WFM 2006 April 25 - 26, 2008, Czech Republic

Closure Properties of Linear Languages under Operations of Linear
Deletion

Tomas Masopust *
masopust@fit.vutbr.cz

Abstract: In this paper, we give constructive proofs that linear languages are closed under op-
erations of regular deletion and that they are not closed under operations of linear deletion. The
operations are called random parallel, parallel, sequential, scattered sequential, and multiple scat-
tered sequential deletion. In addition, we prove that every recursively enumerable language can be
obtained from a linear language by linear random parallel, parallel, or sequential deletion. In the
conclusion, we formulate two open problems.

Keywords: formal languages, regular languages, linear languages, regular deletion, linear dele-
tion

1 Introduction

The language operations that delete some parts of strings play an important role in modern
informatics, as bioinformatics, text algorithms, or cryptography (see [1, 2, 13]). So, it is no
surprise that the formal language theory has payed a special attention to their study (see [6, 7,
9,10, 11])

This paper studies linear languages and their closure properties under operations of linear
deletion. More precisely, it constructively proves that linear languages are closed under opera-
tions of regular random parallel, parallel, sequential, scattered sequential, and multiple scattered
sequential deletion and that they are not closed under linear types of these operations. It also
proves that every recursively enumerable language can be obtained from a linear language by
linear random parallel, parallel, or sequential deletion. In the conclusion of this paper, we for-
mulate two open problems.

2 Preliminaries

In this paper, we assume that the reader is familiar with the formal language theory (see [4, 5,
8, 12]).

Let RE, REC,CF, DCF, LIN, and REG denote the families of recursively enumerable,
recursive, context-free, deterministic context-free, linear, and regular languages, respectively.

3 Definitions and Examples

Let L, K C X* be two languages.

* Department of Information Systems, Faculty of Information Technology, Brno University of Technology,
Bozetechova 2, 612 66 Brno

45

Definition 1. Random parallel deletion of languages L and K is denoted by [L, L, K| and
defined as the set [L, L, K] = {wjuz... UpUns1 € % : wi1Ug.. . UnTplUny € L, z; €
Klgig<nnz1k

Example 1. Let L = {abababa, aababa, abaabaaba} and K = {aba}.

- [L, {abababa}, K| = {baba, abba, abab, b}.

- [L,{aababa}, K] = {aba, aab}.

- [L, {abaabaaba}, K| = {abaaba, aba,z}.

- [L, L, K] = {baba, abba, abab, b, aba, aab, abaaba, €}.

Notice that random parallel deletion has to delete at least one substring belonging to K.
On the other hand, this operation can also delete all substrings belonging to K. Thus, as a
special case, we get two operations—an operation that delete exactly one substring belonging
to K (sequential deletion) and an operation that delete all substrings belonging to K (parallel
deletion). More precisely, in parallel deletion, no u; from the definition of random parallel
deletion can contain a substring belonging to K (except for ¢).

Definition 2. Parallel deletion of languages L and K is denoted by [L,, L, K] and defined as
the set [1,, L, K] = {ujus... pltint1 € Z* : wiZ1Ug. .. UnZptny1 € L, z; € K, {u} N
M E\{e})2*=0,1<i<n+1,1<j<n,n>1}

Example 2. Let L = {abababa, aababa, abaabaaba} and K = {aba}.

- [Le, {abababa}, K] = {b, abba}.

- [La, {aababa}, K] = {aba, aab}.
- [La, {abaabaaba}, K] = {e}.

- [La, L, K] = {b, abba, aba, aab, £}.

Definition 3. Sequential deletion of languages L and K is denoted by [L,, L, K] and defined
astheset [Ly, L, K| = {ujus € Z* : uyzug € L, z € K}.

Example 3. Let L = {abababa, ab, aba} and K = {aba}.
- [L1, {abababa}, K| = {baba, abba, abab}.
- [L1, {ab}, K] = 0.
- [L1,{aba}, K] = {e}.
- [Ly, L, K] = {baba, abba, abab, }.
Definition 4. Scattered sequential deletion of languages L and K is denoted by [L, L, K] and

defined as the set [L5, L, K| = {ujug ... uqny1 € X* 1 w1 T Uz . . . UnTpUny1 € L, T125. ..
zn, € K, n>1}.

Example 4. Let L = {abacba} and K = {ab, ca}.

- [Lys, {abacba}, {ab}] = {acba, baca, abca}.
- [Lys, {abacba}, {ca}] = {abab}.
- [Lys, {abacba}, K] = {acba, baca, abca, abab}.

46

Definition 5. Multiple scattered sequential deletion of L and K is denoted by [L, L, K] and
defined as the set [L,, L, K| = {ujug. .. Uplpys € Z* : y1ZT1U2. .. UnTplng1 € L, 2125 .
Zn € K, n >1}.

Example 5. Let L = {abacba} and K = {ab, ca}.

- [Ls, {abacba}, {ab}] = {acba, baca, abca, ca}.
- [Ls, {abacba}, {ca}] = {abab}.
- [Ls, {abacba}, {ab, ca}] = {acba, baca, abca, ca, abab, ab}.

For any two families of languages X and) denote by (z, X',Y) the set (z,X,Y) =
{[:’Ev L:'K] ty = ‘JL)'n K € y}1 where = {-La —l-ﬂ'.a J-1: —LISs —J-s}-

4 Results

Linear languages have been proved to be closed under operations of regular deletion (see [9]).
The proofs given there are not constructive. Here we describe the constructions.

Theorem6. (x,LIN,REG) = LIN,z e {Ll, L1, Ly, L}

Proof. Let L € LIN.Then, L = [z, L,{e}] € {(z, LIN,REG), z € {1, 14, 13,,1,}.

Let L € LIN and K € REG. Without loss of generality, there is a proper linear grammar
G = (Ny, Xy, P, Sy) and aregular grammar G = (Ng, X'k, Pk, Sx) such that Si does not
occur on the right-hand side of any rule, L = £(G}), and K = L(Gk). (Notice that S — ¢ is
the only possible -rule in G'k.) Let us construct new linear grammar G = (N, X, P, S), where
N = {S} U{{z,B,y,U,V) : z,y € X2}, |z|,|ly| £ max{|u|,|v|: A — uBv € P}, B €
Np U {e}, U,V € Ng U{e}}, and P contains rules of the following forms (depending on x):

z =13

l) S — (E'ISLﬂE’ SK:E>
2) (ax, A, yb,U,e) — (az, A,y,U,e) b
) {azx, A, yb, Sk, V) — a(z, A, yb, Sk, V)

4) (ax, A, yb,U,Y) — (x, A, yb, V| Y) if U — aV € Pg,V € Ng U {}
5) (az, A, yb,U,Y) — (az, A,y,U, X) if X - bY € Pg, X € Ng
6)

7) {az, A,yb,U, Sk) — (az, A, yb, U, €)

8) (ax, A,yb,e, X) — a(x, A, yb,e, X)

) aﬂi,A,yb,E,X)ﬁ(GQE,A,yb,SK,X)

10) (e, A,e, X,Y) — (z,B,y, X,Y) if A— zBy € Py,
11) (g,e,e, X, X) — ¢

We prove w € £(G) ifand only if w € [L, L, K].

3)(
g
(az, A, yb,U, Sk) — (az, A,y,U, Sk) b
(
(
(
(

Claim7. Let (z,B,y, X,Y) =§ w, X,Y € {Sk,e}. Then,
TBy =§, Wv1T1WaTz . . . WnTnWny1,

nzo,w:wlwg...wn+1, SK=>*GK T, 1 <i<n.

47

Proof. Consider a derivation (z, B,y, X,Y) =& w1 ... wk(€,6,6,Z, Z) Wgt1 ... Wpy1 =
w = w Wy ... Wny1, Where w; denotes the longest string such that there was no use of any
rule of type 4, fori = 1,...,k, and of type 5, fori = k+1,...,n+ 1, in the derivation. We
prove the claim by induction on n.

Basis: For n = 0, there is no use of any rule of type 4 or 5 in the derivation of w. If
X=Y=8SkorX =Y =ewehave (z,B,y, X, X).If X =cand Y = Sk we use one
of the rules of type 7 or 9 to obtain (z, B,y, X, X) or (z, B,y,Y,Y). Then, by rewriting B
in G, in the same way as in G, we get By =* w. Notice that if X = Sy and Y = ¢ we
have to use at least one of the rules of type 4 or 5.

Induction hypothesis: Suppose that the claim holds for all £ < n and consider n + 1. We
show here the case w; ., is derived before w,; the other cases would be done analogously.

The derivation must be (z, B,y, X,Y) =* w, (z/,C, v/, Sk,Y") w,,,, and, by the rules of
type 4 applied between generating w; and w,, we get

wy (2, C,y', Sk, Y') Wiy = w1 (2", D,y", e, Y") w, ; =" w,
where Y =YY" =cif Y =¢,0rif Y = Sk thenY’ € {Sk,e} andif Y =cthenY” =Y’
else Y” € {Sk,e}. It means 2'Cy’ =* 212" Dy" and Sk =* z,. It follows from above and
the induction hypothesis that

By =* wiz'Cy'w), ., =" wit1z"Dy'w, ; =" wiz1Ws . . . WnTpWny1,

B =" &, 1=1,...,H. 0

If S = (g,5L,¢ Sk,e) =* w. Then, from the previous claim and the fact that we have
to use at least one of the rules of type 4 or 5, Sp =" wizjws ... WpTpWpy1, N > 1,
W =W We s s Wagivow =% Byd = 1,, ..,m Thus, w € [1, L, K].

Conversely, let w € [L, L, K]. There is a derivation S;, =* wiz1ws . .. WpZTpWni1, N > 1,
z; € K,i=1,...,n.Then, S = (¢, 5,,¢, Sk,). Next, while w; is generated in G, we
generate w; in G by the rules of type 2, 3, 6, and 8, and while z; is generated in G we
delete z; in G by the rules of type 4 and 5. Thus, w € £(G).

=_1,: We eliminate the rules allowing to delete more than one substring, i.e. rules of type 7
and 9.

1S — (e, S, Sk, €)

2) {ax, A,yb, U, &) — (ax,A,y,U,e)b
3) (az, A, yb, Sk, V) — a{z, A, yb, Sk, V)

4) (az, A, yb,U,Y) — (z, A, yb, V,Y) if U — aV € Px, V € Ni U {}
5) {az, A, yb, U,Y) — {az, A, y, U, X) if X — bY € Px, X € Nk

6) (az, A,yb, U, Sk) — (az, A,y,U, Sk) b

8) (az, A,yb,e, X) — a(z, A, yb,e, X)

10) (¢, A, &, X,Y) — (z,B,y,X,Y) if A— zBy e P,

11) (g,¢,6, X, X) — ¢

48

x =1, In each state, we can either generate a next symbol or delete it.

I)S_) (€:SL1\E:SK1€>
2) (az, A, yb,U,Y) — a(z, A, yb,U,Y)

3) (az, A, yb,U,Y) — (az, A,y,U,Y)b

4) (ax, A, yb,U,Y) — (z, A, yb, V,Y) if U - aV € P,V € Ng U {e}
5) (az, A, yb,U,Y) — (az, A,y, U, X) if X — bY € Py, X € Nic

6) (e,A,6,X,Y) — (z,B,y, X,Y) if A— zBy e Py,

7 (e,e,6, X, X) — ¢

x =1, As K is regular, for K regular, the proof is the same as for z =1 ,,. We simply use
K™ instead of K.
[

Example 6. Let G = ({S.},{a,b},{SL — aScb, Sy — ab}, Sr) be a linear grammar. Then,
L =L(GL) = {a"b" : n > 1}. Next, let Gx = ({Sk, A}, {a,b}, {Sk — aA, A — bA, A —
b}, Sk) be a regular grammar. Then, K = L(Gk) = {a} - {b}*. From the construction de-
scribed above and by reducing the obtained grammar, we get a grammar, G, generating language
[L,L,K] = {a™b" : m > n > 0}. G = ({S, (a, SL,b, Sk,€), (£, SL, b, Sk, A}, {a, b}, P, S),
where P contains following rules:

—S—>a(a,SL,b,SK,E)b|CL(E,SL,b,SK,A) |ab|a|£
- {(a,SL,b, Sk,€) — a{a,SL,b,Sk,e)b|a(e,SL,b,Sk,A) |ab|a
i (EJSLJbJSK7A> _)G’<E1SL1b1SK7A> |a‘

While nonterminal (a, S, b, Sk,) corresponds to a situation none substring belonging to K
is deleted from a string generated in G, nonterminal (g, Sy, b, S, A) says that some bs have
already been deleted and that only as can be generated now on.

Theorem8. (1,, LIN, REG) = LIN.

Proof. It is easy to see that LIN C (L,, LIN, REG).

Let L € LIN and K € REG. Without loss of generality, there is a proper linear grammar
G = (N, Xy, P, S;) and a regular grammar G = (Ng, Xk, Px, Sk) such that Sk does
not occur on the right-hand side of any rule, L = £(Gr), and K = L(Gk). (Sx — ¢ is the
only possible e-rule in G'x.) Let us construct new linear grammar G = (N, X, P, S), where
N = {S}u{(z,B,y,U,V,M,N) : z,y € X}, |z|,|y| < max{|u|,|v|] : A — uBv €
Pr}, B € NpU{e}, U,V € NgU{e}, M,N C Nk U {e}}, and P contains rules of the
following forms:

1) S — (e, S,¢,5k,& {Sk}, {e})

2) (az, A,yb,U,e, M, N) — (ax, A,y,U,e, M, N') b ifeg M,Sxy & N,be X

3) (az, A, yb, Sk, V,M,N) — a(z, A, yb, Sk, V,M',N) ife & M, Sk & N,a € X},

4) {az, A, yb,U,Y, M, N) — (z, A, yb,V,Y,{Sx}, N} ife & M, Sx & N,
U—*UJVGPK,VENKU{E}

5) (az, A, yb,U,Y, M, N) — (az,A,y,U, X, M, {€}) ifeg M,Sxk &N,
X —bY € Py

6) (az, A, yb, U, Sk, M, N) — {az, A,y,U, Sxe, M, N'Yb ife @ M,Sx & N,be Iy

7 (az, A, yb,U, Sk, M, N} — (az, A,yb,U,e, M, N)

8) (azx, A,yb,e, X, M, N} — a{(z, A,yb,e, X, M', N) ifeg M,Sxk &€ N,ae X,

49

9) {(ax, A,yb,e, X, M, N) — (az, A, yb, Sk, X, M, N)

10) (e, A,e, X, Y,M,N) — (z,B,y, X, Y, M, N) if A— zBy € Py,
egdM,Sk & N
11) (e,e,6, X, X, M,N) — ¢ ifeg M,Si & N

where M’ = {Sx}U{D € NxU{e}: A—aD € Px,Ac M}and N' = {e} U{D € Nk :
D —bC € Pg,C € N}.

Notice that in the rules of type 2, 3, 6, 8 it holds that a, b € X', so we never use rule S — €
here.

The proof of w € L£(G) if and only if w € [L,, L, K] is very similar to the one of the
previous theorem. Moreover, here we have two sets of nonterminals, M and /N, in which we
parallelly simulate all derivations in G generating the same symbol as the derivation in G
does. In M we do the top-down simulation, while in N we do the bottom-up simulation. More
precisely, in each derivation step we check, by rewriting all the nonterminals from M and N
according to rules in Gk generating the same symbol as GG just generates (to the left, for M,
and to the right, for V'), whether we have generated a substring belonging to K. We also add a
new simulation from Sk, i.e. we check whether the substring starting to be generated belongs
to K.

Notice also that if ¢ € K then whenever we have a substring belonging to K of length at
least 2, we can say that we have deleted € from it. So, the only substrings belonging to K we
do not want to appear in the derived string are of length 1, i.e. the strings from K N X';. For
the derivation to the left, the corresponding sequence of derivation steps is 3, 4 (Sx — ¢), and
9. O

Now, we prove that the operations of linear deletion are very powerful—linear languages
with the operation of linear deletion characterize recursively enumerable languages.

Theorem9. (¢, LIN,LIN)Y = RFE, z € {1, 1,, 1,}.

Proof. Itis not hard to construct a Turing machine accepting (z, LIN, LIN),z € {1, 1,, L;}.

Now, suppose L € RE, L C X*, X' = {ay,...,a,}. Extended Post correspondence prob-
lem, P, is a tuple P = ({{uy,v1);- - - {8,) }s (Zags - < 20,))s Where uy, v, 2, € {0,1}* for
i=1,...,r,and a € X. The language represented by P is the set L(P) = {z123... 2, € T*:
sy, . ny8 E {10 oy U 2 L 0y oWy = gy » o Ugpipy +- - 2o, }o It 18/ kmown that for each
recursively enumerable language, L, there is an extended Post correspondence problem, P, such
that £L(P) = L (see [3, Theorem 1]). Thus, z,x5 ...z, € L if and only if 2z, ...z, € L(P).
Generate x5 . . ., as follows:

8 = 98 = B2l 8w, == 2B 2l Srnatn

Tn“Tp—
S*Gal el 2l B By imh
S*8al ol .. 2L e . . i
=* 822 28 . 2lulAv, 8z .. 212,
S T P e TR T L P I 1 SR .

= 0t s Uy e s B VO (W o0 W VB 5 2B

50

= $w{2#w2$:€1x2 B
and T,75 ... 2, € L if and only if there are w;, w, such that w; = w,,
where 2., u,;,v,; € {0,1}%, 8, # & 2 U {0, 1}.

In addition, there is a linear grammar, G’, such that £(G’) = {$w?#w$: w € {0,1}*}. Thus,
L = |0, L(@), L(G"))s € {1, L1} O

Corollary 10. (z, LIN,DCF) = RE, z € {1, L4, 1;}.
Proof. Language £(G") from Theorem 9 is deterministic context-free language. O
Theorem11. REC C (x,LIN,LIN) C RE, z € {L,, Ls}.

Proof. Let L be recursively enumerable language, L C 2*, X' N {0, 1} = 0. The proof follows
from Theorem 9 since L = [z, L(G), L(G)] N Z*. If [z, L(G), L(G")] is recursive, then so is
L. Therefore, for L € RE \ REC the language [z, £(G), £L(G")] is not recursive language. O

Corollary 12. If (1,5, LIN, LIN) is closed under intersection with a regular language, then
(Lis, LIN,LIN) = RE. If (Ls, LIN, LIN) is closed under intersection with a regular lan-
guage, then (L, LIN,LIN) = RE.

As a corollary we get the following results for context-free languages.
Theorem13. (x,CF,CF)=RE,z € {1, 1, 1}
Proof. RE = (z, LIN,LIN) C (z,CF,CF) C RE. O
Theorem14. REC C (x,CF,CF) C RE, z € {Ll1,, Ls}.
Proof. REC C {z, LIN,LIN) C (z,CF,CF) C RE. O

5 Open Problems

Here we summarize two open problems:

1. Isit true that (L5, LIN, LIN) = RE?
2. Isittrue that (L, LIN, LIN) = RE?

Bibliography

1. M. Amos. DNA computation. PhD thesis, University of Warwick, 1997.

2. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, Oxford, 1994.

3. V. Geffert. Context-free-like forms for the phrase-structure grammars. In Proc. Math. Found. Com-
put. Sci., volume 324 of Lecture Notes in Comput. Sci., pages 309-317, Springer-Verlag, 1988.

4. M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.

5. J. E. Hopcroft and J. O. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

6. L. Kari. On insertion and deletion in formal languages. PhD thesis, University of Turku, Finland,
Department of Mathematics, 1991.

7. L. Kari. Deletion operations: closure properties. Int. J. Comput. Math., 52:23-42, 1994,

8. A. Meduna. Automata and Languages: Theory and Applications. Springer, London, 2000.

51

9. A. Meduna and T. Masopust. Closure properties of trios under operations of regular deletion. Sub-
mitted.
10. A. Meduna and T. Masopust. Deletion in formal language theory. In preparation.
11. A. Meduna and M. Vitek. New language operations in formal language theory. Schedae Informati-
cae, 13:123-150, 2004.
12. A. Salomaa. Formal languages. Academic Press, New York, 1973.

13. J. Seberry and J. Pieprzyk. Cryptography: an introduction to computer security. Prentice Hall, New
York, 1989.

52

