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Abstract. Knowledge representation has a long tradition in logic and philoso-
phy. Automated reasoning with ontologies and categories had been discussed in 
philosophy, before it was formalized in artificial intelligence and e.g. applied in 
information systems. But, most of our knowledge is implicit and unconscious, 
situated and personalized. It is not formally represented, but embodied knowl-
edge, which is learnt by doing, applied by self-organization, and understood by 
bodily interacting with social environments. In a complex world, we must act 
and decide with incomplete and fuzzy knowledge under the conditions of 
bounded rationality. The bounded rationality of embodied minds is a challenge 
of informatics especially in the complex information world of Internet applica-
tions and Web services. It overcomes traditional concepts of mind-body dual-
ism in the philosophy of mind, traditional knowledge representation in AI, and 
rational agents („homo oeconomicus“) in economics. Personalized informatics 
opens a trans-disciplinary perspective for philosophy and working technology. 

1   Knowledge and Representation 

Knowledge representation which is today used in database applications, artificial 
intelligence, software engineering, and many other disciplines of computer science 
has deep roots in logic and philosophy [15]. In the beginning, there was Aristotle 
(384-322 B.C.) who developed logic as a precise method for reasoning about knowl-
edge. Syllogisms were introduced as formal patterns for representing special figures 
of logical deductions. According to Aristotle, the subject of ontology is the study of 
categories of things that exist or may exist in some domain. Aristotle distinguished 
ten basic categories for classifying anything that may be said or predicated about 
anything: Substance, quality, quantity, relation, activity, passivity, having, situated-
ness, spatiality, and temporality. Many of these categories are today applied in, e.g. 
databases. In the middle ages, knowledge representation was illustrated by graphic 
diagrams and pictures. In the ‘summulae logicales’ (1239) of Peter of Spain, an onto-



logical hierarchy with aristotelian categories represented knowledge by genus (super-
type) and species (subtype). The features that distinguished different species of the 
same genus were called differentiae. Raimundus Lullus (13th century) illustrated an 
ontological hierarchy by a tree with branches for categories. Leaves corresponded to 
questions or to answers which should automatically be found by a system of rotating 
disks for combining features of things. Actually, Raimundus Lullus applied a kind of 
British Museum algorithm, the first attempt to develop mechanical aids for problem 
solving and information retrieval. Today, we use Entity-Relationship (ER)-diagrams 
in suitable forms to illustrate structures of ontologies in informatics. 

In modern times, Descartes considered the human brain as a store of knowledge 
representation. Recognition was made possible by an isomorphic correspondance 
between internal geometrical representations (ideae) and external situations and 
events. Leibniz was deeply influenced by these traditions. In his ‘mathesis univer-
salis’, he required a universal formal language (lingua universalis) to represent human 
thinking by calculation procedures and to implement them to mechanical calculating 
machines. An ‘ars iudicandi’ should allow every problem to be decided by an algo-
rithm after representation in numeric symbols. An ‘ars iveniendi’ should enable users 
to seek and enumerate desired data and solutions of problems. Thus, in the age of 
mechanics, knowledge representation was reduced to mere mechanical calculation 
procedures. In Kant’s epistemology, recognition is not only a passive mapping of the 
external world, but an active construction of internal representations by a priori cate-
gories of pure reason. In modern terms, categories are considered as tools which must 
be assumed before (‘a priori’) any application of knowledge representation. Cognitive 
constructivism roots back to Kant’s epistemology. In the tradition of Brentano‘s and 
Husserl’s phenomenology, Aristotelian ontologies had been discussed for knowledge 
representation, again. Recognition needs intentional actions, which direct our aware-
ness and consciousness to objects of the world. Thus, according to Husserl, under-
standing is not possible by symbolic representations of the external world, but by the 
intentionality of human consciousness [7]. Intentionality became a prominent crite-
rion to distinguish human consciousness and computer representation of knowledge 
in recent AI-debates [18]. 

Computational cognitivism arose on the background of Turing’s theory of comput-
ability. In his functionalism, the hardware of a computer is related to the wetware of 
the human brain. The mind is understood as the software of a computer. Turing ar-
gues: If human mind is computable, it can be represented by a Turing program 
(Church’s thesis) which can be computed by a universal Turing machine, i.e. techni-
cally by a general purpose computer. Even if people do not believe in Turing’s strong 
AI-thesis, they often claim classical computational cognitivism in the following 
sense: Computational processes operate on symbolic representations referring to 
situations in the outside world. These formal representations should obey Tarski’s 
correspondence theory of truth: Imagine a real world situation X1 (e.g., some boxes 
on a table) which is encoded by a symbolic representation A1 = encode(X1) (e.g., a 
description of the boxes on the table). If the symbolic representation A1 is decoded, 
then we get the real world situation X1 as its meaning, i.e. decode(A1) = X1. A real-
world operation T (e.g. a manipulation of the boxes on the table by hand) should 
produce the same real-world result A2, whether performed in the real world or on the 



symbolic representation: decode(encode(T)(encode(X1))) = T(X1) = X2. Thus, there 
is an isomorphism between the outside situation and its formal representation in Car-
tesian tradition. 

2   Self-Organization and the Embodied Mind 

Knowledge representations with ontologies, categories, frames, and scripts of expert 
systems work along the discussion in section 1. However, they are restricted to a 
specialized knowledge base without the background knowledge of a human expert. 
Human experts do not rely on explicit (declarative) rule-based representations, but on 
intuition and implicit (procedural) knowledge [6]. Further on, as already Wittgenstein 
knew, our understanding depends on situations. The situatedness of representations is 
a severe problem of informatics. A robot, e.g., needs a complete symbolic representa-
tion of a situation which must be updated if the robot’s position is changed. Imagine 
that it surrounds a table with a ball and a cup on it. A formal representation of their 
respective relative positions in a computer language may be ON(TABLE, BALL), 
ON(TABLE, CUP), BEHIND(CUP, BALL), etc. Depending on the robot’s position 
relative to the arrangement, the cup is sometimes behind the ball or not. So, the for-
mal representation BEHIND(CUP, BALL) always has to be updated in changing 
positions. How can the robot prevent incomplete knowledge? How can it distinguish 
between reality and its relative perspective? Situated agents like human beings need 
no symbolic representations and updating. They look, talk, and interact bodily, e.g., 
by pointing to things. Even rational acting in sudden situations does not depend on 
internal representations and logical inferences, but on bodily interactions with a situa-
tion (e.g. looking, feeling, and reacting).  

Thus, we distinguish formal and embodied acting in games with more or less simi-
larity to real life: Chess for instance is a formal game with complete representations, 
precisely defined states, board positions, and formal operations. Soccer is a non-
formal game with skills depending on bodily interactions, without complete represen-
tations of situations and operations, which are never exactly identical. According to 
Merleau-Ponty, intentional human skills do not need any internal representation, but 
they are trained, learnt, and embodied in an optimal ‘gestalt’, which cannot be re-
peated [16]. An athlete like a pole-vaulter cannot repeat his/her successful jump like a 
machine generating the same product. Husserl’s representational intentionality is 
replaced by embodied intentionality. The embodied mind is no mystery. Modern 
biology, neural, and cognitive science give many insights into its origin during the 
evolution of life. The key-concept is self-organization of complex dynamical systems 
[13]. Brains are neural systems which allow quick adaptation to changing situations 
during the life-time of an organism. In short: They can learn, assess and anticipate. 
The human brain is a complex system of neurons self-organizing in macroscopic 
patterns by neurochemical interactions. Perceptions, emotions, thoughts, and con-
sciousness correspond to these neural patterns. Motor knowledge for instance is learnt 
in an unknown environment and stored implicitly in the distribution of synaptic 
weights of the neural nets. In the human organism, e.g. walking is a complex bodily 
self-organization, largely without central control of brain and consciousness: It is 



driven by the dynamical pattern of a steady periodic motion, the attractor of the motor 
system. Motor intelligence emerges without internal symbolic representations. 

But not only ‘low level’ motor intelligence, but also ‘high level’ cognition (e.g., 
categorization) can emerge from complex bodily interaction with an environment by 
sensory-motor coordination without internal symbolic representation. We call it ‘em-
bodied cognition’: An infant learns to categorize objects and to build up concepts by 
touching, grasping, manipulating, feeling, tasting, hearing, and looking at things, and 
not by explicit representations. The categories are based on fuzzy patchworks of 
prototypes and may be improved and changed during life. We have an innate disposi-
tion to construct and apply conceptual schemes and tools (in the sense of Kant). 
Moreover, cognitive states of persons depend on emotions. We recognize emotional 
expressions of human faces with pattern recognition of neural networks and react by 
generating appropriate facial expressions for non-verbal communication. Emotional 
states are generated in the limbic system of the brain which is connected with all 
sensory and motoric systems of the organism. All intentional actions start with an 
unconscious impulse in the limbic system which can be measured half a second be-
fore their performance. Thus, embodied intentionality is a measurable feature of the 
brain [8]. Humans use feelings to help them navigate the ontological trees of their 
concepts and preferences, to make decisions in the face of increasing combinatorial 
complexity: Emotions help to reduce complexity. 

The embodied mind is obviously a complex dynamical system acting and reacting 
in dynamically changing situations. The emergence of cognitive and emotional states 
is made possible by brain dynamics which can be modeled by neural networks. Ac-
cording to the principle of computational equivalence [13, 14], any dynamical system 
can be simulated by an appropriate computational system. But, contrary to Turing’s 
AI-thesis, that does not mean computability in any case. In complex dynamical sys-
tems, the rules of locally interacting elements (e.g., Hebb’s rules of synaptic interac-
tion) may be simple and can be programmed in a computer model. But their nonlinear 
dynamics can generate complex patterns and system states, which cannot be predicted 
in the long run without increasing loss of computability and information. Thus, artifi-
cial minds could have their own intentionality, cognitive and emotional states that 
cannot be forecast and computed like in the case of natural minds [5]. Limitations of 
computability are characteristic features of complex systems. 

In a complex dynamical world, decision-making and acting is only possible under 
conditions of bounded rationality. Bounded rationality results from limitations on our 
knowledge, cognitive capabilities, and time. Our perceptions are selective, our knowl-
edge of the real world is incomplete, our mental models are simplified, and our pow-
ers of deduction and inference are weak and fallible. Emotional and subconscious 
factors affect our behavior. Deliberation takes time and we must often make decisions 
before we are ready. Thus, knowledge representation must not be restricted to explicit 
declarations. Tacit background knowledge, change of emotional states, personal atti-
tudes, and situations with increasing complexity are challenges of modeling informa-
tion and communication systems. Personalized information systems in dynamic situa-
tions should be referred to ubiquitous and invisible computing of world-wide interac-
tive media, in order to improve human-oriented information services and to support a 
sustainable information world. 



3   Towards Advanced Personalization in Computer Systems 

Especially for areas in computer science that rely on a user’s expression of individual 
needs like e.g. query processing in databases and information systems, media retrieval 
in document collections or selection problems in Web services or e-commerce work-
flows, getting a precise account of each user’s profile/preferences is mission critical. 
But since research in psychology shows that even in purposeful tasks users are usu-
ally not fully conscious of their exact wishes and needs, see e.g. [1], eliciting prefer-
ences directly from users is a difficult matter. It often needs a tedious process like the 
manual selection of services or areas of interest for personalization in pub-
lish/subscribe systems. Moreover, given that some knowledge is embodied the elic-
ited information will be naturally incomplete and simply logging and storing and 
using user-stated keywords/behaviour will sometimes lead to counterintuitive results. 
In order to raise a personalized system’s performance in terms of relevance, a system 
thus has not only to focus on explicit user specification, but should also take informa-
tion into account, that is specified by the user’s implicit notions, situation or assumed 
common knowledge. This information can be gathered mainly from four sources: 

• long-term preferences: The notion of relevance from previous interactions 
or generally applicable knowledge about a user is used 

• intention: The specific user’s purpose of the interaction is included in per-
sonalizing the system 

• situation: The present state and environment of a user is used to decide 
whether specific preferences or rules are applicable 

• domain: Knowledge on the specific domain (often referred to as expert 
knowledge) is used within an interaction 

 
Let us consider typical instances of these kinds of personalization information. 

Among long-term preferences typical re-occurring individual preferences are col-
lected e.g. individual tastes like colours, general areas of interest or preferred layout 
settings. Generally this kind of preference can always be used to personalize a system 
for individual users and is the usual kind often stored in user profiles. Systems, how-
ever, cannot always rely on these preferences, since they might be either further 
specified for certain categories or simply not applicable in a certain context. Consider 
for instance a set of colour preferences in an e-commerce setting. Though a user can 
be assumed to have a certain favourite colour that will apply to shopping decisions, 
the preferences might be different for e.g. clothing and cars, since driving an e.g. red 
car differs from actually wearing red clothing. Moreover, for e.g. book shopping the 
colour preference becomes entirely inapplicable, since the request to by a red is usu-
ally not sensible. A basic framework for eliciting and tagging this kind of information 
can be found in e.g. [10]. 

Of a less general, but more interesting kind for personalization tasks are the prefer-
ences for the last three categories. The (assumed) intention of a user will help to de-
cide, which choices a user should be offered in personalization and a user generally 
cares about at a certain point in time during his/her interaction with the system. Typi-
cal examples for using these preferences are e.g. adaptive hypertext applications, 
where depending on a user’s previous interactions or navigation patterns the envi-



ronment can be personalized, see e.g. [11]. Also the situation has an impact on how to 
personalize a system. Context-aware systems use clues from a user’s direct environ-
ment (like time or location), personal characteristics like emotional states, technical 
characteristics like client device capabilities, or certain high level information like 
“user in a business meeting” or “user at home” for personalization tasks. Examples 
for systems integrating this kind of information are location-based services or situa-
tion-based communication routing, or context-aware synthesis of multimedia content 
like discussed in e.g. [19]. The most renowned realizations of the last kind of prefer-
ences for personalization are the so-called expert systems that encode domain knowl-
edge elicited from domain expert in a system. Since [6] shows that there cannot be a 
complete set of expert knowledge rules, since most expert knowledge is not repre-
sented by rules, but embodied in the expert, we cannot consider domain preferences 
in the sense of expert systems, but have to rely on domain specific heuristics like 
which general preferences (and in what combination) might be applicable, or what 
users generally care about in a certain domain. 

In today’s systems the latter three kinds of preferences – if at all – are mostly built 
directly into the application logic and represent the embodied mind as opposed to 
collected individual long-term preferences. In the next section we will consider two 
sample scenarios and focus on how to use these kinds of preferences not in a hard-
coded fashion, but flexibly mixed with information from user profiles. 

4   Case Studies for Preference-based Personalization  

Let us consider two short case studies where we can see parts of the embodied mind 
represented in preferences. For effective personalization knowledge from all four 
sources discussed above has to be blended with the specific user-provided de-
tails/keywords for an interaction. Though generally not all embodied knowledge can 
be captured that way, this method nevertheless provides a useful way of personalizing 
systems under the notion of bounded rationality. 

First consider personalized retrieval tasks in databases and information systems. 
As stated in [2], expanding queries along user-specific preferences goes back to the 
area of cooperative answering, see e.g. [17]. The basic notion of cooperative retrieval 
systems is that they will relax the user-specified terms until a match in a collection of 
data can be found. Thus even an overspecified query will lead to some ‘best efforts’ 
results and avoid empty result sets and the often necessary refinement of queries. This 
way of dealing with query predicates as soft constraints, is also necessary for person-
alization tasks using individual preferences that have not been explicitly stated for a 
specific interaction. Since they have been implicitly assumed by the system as repre-
sentations of common or embodied knowledge either from long-term profiles, inten-
tion, situation, or domain, they have to be considered on a lower level (i.e. as soft 
constraints that may refine too large result sets, but are relaxed if empty result sets are 
retrieved). Recently [12] introduced a system of integrating preferences in the form of 
strict partial order with an “I like A better than B” semantics into database queries. 
Here basic preferences can be modelled and combined into more complex queries 
using operators for deriving Pareto sets (i.e. all preferences are considered as equally 



important), prioritized sets (i.e. a certain order is imposed on the preferences) and 
ranked result sets (i.e. preferences on numerical domains are aggregated using utility 
functions). 

As a second example let us consider discovering useful Web services or selecting 
suitable services to construct complex workflow requests in a personalized manner 
like shown in [3, 4]. When designing a service like restaurant reservation or flight 
booking service providers usually already have quite specific ideas what capabilities 
the service should provide and what kinds of interaction to expect. Thus providers are 
domain experts, who can provide a set of useful domain preferences and even ontolo-
gies (that can be understood as categorizations encoding common knowledge) to 
foster successful execution/composition of services even for non-expert users. More-
over, providers also may anticipate different possibilities for usage of the service 
(possibly also in different situation scenarios). Generally in well-defined services 
only a certain number of typical requests/business processes will exist. These typical 
interactions for different users/groups also are preference patterns or usage patterns 
open for our personalization approach. A usage pattern may e.g. depend on the basic 
intentions of a significant group of users. Different intentions will need different 
patterns that reflect on both a user’s profile stating his or her notion of a service’s 
usefulness or desired characteristics (like execution costs, quality guarantees, etc.) 
and the service profiles that are employed to carry out the actual business task. Also 
here the basic method of relaxing demands is necessary to answer user requests in a 
cooperative fashion. 

5   Summary and Outlook 

In this paper we focused on the necessary representation of knowledge for personal-
ization tasks in Informatics. Starting from the notion that most relevant information 
for personalization tasks cannot entirely be elicited as expert knowledge, but is 
mostly embodied in the individual user (which is also consistent with current brain 
research), we propose to use flexible preference-based frameworks to personalize 
computer systems under the paradigm of bounded rationality. 

As shown for typical user interaction in the areas of personalized retrieval in data-
bases/information systems and proactive Web service discovery/selection personaliz-
ing the interaction with preferences from each individual user’s long-term profile, 
intention, situation, and domain promises to result in an improved information ex-
change with (and thus improved usability of) computer systems and allows for better 
service provisioning. This is because using individual profiles the user-provided in-
formation can be expanded with information representing the ‘embodied’ information 
necessary for a certain task. Since this information is not conscious, this expansion 
really adds value to the personalized task. However, since all preferences used for 
expanding the user information are only used on a lower level of importance than the 
explicitly provided information (and will be relaxed if necessary), our expansion will 
respect an individual users needs and never violate explicit constraints. 

Obviously, personalized computer systems do not aim at complete computational 
models of the human embodied mind, which was an impractical illusion of traditional 



AI and expert systems research. In the current trend of modern informatics, we want 
to construct effective and appropriate tools and service systems under the conditions 
of bounded knowledge/rationality which need interdisciplinary cooperation between 
informatics, cognitive science and philosophy of mind. 
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