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Web Applications

• a way of delivering content and services 
using internet technology
– HTTP, XML, HTML, Web Services

• Multidisciplinary
– requires a diverse range of technologies and 

involves diverse concerns

• One class of Web Applications deals with 
the interaction of Web based and 
information systems.
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Web Applications

• Still developed in a rather ad hoc manner 
causing many problems
– not what the user wanted
– not maintainable or scalable and can’t 

evolve
– short “useful life”
– lack of performance and security

“Web systems that are kept running via continual stream of 
Patches or upgrades developed without systematic 
approaches” (Dart, 2001)
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Web Applications

• The problem gets even more complicated, 
if a Web Applications need to be build on a 
Service Oriented Architecture (SOA).

• Traditional client-server architectures
have already been introduced in Web 
Application.
– Methodologies/Methods and tools to build 

uponsuch architectures are already present

• Yet, these approaches are inappropriate 
for Service Oriented Architectures.
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Web Applications
• The SOA Context : Why SOA?
• A way of delivering functionality using 

services: a form of computations that are 
autonomous accomplishing a specific task
– Reusable across Web Applications
– Can be queried and negotiated
– Are discoverable
– Are composable

• Creating complex services from simpler ones

– Fine-grained apporach to providing 
functionality
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Service Oriented Architecture

• How does SOA differ from traditional CS?
– This impacts the development Web apps
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Service Oriented Architecture

• Client-Server
• Early Binding

• Domestic (evolves smoothly and 
planned)

• Location dependent
• Single interface
• Development oriented

• Tightly coupled
• Monolithic

• Stable

• Service Oriented
• Late Binding

• Feral (evolve abrupt and 
uncontrolled)

• Location independent
• Multiple Interfaces
• Integration oriented

• Loosely coupled
• Composable

• Unstable

Different context requires different approaches for  developing 
Web Applications
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Case study: Providing Hypermedia 
Services to Web Applications
• Development based on Callimachus

– A CB-OHS
– Service oriented

• Provides a number of generic 
hypermedia services (in the form of 
components)
– Taxonomic component , used to provide 

taxonomic services 
• E.g. such as in directory services, e.g. 

openCategory, getCategoryPath, getChildren
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Hypermedia Services

• Provides a number of hypermedia services 
(in the form of components)
– Navigational component , provides 

navigational services
• Create/Traverse link
• Create/open node and anchor

• Does not store content/data
– Handled by the content/data services
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Hypermedia Services

• Services are available through servers 
(structure servers)
– TCP/IP daemons listening on port
– Support one or more protocols (XML based)
– Can relocate, 

• Clients
– Can be third party applications (e.g. MS Word)
– Custom applications
– Integrated with Web Applications
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WEB Application 3rd Party Application

API

App1

CSF

App2

Services Services Services

Operations Templates Operations Operations

Store Naming Repository

cache cache cache

Templates Templates

Callimachus Architecture: Providing hypermedia 
services
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Web Application

Web Server

Content ServicesStructure Services

Content and 
Data management

infrastructure

Structure server1 Structure server Structure server

Hypermedia Services in Web Applications
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POST /executeOperation HTTP/1.1
Content-Type: NavProtocol v1.2
Content-Length: 540
User-Agent: Callimachus MS-Office plugin v2.4

<?xml version=”1.0”?>
<!DOCTYPE np.xml>
<NavProt version=1.2>

<NPMessageHeader>
<Host>150.140.18.219</ Host >
<Agent>Callimachus MS-Office plugin v2.1</Agent >
<SessionID>0x562AAA2222</SessionID>
<Operarion>OpenNode</Operation>
<Request Time>2/3/2003 11:08:52</ Request Time>

</NPMessageHeader>
<NPMessageBody>

<NPOpenNodeRequest>
<Node>

<NodeName>TestNode</NodeName>
</Node >   

</NPOpenNodeRequest>
</NPMessageBody>

</NavProt>

Example message from to structure server
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Web applications using hypermedia 
services
• Mediate between user/browser and services
• At the Web Application layer, hypermedia 

services and content services are invoked
– E.g. openCategory/getPathOfCategory for directory 

services
– XML containing a list of id’s or content references is 

retrieved and resolved

• At the Web Application layer, structure and 
content are merged and/or transformed into 
the appropriate format
– HTML, XML etc. 
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Development methodology

• Callimachus supports rapid prototyping 
approach of service provision
– Evolutionary prototyping (not throw-away )

– Short release cycles
– Many releases

• The services are then integrated with the 
web application

• Constant evolution of services
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Issues encountered

• Constant evolution of services (cont.)
– Methods change

• New are added, existing are removed to meet the 
requirements of the Web Application

– Components evolve
• Support for new protocols

– E.g. as indicated by web developer or the Web Application 
Layer 

• How can a systematic approach to such kinds 
of evolution be achieved ?
– ensuring rapid prototyping
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Design Patterns
• Design patterns are used support the 

smooth evolution of hypermedia services 
and their integration into Web Applications
– In particular

• support changes at hypermedia services layer due 
to new Web App needs

• Support changes at the Web Application layer due 
to changes in backend services

• Types of patterns with respect to services
– At the hypermedia service level
– At the Web Application level
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Design Patterns at the hypermedia 
service level

– Problem: different web applications might 
invoke services from the same component 
using different protocols. 

– How can the same hypermedia services be 
available through different protocols without 
rewriting these services?

– Two issues here
• Parsing requests for services

– Different protocols need different parsing algorihtms

• Invoke the appropriate method based on the 
specified operation in the protocol
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Design Patterns at the hypermedia 
service level
• Protocol Parser

– Decouples parsing request from invoking
the method/operation

– Based on the Strategy and prototype patterns 
(GoF)

– Allows the parsing algorithm to vary according 
the incoming request

• The appropriate algorithm can be determined at 
runtime.
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ParseRequest()

HTProtocol

HTProtocol->Parse()

ServerContext

Parse()

Clone()

HypertextProtocol

Parse()

NavProtocol

Parse()

OHP

Parse()

Navigational

Pattern structure

Benefit: New protocols can easily be plugged in and  are available at runtime, 
without the need for recompilation.

Selection of the appropriate protocol is done based on the HTTP Content-Type 
Header value
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Creation and registration of 
protocol implementations
class hypertextProtocolFactory {

private:
hash_map<const char *, hypertextProtocol*> htProtocolLibrary; 

protected:
public:

hypertextProtocolFactory (){
registerProtocol( “NavProtocol”, new navProtocol() );
registerProtocol( “OHP”, new OHP() );
registerProtocol( “Navigational”, new Navigational() );

}
~hypertextProtocolFactory(){};

//Registers a new protocol handler
int registerProtocol(char *pName, hypertextProtocol *ht);
// Searches the library and
// returns the appropriate protocol handler. Calls the Clone
// method of protocol handler objects
hypertextProtocol *getProtocol (char *pName);

} // hypertextProtocolFactory
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Design Patterns at the hypermedia 
service level

– Problem: a web application might require 
new services to be available at the 
hypermedia level. 

– How can new services easily and 
systematically be developed and made 
available?

• E.g. service that moves a “subtree” from one 
category to another

• In a plug and play fashion
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Design Patterns at the hypermedia 
service level
• Service execution framework

– Decouples service invocation from service 
execution

– Based on the active object and command 
processor patterns (GoF)

– Allows to be determined if an invocation can 
be executed.

– Allows also advanced functionalities such as
• Queuing, logging, scheduling of service 

invocations is possible
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Pattern structure

1..*
opq->insert(op)

operation()

dispatch ()

OperationProcessor

Execute()

Undo()

DomainOperation

openNode createLink traverseLink

HMDomain

<<Execute>>

insert()

remove()

OperationQueue

HypertextProtocol
<<create>>

Response

Service invocations are modeled as separate objects
These objects can be queues, logged and scheduled

e.g. priority scheduling
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Design Patterns at the Web 
Application level
• Deal mainly with invoking the 

hypermedia (and content services)
• Main purpose is to facilitate service 

invocation
– Provide single access point for requests that 

originate from users and/or other apps
– Offer generic templates to re-occurring 

invocation schemes
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Design Patterns at the hypermedia 
service level
• Problem : new code to handle new user 

requests may be defined in different 
modules making the code unstructured 
thus unmaintainable

• How can a systematic approach to new 
user request handlers established? 
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Design Patterns at the hypermedia 
service level
• Action Dispatcher Pattern
• Select the appropriate action by 

dispatching centrally all incoming 
requests.

• Adding new action handlers can 
systematically tackled

• Based on Factory and Dispatcher  pattern
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Pattern Structure

Dispatch()

CreatesDispatcher

Handle()

Action Handler

Handle()

OpenDir

Handle()

createDir

Handle()

copyTree

Response

Selection of  the specific action is done via an 
creational pattern (e.g. factory method)
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Design Patterns at the hypermedia 
service level
• Problem : during the handling of a user 

request, a number of operations and/or 
services need to be invoked sequentially.
– E.g. prior to request execution, validate the 

user request through filters (preprocessing)
• Filter1 -> Filter2 ->Filter 3

– E.g. a number of services need to be invoked 
sequentially. If one invocation or execution 
fails, the entire action should fail.
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execute()

executionUnit

Execute()

Filter

Execute()

ServiceMethod

<<Next>>

Execute()

CheckSession

Execute()

LogAction

Pattern Structure

Can be configured declaratively (e.g. in a configuration file)
Can be determined at run time.
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Conclusions

• Adoption of a Service oriented architecture 
inherently introduces the problem of 
evolution of Web Applications and the 
services they depend on.

• We have shown how evolution issues are 
addressed in Web Applications based on 
Callimachus

• Such evolution issues are addressed 
using design patterns
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Conclusions

• Design patterns facilitate a smooth and 
controlled evolution of web applications 
and services

• Many more patterns can be identified and 
introduced to address more evolution 
concerns .


