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Abstract. We are concerned with the numerical solution of linear pa-
rameter identification problems for parabolic PDE, written as an oper-
ator equation Ku = f . The target object u is assumed to have a sparse
expansion with respect to a wavelet system Ψ = {ψλ} in space-time. For
the recovery of the unknown coefficient array, we use Tikhonov regular-
ization with `p coefficient penalties and the associated iterative shrinkage
algorithms. Since any application of K and K∗ involves the numerical
solution of a PDE, perturbed versions of the iteration have to be stud-
ied. In particular, for reasons of efficiency, adaptive operator applications
are indispensable. By a suitable choice of the respective tolerances and
stopping criteria, also the adaptive iteration converges and it has regular-
izing properties. We illustrate the performance of the resulting method
by numerical computations for one- and two-dimensional inverse heat
conduction problems.

Keywords. inverse problems, sparse regularization, adaptive wavelet
methods, inverse heat conduction

1 Introduction

The analysis and the numerical treatment of inverse problems has become a field
of increasing importance, due to its relevance in practical applications like med-
ical imaging (computer tomography), geophysical problems (analysis of seismic
data), quality control (nondestructive testing) or process monitoring (detection
of corrosive effects in machinery components). The common feature of these ap-
plications is that the quantities of interest cannot be accessed directly, but their
values have to be deduced indirectly from the effect on observable data.

In a mathematical formulation, the unknown quantity u and the observable
f in an inverse problem are linked via a model operator K, the forward operator,
such that

Ku = f. (1)

Here we assume that K is a bounded injective linear mapping between Hilbert
spaces X, Y . Moreover, only noisy data fδ are available, with ‖f − fδ‖Y ≤ δ.
The problem is ill-posed in the sense that the operator K is not boundedly
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invertible. In particular, (1) does not have to possess a solution for each right–
hand side; noisy measurements are typically not in the range of K. Therefore,
regularization methods are needed to recover u in a stable way.

Recently, increasing interest has been drawn to the analysis of regularization
schemes that exploit the sparse expansibility of u in a given ansatz system. Under
that a priori knowledge, good or even perfect reconstructions are possible with
only a few significant expansion coefficients. Among other sparsity-promoting
regularization schemes, Tikhonov regularization with `p coefficient penalties is a
common approach, where 1 ≤ p < 2. The minimizer of the Tikhonov functional
can be computed by iterative soft shrinkage, see [1].

In the class of problems we have in mind, the target quantity u is closely
related to unknown boundary data, coefficients, or source terms in an underlying
PDE. We are looking for reconstructions that are globally smooth functions with
few discontinuities along lower-dimensional curves or surfaces. Such functions are
known to have sparse expansions with respect to suitable wavelet systems on the
computational domain, so that sparsity assumptions are justified.

However, when considering parameter identification problems for partial dif-
ferential equations, another issue has to be addressed. In this case each appli-
cation of the forward operator K typically involves the numerical solution of
an associated boundary value problem. This not only makes the reconstruction
procedure computationally intensive, we also have to keep track of numerical er-
rors propagating through the iteration steps. In order to end up with an efficient
recovery algorithm, adaptive discretization methods for K are therefore indis-
pensable. Recently the convergence properties of iterative shrinkage algorithms
with inexact operator applications have been analyzed [2] for the case p > 1.
Numerical experiments from an application to inverse heat conduction problems
can be found in [3].

In Section 2, we briefly review the key ingredients of `p-sparse Tikhonov
regularization and the associated shrinkage algorithms, and the need for adaptive
discretization methods is discussed in Section 3. Numerical experiments from the
application of sparse regularization methods to one- and two-dimensional inverse
heat conduction problems are presented in Sectino 4. We finish with concluding
remarks in Section 5.

2 Sparse Reconstructions

In order to stabilize the reconstruction problem, we shall assume that the un-
known solution u has an `p-sparse expansion with respect to a stable ansatz
system Ψ = {ψλ}λ ⊂ X. By this we mean that there exists u = (uλ) ∈ `p,
p < 2, such that u = F ∗u :=

∑
λ uλψλ. Abbreviating A := K ◦ F ∗, such a co-

efficient array may be reconstructed by nonquadratic Tikhonov regularization,
minimizing the functional

J(u) = ‖Au− fδ‖2Y +
∑
λ

wλ|uλ|p,
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where wλ > 0 are some weights. It is well-known, see [1], that the minimizer u∗

of J can be computed as a fixed point of iterative shrinkage

un+1 = Sw,p

(
un +A∗(fδ −Aun)

)
, n = 0, 1, . . . (2)

where Sw,p is a vector-valued shrinkage operator. In the special case p = 1,
the minimizer u∗ is finitely supported, and Sw,1(v) = (sign(vλ)(|vλ| − wλ/2))λ
denotes soft thresholding.

It was shown in [1,4] that (2) strongly converges for 1 ≤ p ≤ 2, ‖A∗A‖ < 2
and wλ ≥ w > 0. Moreover, the convergence is linear in the sense that

‖un+1 − u∗‖`2 ≤ θ‖un − u∗‖`2

for some 0 < θ < 1. However, in practice the contraction constant may be close
to 1, which is illustrated in Figure 1 by a simple but instructive example.
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Fig. 1. Recovery of piecewise linear functions by a sparsity regularization of
Ku(t) =

∫ t
0
u(s) ds, using spline wavelet bases and iterative soft thresholding.

Top left : reconstruction un after n = 5000 iterations, top right : error ‖un−u∗‖`2
versus iteration depth n (θ ≈ 0.9945), bottom left : residual error ‖Aun − fδ‖Y
versus penalty term ‖un‖`1 , bottom right : degrees of freedom # supp un versus
iteration depth n
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3 Adaptivity

A concrete realization of the iteration step (2) will involve the application of the
forward operator K and its adjoint K∗ to the current iterate. However, in case
that K is related to a PDE problem, this cannot be done without additional
discretization errors per iteration step.

As a way out, one may consider inexact, pointwise operator applications

‖Av − [Av]ε‖Y ≤ ε, ‖A∗v − [A∗v]ε‖`2 ≤ ε

up to a prescribed target accuracy ε > 0. These operations can be realized when-
ever adaptive numerical approximations of the forward operator are available.
In case that K involves the solution of a boundary value problem, one may
think of adaptive finite element or wavelet discretizations with a posteriori error
estimators and suitable refinement strategies.

Inserting inexact operator evaluations into the ideal iteration (2), one obtains
a nonlinearly perturbed variant

ũn+1 = Sw,p

(
ũn + [A∗fδ]εn − [A∗Aũn]εn

)
(3)

with suitable target accuracies εn. The main issue is now how to choose εn in
order to preserve the convergence properties of the original thresholding itera-
tion.

For p ≥ 1, it is known that (3) strongly converges to u∗ whenever
∑
n εn <∞,

see [4]. Moreover, with a judicious parameter choice εn = εn(δ, α,w, p, n) and
for p > 1, it was shown in [2] that ‖ũn − u∗‖`2 ≤ Cδ after a finite, controllable
number of iteration steps. Using the techniques of [4] and the injectivity of K,
these results can be transferred to the limit case p = 1, which can also be
illustrated by the numerical experiments in Section 4 and in [3].

4 Application to Inverse Heat Conduction Problems

Our aim is to apply sparsity regularization methods to an inverse parabolic
problem that stems from monitoring the industrial process of steel production in
a blast furnace. The life span of such a steel furnace is determined by some critical
thickness of its outer wall. However, due to the high temperature in the interior,
this piece of information can be determined only by indirect measurements on
the outside of the furnace wall.

The mathematical modelling of this process leads to an inverse heat conduc-
tion problem on a domain Ω ⊂ Rn, where Γ1 ⊂ ∂Ω is an inaccessible boundary
part. In two space dimensions, we think of a ring-shaped domain Ω = {x ∈
R2 | 0 < r1 < ‖x‖ < r2}, with inner boundary Γ1 = {x ∈ R2 | ‖x‖ = r1} and
outer boundary Γ2 = {x ∈ R2 | ‖x‖ = r2}.

The task is then to determine temperature data g on Γ1 by indirect mea-
surements on Γ2 = ∂Ω \ ∂Ω. In the interior of the domain, the temperature
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distribution u fulfills the parabolic boundary value problem
ut = ∆u in (0, T )×Ω
u = g on (0, T )× Γ1

∇u · n = 0 on (0, T )× Γ2

u(0, ·) = 0 in Ω

The linear forward operator K : g 7→ u(·, ·; g)u|(0,T )×Γ2 falls into the afore-
mentioned category of operators, see [3], and K is well-known to be infinitely
smoothing. In space dimension n = 1, the problem is called the “sideways heat
equation” and K has an explicit integral representation with smooth kernel.

In the following, we briefly discuss the outcome of numerical experiments in
one and two spatial dimensions, see [3] for details. For different noise levels δ
and a variety of regularization parameters α, the iterative thresholding algorithm
with inexact operator evaluations is executed until convergence. The underlying
ansatz system Ψ for the representation of the boundary data on (0, T ) × Γi is
chosen to be a tensor product spline wavelet basis in space-time. The parabolic
subproblems K and K∗ are discretized by an adaptive wavelet-Rothe method,
see [5] for details. Furthermore, we choose the parameters wλ = p = 1. Via
the wavelet characterization of Besov spaces, this corresponds to a B

n/2
n/2(L1)

constraint.

4.1 1D Reconstructions

On the unit interval Ω = (0, 1), we try to recover a piecewise linear function by
a sparsity regularization of the sideways heat equation

ut = uxx in (0, T )×Ω
u = g on (0, T )× {0}
ux = 0 on (0, T )× {1}

u(0, ·) = 0 in Ω

Figure 2 shows the unknown function g and the observed right-hand side Kg.
g has a finite representation in the underlying piecewise-linear spline wavelet
basis.

Reconstructions for the noise level δ = 0.01 and p ∈ {1, 2} can be found in
Figure 3. It is remarkable that for p = 1, sparse regularization is able to recon-
struct the target quantity almost perfectly, even under the presence of moderate
measurement noise. This corresponds to the fact the fact that `1 regularization
is an exact regularization method, see also [6]. For the same level of data error,
however, quadratic Tikhonov regularization is not able to recover the unknown
temperature distribution as accurately.

4.2 2D Reconstructions

On the ring-shaped domain Ω = {x ∈ R2|0.5 < ‖x‖ < 2}, we try to recover a
piecewise smooth function on (0, T )×Γ1, where Γ1 = {x ∈ R2 | ‖x‖ = r1}. Figure



6 T. Raasch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

Fig. 2. Temperature data in the one-dimensional example. Left : function g to
be recovered, right : observed data at x = 1
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Fig. 3. Recovered temperature data in the one-dimensional example. Left : re-
construction for p = 1 under 6% relative noise (δ = 0.01), right : best possible
reconstruction for p = 2 under the same conditions

4 shows the unknown target quantity g and several reconstructions, plotted in
polar coordinates.

For moderate noise levels δ, sparse regularization with p = 1 and p = 1.1 is
able to localize the unknown peak almost perfectly. It becomes obvious that in
the case p = 1, the reconstructions exhibit significantly fewer active degrees of
freedom at the same degree of accuracy.

For more figures and details, we refer the reader to [3].

5 Conclusion

Iterative thresholding algorithms with adaptive operator evaluations are capable
of reconstructing local features in inverse PDE problems, even under moderate
data noise, by exploiting sparse wavelet expansions of the target quantity. How-
ever, the application of sparsity-promoting regularization methods to parame-
ter identification problems still poses challenging analytical and computational
tasks.
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Fig. 4. Unknown temperature data and reconstructions in the two-dimensional
example. Top left : function g to be reconstructed, top right : best reconstruction
for p = 1 under 0.5% relative noise (δ = 0.001), bottom left : best reconstruc-
tion for p = 1 under 5% relative noise (δ = 0.01), bottom right : best possible
reconstruction for p = 1.1 under the same conditions
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