
Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Supporting the Evolution of Service 
Oriented Web Applications using 

Design Patterns

Manolis Tzagarakis, Computer Technology Institute, Greece

Michalis Vaitis, University of the Aegean, Greece

Nikos Karousos, University of Patras, Greece



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Outline

• Web Applications
• Service Oriented Architectures (SOA)
• Issues in building SOA based Web 

Applications
• Design Patterns for integrating and 

evolving services in Web Applications
• Conclusions



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Web Applications

• a way of delivering content and services 
using internet technology
– HTTP, XML, HTML, Web Services

• Multidisciplinary
– requires a diverse range of technologies and 

involves diverse concerns

• One class of Web Applications deals with 
the interaction of Web based and 
information systems.



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Web Applications

• Still developed in a rather ad hoc manner 
causing many problems
– not what the user wanted
– not maintainable or scalable and can’t 

evolve
– short “useful life”
– lack of performance and security

“Web systems that are kept running via continual stream of 
Patches or upgrades developed without systematic 
approaches” (Dart, 2001)



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Web Applications

• The problem gets even more complicated, 
if a Web Applications need to be build on a 
Service Oriented Architecture (SOA).

• Traditional client-server architectures
have already been introduced in Web 
Application.
– Methodologies/Methods and tools to build 

uponsuch architectures are already present

• Yet, these approaches are inappropriate 
for Service Oriented Architectures.



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Web Applications
• The SOA Context : Why SOA?
• A way of delivering functionality using 

services: a form of computations that are 
autonomous accomplishing a specific task
– Reusable across Web Applications
– Can be queried and negotiated
– Are discoverable
– Are composable

• Creating complex services from simpler ones

– Fine-grained apporach to providing 
functionality



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Service Oriented Architecture

• How does SOA differ from traditional CS?
– This impacts the development Web apps



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Service Oriented Architecture

• Client-Server
• Early Binding

• Domestic (evolves smoothly and 
planned)

• Location dependent
• Single interface
• Development oriented

• Tightly coupled
• Monolithic

• Stable

• Service Oriented
• Late Binding

• Feral (evolve abrupt and 
uncontrolled)

• Location independent
• Multiple Interfaces
• Integration oriented

• Loosely coupled
• Composable

• Unstable

Different context requires different approaches for  developing 
Web Applications



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Case study: Providing Hypermedia 
Services to Web Applications
• Development based on Callimachus

– A CB-OHS
– Service oriented

• Provides a number of generic 
hypermedia services (in the form of 
components)
– Taxonomic component , used to provide 

taxonomic services 
• E.g. such as in directory services, e.g. 

openCategory, getCategoryPath, getChildren



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Hypermedia Services

• Provides a number of hypermedia services 
(in the form of components)
– Navigational component , provides 

navigational services
• Create/Traverse link
• Create/open node and anchor

• Does not store content/data
– Handled by the content/data services



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Hypermedia Services

• Services are available through servers 
(structure servers)
– TCP/IP daemons listening on port
– Support one or more protocols (XML based)
– Can relocate, 

• Clients
– Can be third party applications (e.g. MS Word)
– Custom applications
– Integrated with Web Applications



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

WEB Application 3rd Party Application

API

App1

CSF

App2

Services Services Services

Operations Templates Operations Operations

Store Naming Repository

cache cache cache

Templates Templates

Callimachus Architecture: Providing hypermedia 
services



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Web Application

Web Server

Content ServicesStructure Services

Content and 
Data management

infrastructure

Structure server1 Structure server Structure server

Hypermedia Services in Web Applications



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

POST /executeOperation HTTP/1.1
Content-Type: NavProtocol v1.2
Content-Length: 540
User-Agent: Callimachus MS-Office plugin v2.4

<?xml version=”1.0”?>
<!DOCTYPE np.xml>
<NavProt version=1.2>

<NPMessageHeader>
<Host>150.140.18.219</ Host >
<Agent>Callimachus MS-Office plugin v2.1</Agent >
<SessionID>0x562AAA2222</SessionID>
<Operarion>OpenNode</Operation>
<Request Time>2/3/2003 11:08:52</ Request Time>

</NPMessageHeader>
<NPMessageBody>

<NPOpenNodeRequest>
<Node>

<NodeName>TestNode</NodeName>
</Node >   

</NPOpenNodeRequest>
</NPMessageBody>

</NavProt>

Example message from to structure server



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Web applications using hypermedia 
services
• Mediate between user/browser and services
• At the Web Application layer, hypermedia 

services and content services are invoked
– E.g. openCategory/getPathOfCategory for directory 

services
– XML containing a list of id’s or content references is 

retrieved and resolved

• At the Web Application layer, structure and 
content are merged and/or transformed into 
the appropriate format
– HTML, XML etc. 



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Development methodology

• Callimachus supports rapid prototyping 
approach of service provision
– Evolutionary prototyping (not throw-away )

– Short release cycles
– Many releases

• The services are then integrated with the 
web application

• Constant evolution of services



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Issues encountered

• Constant evolution of services (cont.)
– Methods change

• New are added, existing are removed to meet the 
requirements of the Web Application

– Components evolve
• Support for new protocols

– E.g. as indicated by web developer or the Web Application 
Layer 

• How can a systematic approach to such kinds 
of evolution be achieved ?
– ensuring rapid prototyping



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Design Patterns
• Design patterns are used support the 

smooth evolution of hypermedia services 
and their integration into Web Applications
– In particular

• support changes at hypermedia services layer due 
to new Web App needs

• Support changes at the Web Application layer due 
to changes in backend services

• Types of patterns with respect to services
– At the hypermedia service level
– At the Web Application level



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Design Patterns at the hypermedia 
service level

– Problem: different web applications might 
invoke services from the same component 
using different protocols. 

– How can the same hypermedia services be 
available through different protocols without 
rewriting these services?

– Two issues here
• Parsing requests for services

– Different protocols need different parsing algorihtms

• Invoke the appropriate method based on the 
specified operation in the protocol



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Design Patterns at the hypermedia 
service level
• Protocol Parser

– Decouples parsing request from invoking
the method/operation

– Based on the Strategy and prototype patterns 
(GoF)

– Allows the parsing algorithm to vary according 
the incoming request

• The appropriate algorithm can be determined at 
runtime.



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

ParseRequest()

HTProtocol

HTProtocol->Parse()

ServerContext

Parse()

Clone()

HypertextProtocol

Parse()

NavProtocol

Parse()

OHP

Parse()

Navigational

Pattern structure

Benefit: New protocols can easily be plugged in and  are available at runtime, 
without the need for recompilation.

Selection of the appropriate protocol is done based on the HTTP Content-Type 
Header value



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Creation and registration of 
protocol implementations
class hypertextProtocolFactory {

private:
hash_map<const char *, hypertextProtocol*> htProtocolLibrary; 

protected:
public:

hypertextProtocolFactory (){
registerProtocol( “NavProtocol”, new navProtocol() );
registerProtocol( “OHP”, new OHP() );
registerProtocol( “Navigational”, new Navigational() );

}
~hypertextProtocolFactory(){};

//Registers a new protocol handler
int registerProtocol(char *pName, hypertextProtocol *ht);
// Searches the library and
// returns the appropriate protocol handler. Calls the Clone
// method of protocol handler objects
hypertextProtocol *getProtocol (char *pName);

} // hypertextProtocolFactory



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Design Patterns at the hypermedia 
service level

– Problem: a web application might require 
new services to be available at the 
hypermedia level. 

– How can new services easily and 
systematically be developed and made 
available?

• E.g. service that moves a “subtree” from one 
category to another

• In a plug and play fashion



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Design Patterns at the hypermedia 
service level
• Service execution framework

– Decouples service invocation from service 
execution

– Based on the active object and command 
processor patterns (GoF)

– Allows to be determined if an invocation can 
be executed.

– Allows also advanced functionalities such as
• Queuing, logging, scheduling of service 

invocations is possible



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Pattern structure

1..*
opq->insert(op)

operation()

dispatch ()

OperationProcessor

Execute()

Undo()

DomainOperation

openNode createLink traverseLink

HMDomain

<<Execute>>

insert()

remove()

OperationQueue

HypertextProtocol
<<create>>

Response

Service invocations are modeled as separate objects
These objects can be queues, logged and scheduled

e.g. priority scheduling



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Design Patterns at the Web 
Application level
• Deal mainly with invoking the 

hypermedia (and content services)
• Main purpose is to facilitate service 

invocation
– Provide single access point for requests that 

originate from users and/or other apps
– Offer generic templates to re-occurring 

invocation schemes



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Design Patterns at the hypermedia 
service level
• Problem : new code to handle new user 

requests may be defined in different 
modules making the code unstructured 
thus unmaintainable

• How can a systematic approach to new 
user request handlers established? 



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Design Patterns at the hypermedia 
service level
• Action Dispatcher Pattern
• Select the appropriate action by 

dispatching centrally all incoming 
requests.

• Adding new action handlers can 
systematically tackled

• Based on Factory and Dispatcher  pattern



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Pattern Structure

Dispatch()

CreatesDispatcher

Handle()

Action Handler

Handle()

OpenDir

Handle()

createDir

Handle()

copyTree

Response

Selection of  the specific action is done via an 
creational pattern (e.g. factory method)



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Design Patterns at the hypermedia 
service level
• Problem : during the handling of a user 

request, a number of operations and/or 
services need to be invoked sequentially.
– E.g. prior to request execution, validate the 

user request through filters (preprocessing)
• Filter1 -> Filter2 ->Filter 3

– E.g. a number of services need to be invoked 
sequentially. If one invocation or execution 
fails, the entire action should fail.



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

execute()

executionUnit

Execute()

Filter

Execute()

ServiceMethod

<<Next>>

Execute()

CheckSession

Execute()

LogAction

Pattern Structure

Can be configured declaratively (e.g. in a configuration file)
Can be determined at run time.



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Conclusions

• Adoption of a Service oriented architecture 
inherently introduces the problem of 
evolution of Web Applications and the 
services they depend on.

• We have shown how evolution issues are 
addressed in Web Applications based on 
Callimachus

• Such evolution issues are addressed 
using design patterns



Web Maintenance and Reengineering Workshop (WMR), Bari, 2006

Conclusions

• Design patterns facilitate a smooth and 
controlled evolution of web applications 
and services

• Many more patterns can be identified and 
introduced to address more evolution 
concerns .


