on triangulated surfaces (see [7], [8]). The
approach presented here belongs to group (24).

2 Materials and Methods

It is desired to find a method that leaves the surface geometry essentially un-
changed, except in regions where topological artefacts are detected. The method
presented here is based on a wave propagation concept, which was first intro-
duced by Guskov and Wood [9]; errors are identified by analysing the genus of
local patches.

2.1 Preliminaries

Before introducing the algorithm for topological noise removal the combinatorial
structure of a manifold triangulation needs to be defined. Mathematically, an n-
dimensional manifold is a so called Hausdorff Space, which is locally isomorphic
to a Euclidiean n-space. Thus, a compact connected 2-manifold is a topological
space, where every point has a neighbourhood being topologically equivalent
to an open disk in R? [10]. The combinatorial structure of such a triangulated
2-manifold M (K, z) can be represented through an abstract simplicial complex
K, where x : V — R® denotes the coordinate function for each vertex v € V. It
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embeds K in R®. V = {v1,vq,...,v,} is the set of vertices in the mesh. Formally,
a g-dimensional simplicial complex denotes a finite collection K of i-dimensional
(i=0,1,...,q) simplices ¢. Each simplex ¢ € K is a convex hull of a set of 1 + 1
affine independent points - the so called vertices.

2.2 Non-Manifold Components

Tn subsection 2.1 it was stated that any point of a manifold triangulation has a
neighbourhood, which is topologically equivalent to an open disk in R?. Thus,
in order to guarantee a manifold triangulation, which is an essential underlying
principle for the presented approach, all non-manifold components need to be
identified and removed in a first step. This can be done quite easily by locally
examining the connectivity in the neighbourhood of each vertex: M is called a
manifold mesh, when () the three corners of a triangle refer to different vertices
(no zero area), (i1) each edge bounds exactly two triangles and (#4¢) the star
St(o) = {r € K: 1 Co} of each vertex v forms a single cone. The star St (o)
of a simplex o is a subcomplex of K and defined as all simplices 7 containing o
[11]. In particular, it is the union of all edges and triangles incident upon v.

2.3 Topological Artefacts

Having removed all non-manifold components by introducing new vertices to the
mesh and thus, breaking all non-manifold components, the next step is to locate
and remove topological artefacts. The presence of these errors can be detected
by computing the Euler number

x(M)=|V|-|B|+|F|=2-2g(M),

where |V, |E| and |F| denote the number of vertices, edges and faces of M,
respectively; g (M) is the genus of the surface M. It is an invariant property of a
manifold and denotes the largest number of non-intersecting simple closed curves
that can be drawn on a surface, without separating it [9]. Cutting the surface
along such a curve does not yield disconnected components of the surface. For
a sphere 82 the genus ¢ = 0 and accordingly, the Euler number x = 2. Hence,
the cerebral cortex also represents a so called genus zero surface.

However, as both x and ¢ are global scalar values, neither the Euler number
nor the genus include information about the location or the size of a topological
defect. Thus, in order to identify topological errors, a local measure of x or ¢
is needed instead of a global one. Accordingly, patches P(T, K) iteratively are
grown around each vertex v € V within a defined neighbourhood, where P(T, K)
denotes a subcomplex of K, given by a set of triangles T'. Starting from a seed
vertex v, triangles T; ¢ P (T, K) are added iteratively from the star St (v;) of
each vertex v; at the border of P(T, K). Doubling all components of P(T, K)
besides the edges and vertices at its border, i.e. gluing P(T, K) to its copy,
will result in a 2-manifold representation P(T, K) of the patch P(T, K). Thus,
if no handle is located inside the manipulated subcomplex P(T, K) its genus
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Table 1. Removing topological artefacts on real brain data. #T and #V denotes the
number of triangles and vertices in the tessellation, respectively. n is the number of
non manifold components and g is the genus of the triangulated cortical surface. The
given timings are for an AMD Athlon 1.5 GHz with 512 MB RAM.

Before After
#T #V g n #T #V g n| triangle size time time per vertex
85460 42628 44 34| 85644 42771 9 0 2.0 mm 223 sec 5.23 msec
74410 37126 32 43| 74484 37228 2 0 2.0 mm 242 sec 6.52 msec
40084 19957 38 30| 40238 20092 2 0 2.5 mm 88 sec 4.41 msec
144052 71955 34 11| 144222 72085 5 O 1.0 mm 338 sec 4.70 msec

g (73(T, K )) = 0. Otherwise, a topological artefact is detected. In contrast to

the approach presented in [10], each topological defect is not corrected directly
after its detection. Instead, the smallest correcting cuts are identified first. Each
vertex v is encoded with a number 7 (v) denoting the iteration step on which
the artefact was detected. Subsequently, connected vertices carrying values 7 (v)
smaller than their neighbor’s denote candidates for topological correction. After
identifying areas with small values 1 (v) a non-intersecting cut is found on one
side of the isolated area surrounding the handle or the tunnel. Having assured
that the cut will not result in separated parts of the cortical surface, vertices
along the cut are doubled. Consequently, the corresponding handle or the tunnel,
respectively, is broken into two parts . Afterwards, the produced holes inside the
triangle mesh are sealed and consequently, the topological defects are removed.

3 Results and Discussion

We have presented an approach to repair triangulated surfaces of the cerebral
cortex, which is completely independent from the underlying segmentation. It
needs no other information than the triangle mesh itself, which makes it generally
applicable for the reduction of topological artefacts. Thus, it might be applied to
other surface models besides triangulated representations of the cerebral cortex.
The presented approach repairs local topological artefacts of triangle meshes
with a time-complexity of O(N). It is implemented in C++ and will become
part of the source reconstruction software CURRY (Compumedics Neuroscan,
El Paso, TX, USA). First results can be seen in tab. 1.

The algorithm removes any non-manifold components produced by the trian-
gulation. Moreover, nearly all topological artefacts present on the cortical surface
are eliminated. For the removal of the topological noise the patch radius 7 (v)
was set to approximately 15 mm. Unfortunately, the algorithm is not capable of
removing all handles or holes (see tab. 1). The decision of filling the associated
tunnel or cutting the handle is dependent on the diameter of the hole or the
handle, respectively. In some cases the perimeter of the handle or the cavity is
larger than the predefined maximal radius 7 (v) of the patch (15 mm in our case).
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Fig. 2. Comparision between (a) initial and (b) inflated representation of the cortical
surface. The colouring illustrates the curvature; sulci are coloured red and gyri are
coloured green.

(a) (b)

Thus, the artefact is not detected. However, having removed most topological
artefacts, the surface can be inflated properly for visual inspection of functional
foci (see fig. 2).
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