WFM 2006 April 25 - 26, 2006, Czech Republic

On Generative Power of Positioned Eco-grammar Systems

Miroslav Langer *
miroslav.langer@fpf.slu.cz

Abstract: Positioned eco-grammar systems (PEG systems, for short) were introduced in [5]. In
this paper we compare generative power of PEG systems with generative power of PM colonies
and Turing machine. We extend results mentioned in [5] and [6]. We also muse on possibilities of
extension of generative power of PEG systems.

Keywords: Eco-grammar systems, positioned eco-grammar systems, PM colonies, Turing ma-
chine

1 Introduction

Motivation of introducing PEG systems is an attempt to describe interplay between evolving en-
vironment, outer influences and community of agents living in this environment whereas we fo-
cus on embodiment of the agents and their presence in the environment. PEG systems are based
on eco-grammar systems which were introduced in [1] and expanded in [2]. We simply place a
new community of agents so called "inner agents” into an environment of eco-grammar system.
Agents from original eco-grammar systems are considered as an “outer agents” or “outer influ-
ences” which influence the development of the environment. In the case of PEG systems we do
not consider the community of “outer agents”. Absence of outer agents can be understood as an
environment without outer influences e.g. laboratory conditions.

The main difference between PEG systems and eco-grammar systems is in embodiment of the
inner agents. Agents of eco-grammar systems can act whenever in environment in fact. In case
of PEG systems, this is not possible. The embodiment assures that the agent can change in two
following derivation steps symbol distant one symbol at most from the place it acts before. If
the reader see some similarity to the PM colonies, he/she is right. The motivation of introducing
PEG systems goes from PM colonies too and as we will show in this paper, family of languages
defined by PM colonies is a proper subset of the family of languages defined by PEG systems. The
inspiration found in PM colonies is presence of agents in the environment, the embodiment of the
inner agents.

2 Basic notation

Note 1. We expect that the reader has basic knowledge of formal language theory especially of
Lindenmayer systems (see [3], [8]), PM colonies (see [7]) and eco-grammar systems (see [1], [2]).

Let us recall definition of the PM colony and OL scheme:

Definition 2. PM-colony is a construct Cpys = (V, #, N, Ry, ...Ry,), where V is a finite alphabet,
¢ V is a boundary marker, N = {4, ..., A,} is finite alphabet of agents names and Ry, ..., R,,
are finite sets of agent’s rules over V.

* Institute of Computer Science, Silesian University Opava, Czech Republic

35

The rules are of the form:

— Deletion:
e (a,Ai,b) — (g, A;,b)wherea € V,b € V U {#}
o (a,A;b) — (a,A;,e) wherea € VU {#},be V
— Insertion:
o (a,A;,b) — (a,c, Ai,b) where a,b € VU {#},ce V
e (a,Aib) — (a,Ai,c,b) wherea,be VU {#},ceV
— Substitution:
o (a,Ai,b) — (c, Ai,b) where a,c € V,b € V U {#}
e (a,A;,b) — (a,Ai,c) wherea € VU {#},b,ce V
— Move:
e (a,A;,b) — (a,b,A;) wherea € VU {#},be V
e (a,Ai,b) — (A;,a,b) wherea € V,b € V U {#}
— Death:
o (a,A;,b) — (a,b) where a,b € V U {#}

Let (a, A;,b) — « be an action rule of the agent A;, then the symbols a, b present the context of
the agent A;.

Agent can delete or change (substitute) symbol on its right or left hand side, insert symbol to its
right or left hand side, move on one symbol to the left or right, or die - delete itself.

An axiom of the PM colony is a string #w+# where w € (VU N)™.
Configuration of the PM colony is a string #w#, where w € (V U N)*.

Derivation step of the PM colony is a binary relation = over a set of configurations of PM colony
#w#H = #z# iff each agent A; which occurs in w replaces it’s context in w with right side of
proper rule and the resultant string is #2z#. =" is a reflexive and transitive closure of relation =.

Language defined by PM colony is a set of all words derived from the axiom wq without agent’s
names and boundary markers.

L(Cpm,wo) = {z € E* : #woF# = #w#,z = pre(w)},

where pry : (V U {#} U N)* — V* is a morphism such that pry(a) = a, for a € V and
pry(b) =&, forb e N U {#}.

Family of all languages defined by PM colonies is denoted P M.

Definition 3. OL scheme is a construct E = (Vg, Pg), where Vg is a finite nonempty alphabet
and Pp is a finite set of OL rules over Vg

3 Positioned eco-grammar systems

Positioned eco-grammar systems were introduced in [5]. Let us recall definition of positioned
eco-grammar systems.

Definition 4. Positioned eco-grammar system (°EG system, for short) X' degree m, m > 1, is
(m+1)-tuple ¥ = (E, By,..., Bn), where
— E = (Vg, Pg) is 0L scheme - environment
e Vg - finite nonempty alphabet
e P - finite set of OL rules over Vi
- B; = ([j], Ve, Qj),1 < j < nisatype of inner agent, where
e [j] € Np is an identifier for presence of j — th agent in environment, where
* Np = {[j] : 1 <j < m} is set of identifiers of inner agents

36

® (Q; - is a set of rules of type a[j] — wu, and [j]b — v, where a,b € Vg is symbol marking
vicinity with inner agent, u,v € (Vg U Np)*

Inner agent can arise or die via the rules and its existence in an environment is given by symbol
from the set V. Agents work parallel. Each agent must in each derivation step rewrite one symbol
otherwise the derivation is blocked.

Definition 5. A configuration of the PEG system X' is a string

v =ag[f1] .. tm-1[jm]m,

where
Qg1 EVE,[jk] ENg,1<k<m,m>0.

The starting configuration will be called an axiom.

Definition 6. A derivation step of PEG system X is a binary relation = 5, over (Vg UNg)*, such
that w = y; w', iff
- wr= 010’0.1 lel]blal bes am_lfszjm]bmam, where a1 € VE, g, bk € (VEU{E}), L]k] S NB
-w =oybay...0p 18ma,
where either a[jx] — Ok € Qr and ay, € Vg, by = €, or [jxlbx — Bx € Qr and a, = €,by € Vg
and o, =g a;forl <k<m.

Each agent rewrites one symbol on its right or left hand side in each derivation step. The rest of the
unchanged symbols are rewritten by the rules of the environment. All agents work parallel. In the
case of conflict situation or agents inactivity the derivation is blocked. By the "conflict situation”
we understand that two agents want to change the same symbol. By the "inactivity” we understand
that agent cannot apply any of it’s rule.

Definition 7. Language defined by PEG system X' and axiom w is a set of strings
L(Z,w) = {7(u) : u € (V5 U Np)",w =% u}

where v : (Vg U Ng)* — Vj is a morphism such that y(a) = a for a € Vg and y(b) = ¢ for
be Ng.

Language defined by the positioned eco-grammar system is given by all words ignoring inner
agents identifiers, which can be derived from axiom. Family of languages defined by positioned
eco-grammar systems (P EG languages) is denoted simply PEG.

In the case of positioned eco-grammar system we consider only evolving environment - OL system
and one community of agents - inner agents. The embodiment of agents causes locality of changes.
Each agent can change in one derivation step right one symbol marking its vicinity according to
its rules. Rest of the symbols unaffected by agents is changed by the rules of environment.

4 Generative power of PEG systems

Let us recall some already known results on generative power of PEG systems.

Proposition 8. [5] Family of all finite languages is a proper subset of family of PEG languages
FIN C PEG.

Proposition 9. [5] Family of OL languages is a proper subset of family of PEG languages 0L C
PEG.

37

Now we will present new results in research of PEG systems.

Theorem 10. Family of languages generated by PM colonies is a proper subset of family of PEG
languages. PM C PEG.

The idea of the proof: Consider PM colony C generating language L(C,w). We will construct
PEG system X' such that L(C,w) = L(X, w'). Consider two types of agents. The first type is a
deleting agent and the second one is generating agent. To simulate behavior of PM colony agent
we need to construct pair of these two types of agents because PM colony agents use twosided
context. Our simulation of PM colony by a PEG system is nondeterministic and predictive. We
have to guess next move of each PM colony agent and to generate corresponding pair of agents.
We also need to keep the information about context. For this purpose we use proper type of agents
in our pair. The last thing to solve is a boundary marker. We simply add this symbol into the
alphabet of environment and into the alphabet of agents of PEG system. We extend morphism ~
of Definition 5 by the rule y(#) = ¢ where # is a boundary marker.

Proof. Consider PM colony C' = (V,#, N, Ry, ...Ry), where V is finite alphabet, # ¢ V is
boundary marker, N = {4, ..., A, } is finite alphabet of agents names and Ry, ..., R, are finite
sets of agent’s rules over V.

The axiom is a string #w# where w € (V U N)*.

We construct PEG system X such that L(C,w) = L(X,w). Let E = (Vg, Pg) where Vi =
VU{#} is an alphabetand Pr = {a — a : a € Vg} isa set of rules of OL scheme of environment.
The rules of PM colony have twosided context. This will be simulated by two neighboring agents,
one for left context and the other for right context. Consider By, = ([04), Vg, {a[0.] — €}) where
a € Vg first type of agent, deleting agent. Consider B;, = ([is], VE, @i,), Wwhere 1 < ¢ < n and
a € Vg second type of agent, generating agent. The action rules of generating agent are defined to
correspond to the action rules of the PM colony agents and they are as follows:
— Deletion:
o [io)b — [0;][¢2]b, where a € Vg /{#}, b,z € Vg for
(a, Ai,b) — (¢, A;,b) € Rj, wherea € V,be VU {#}
e [io)b — a[0y][éa], where a € Vg, b € Vi /{#]} for
(a, Ai,b) — (a,Aj,e) € Rywherea e VU {#},beV
- Insertion:
o [ig]b — ac[0.][ic]b, where a,b € Vg, c € Vi /{#] for
(a, Ai,b) — (a,c, A;,b) € Ri, where a,be VU {#},ceV
® [ig)b — al04][ia)cb where a,b € Vi, c € Vi /{#]} for
(a, Ai,b) — (a, Ai,c,b) € R;, wherea,be VU {#},ceV
— Substitution:
o [ig)b — c[0][ic]b, where a € Vi, b, c € Vg /{#]} for
(a, Ai, b) — (¢, Ai,b) € R;, where a € V,b € V U {#}
o [ig)b — al04][ia]c, where a € Vi, b,c € Vi /{#]} for
(a, Ai,b) — (a, Ai,c) € R;, where a,b € VU {#},ce V
— Move:
® [ig]b — abl0y][iy], where a € Vi, b € Vi /{#]} for
(a, Ai,b) — (a,b, A;) € Rj,wherea € VU {#},beV
o [ig)b — [0;][iz]ab, where a € Vi /{#},b,x € Vg for
(a, Aj,b) — (Aj,a,b) € R;, wherea € V,b e V U {#}
— Death:
® [iy]b — ab, where a,b € Vg for
(a, Aj, b) — (a,b) € R;, where a,b € V U {#}

38

Axiom of the PEG system X is a string w' = @(w) where ¢ : (V U N)* — ((Vi/{#}) U Np)*
is a morphism ¢(a) = a for @ € V and a is not the context of any agent, p(aA;b) = a[0y][ia]b
fora,b € V, A; € N. We replace all PM colony agents with corresponding pairs of PEG system
agents with respect to the PM colony agent’s context. We also need to extend the morphism ~.
We add the rule y(#) = . Our PEG system is complete now. Let us show, that this PEG system
simulates PM colony C. Each PM colony agent has set of corresponding pairs of agents in PEG
system. These agents have the same rules (with respect to the system of course) like the PM colony
ones. The context is given by the name of the agent. Only the deleting agent with proper name can
delete symbol marking its vicinity than the generating agent in the pair can generate this symbol
back, if it is necessary. So if we will generate another pair of agents the derivation will be blocked.
In the case of deleting left context symbol or moving to the left we have to guess which symbol is
next to the deleted or skipped symbol. If we are wrong the derivation is blocked because we will
generate deleting agent which wouldn’t be able to delete this symbol. O

We will illustrate the construction on simple example.

Example 1. Consider PM colony C = ({a, b}, #, {41}, R1) where
Ry ={(a,A a) — (A a,a), (#, A a) = (#,b,4,a), (b, A,a) — (b, A,D),
(b, A,b) — (b,b, A), (b,A,#)— (b,#)}.

Let the axiom of the PM colony is a string w = #aaAaa#.

According to the proof we construct PEG system X' = (E, By, , Bo,, Boy, B1,, B1,, B1,,) where
E=({a,b,#},{a— a,b— b,# — #})is OL scheme of environment,
Bou = ([Oa]1 VE, {a[Oa] ik E}),
By, = (0], Vi, {0[06] — €}),
Bo, = ([04], Vi, {#[04] — €}) are deleting agents,
B, = ([1a), Ve, Q1,) where

Q1 = { [laJa — [04][Le]aa, [Li]a — [Op][1p]aa,

(lala — [04][14]aa}

Blb — ([lb],VE,le) where

Q1, = {[Le]a — b[0y](Lo]b, [Lo]b — bb[0G][Ls),

[Lp)# — b}
Bl# = ([1#], VE; Ql#) where
Q1. = {[1gla — #0[0p][1p]0} are generating agents.

Axiom of PEG system will be w' = #aa[0,][1o]aa#.
Let us compare derivation in PM colony with derivation in PEG system. PM colony derivation:
#aaAaaH# = #aAaaa#F = #Aaaaa# = #bAaaaa# = #bAbaaa# =
= #bbAaaa# = #bbAbaa# = #bbbAaa# = #bbbAba# =
= #bbbbAa# = #bbbbAb# = #bbbbbA# = #Dbbbbb#.
PEG system derivation:
#aal0g)[1a]ac# = #a[0a)[lalaaa#t = #(04][14lacaa# = #b[0y][1sJacaas =
= #b[0s][1p]baaa# = #bb|0y)[1p]aaa#t = #bb[0s][1p]baa# =
= #bbb[0p][1p]aa# = #bbb[0y][1p)ba# => #bbbb[0y][1p]a# =
= #bbbb[0p)[1p)b# = #bbbbb[0y)[1p)# = #bbbbb#.

This derivation is the only right to simulate our PM colony. If we will chose another rule during
moving the agent left, e.g. instead of

#aal04)[LaJaa# = #a[0s][loJaca# the #aa[04[LoJaas = #a[0y][L]aca#

the derivation will be blocked in the next step because agent 0] has no rule to delete the symbol
a on its left side.

39

Theorem 11. Family of PEG languages is the proper subset of family of RE languages PEG C
RE.

Proof. To proof that PEG systems cannot define all RE languages we have to find some language
L suchthat L € RE and L ¢ PEG. This will also show some limits of generative power of PEG
systems. Agent moving in the environment may suggest head of the Turing machine. This could
evoke feeling that we can reach RE generative power. But the main problem is that we do not use
the nonterminal symbols, so each string generated during the derivation belongs to the language
defined by the PEG system. We will show that for example language L = {a™ : n > 0} cannot
be generated by PEG system.

Consider PEG system X = (E, B,). Without loss of the generality consider only one type of agent
By = ([1], Vg, Q1) (no matter how many types of agents we consider, in the proof we consider
the longest string which the agent can derive). Let E = (Vg, P) is OL scheme of environment.
Consider wq an axiom of the system 2.

Without loss of generality consider that in each configuration is each symbol occupied by the agent
Bj (see proposition [5] Family of OL languages is a subset of PEG languages 0L C PEG)

Let p be p = |y(wp)| the length of the axiom of the system without agents identifiers. Let g
be ¢ = maz{|y(a)| : a[l] = a € Q1,a € Vg} length of the longest string without agent’s
identifiers which agent can derive in one derivation step. Consider w,, an n th configuration.

By the mathematic induction we can proof that |y(wy)| < p - ¢™.

In the first derivation step |y(w;)| < p - g, because from each symbol of axiom we can derive at
most g new symbols so the statement holds.

Assume that it also holds for arbitrary n, |y(wy)| < p - ¢" and we will show that it also holds for
n + 1. In the n + 1 th step we can derive from each symbol of the configuration at most g new
symbols. So we get |y(wn41)| < (p-¢") - ¢ < (p- ¢"*) and our statement holds.

So generally we are able to generate language L = {a*" : n > 0,k € N} for some constant k at
most. O

5 Extension of generative power of PEG systems

This chapter is only such a pause on possibility of extension of generative power of PEG systems.
Our main goal is not to find the way how to get all RE languages but to study structure, generative
power etc. of our model, compare our model with other models. So we will not pronounce any
theorem and will not give any exact proof. Let us just tell the idea how to extend generative power.
As it was already told, agent moving in the environment may suggest head of the Turing machine.
So if we extend our model about nonterminal symbols, we will get RE generative power. Let us
show just the idea which makes us sure of this hypothesis. The head of the TM can read right one
symbol on the tape at its position, so can the agent in the environment. If we will match each state
of TM with different type of agent of PEG system and define proper set of rules for these types of
agents according to the rules of TM, we can simulate this TM by PEG system. It’s important to
note, that we consider special set of nonterminals, dashed terminals. Whenever we generate word
from the language L(T'M), we just generate special type of agents which will change dashed
nonterminals into terminal symbols.

This work has been supported by the Grant Agency of Czech Republic grants No. 201/04/0528
"Vypocetni aspekty emergence - teorie a experimenty” .

40

Bibliography

1,

Csuhaj-Varji, E., Kelemen, J., Kelemenovd, A., Piun, G.: Eco(grammar) systems - A preview.
In: Cybernetics and Systems '94. Trappl, R. eds. World Scientific, Singapore, 1994, 941-948.
Csuhaj-Varji, E., Kelemen, J., Kelemenovd, A., Pdun, G.: Eco-grammar systems. A grammat-
ical framework for studying lifelike interactions. In: Artificial Life 3(1), 1997, 1-28.

. Kari, L., Rozenberg, G., Salomaa, A.: L-systems. In: Handbook of Formal Languages. Vol. 1.

Rozenberg, G., Salomaa, A. eds. Springer, Berlin 1997, 253-324.

Kelemenovd, A.: Eco-grammar systems. In: Formal Languages and Applications. Studies in
Fuzziness and Soft Computing 148. C. Martin-Vide, V. Mitrana, G. Paun eds. Springer, Berlin,
2004, 311-322.

. Langer, M.: Agenty umisténé v prostfedi ekogramatickych systémii - Pozi¢ni ekogramatické

systémy. In: Kognice a umély Zivot V, svazek 2 (J. Kelemen, V. Kvasni¢ka, J. Pospichal, sest.),
Slezska univerzita, Opava, 2005, s. 339-350.

. Langer, M.: Agents placed in the environment of eco-grammar systems - Positioned eco-

grammar systems. In: Pre-Procs. of the Ist Doctoral Workshop on Mathematical and Engi-
neering Methods in Computer Science (M. Ce3ka et al., Eds.), FI MU, Brno, 2005, pp- 31-37.

. Martin-Vide, C., Paun, G.: PM-Colonies, Computers and Artificial Intelligence 17, 1998, 553-

582.

. Paun, G., Salomaa, A.: Families Generated by Grammars and L Systems. In: Handbook of

Formal Languages Vol.1. Rozenberg, G., Salomaa, A. eds. Springer, Berlin, 1997, 811-859.

41

