
A Weighted Average of Sparse Representations
is Better than the Sparsest One Alone∗

Michael Elad and Irad Yavneh
Department of Computer Science

Technion–Israel Institute of Technology

Technion City, Haifa 32000, Israel

Email: [elad,irad]@cs.technion.ac.il

Abstract

Cleaning of noise from signals is a classical and long-studied problem in signal
processing. Algorithms for this task necessarily rely on an a-priori knowledge about
the signal characteristics, along with information about the noise properties. For signals
that admit sparse representations over a known dictionary, a commonly used denoising
technique is to seek the sparsest representation that synthesizes a signal close enough to
the corrupted one. As this problem is too complex in general, approximation methods,
such as greedy pursuit algorithms, are often employed.

In this line of reasoning, we are led to believe that detection of the sparsest rep-
resentation is key in the success of the denoising goal. Does this mean that other
competitive and slightly inferior sparse representations are meaningless? Suppose we
are served with a group of competing sparse representations, each claiming to explain
the signal differently. Can those be fused somehow to lead to a better result? Surpris-
ingly, the answer to this question is positive; merging these representations can form a
more accurate, yet dense, estimate of the original signal even when the latter is known
to be sparse.

In this paper we demonstrate this behavior, propose a practical way to generate
such a collection of representations by randomizing the Orthogonal Matching Pursuit
(OMP) algorithm, and produce a clear analytical justification for the superiority of
the associated Randomized OMP (RandOMP) algorithm. We show that while the
Maximum a-posterior Probability (MAP) estimator aims to find and use the sparsest
representation, the Minimum Mean-Squared-Error (MMSE) estimator leads to a fusion
of representations to form its result. Thus, working with an appropriate mixture of
candidate representations, we are surpassing the MAP and tending towards the MMSE
estimate, and thereby getting a far more accurate estimation, especially at medium and
low SNR.
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1 Introduction

1.1 Denoising in General

Cleaning of additive noise from signals is a classical and long-studied problem in signal

processing. This task, known as denoising, considers a given measurement signal y ∈ Rn

obtained from the clean signal x ∈ Rn by a contamination of the form y = x + v. In this

paper we shall restrict our discussion to noise vectors v ∈ Rn, assumed to be zero mean

i.i.d. Gaussian, with entries drawn at random from the normal distribution N (0, σ). The

denoising goal is to recover x from y.

In order to design an effective denoising algorithm, we must have at our disposal two

pieces of information: The first is a knowledge about the noise characteristics, as described

above. Along with it, we must also introduce some knowledge about the class of signals that

x belongs to. Only with these two can one design a scheme to decompose y into its original

components, x and v. There are numerous algorithms for denoising, as there are numerous

ways to describe the a-priori knowledge about the signal characteristics. Among these, a

recently emerging model for signals that attracts much attention is one that relies on sparse

and redundant representations [18, 2]. This model will be the focus of the work presented

here.

1.2 Sparse and Redundant Representations

A signal x is said to have a sparse representation over a known dictionary D ∈ Rn×m (we

typically assume that m > n, implying that this is a redundant representation), if there exists

a sparse vector α ∈ Rm such that x = Dα. The vector α is said to be the representation

of x. Referring to the columns of D as prototype signals or atoms, α describes how to

construct x from a few such atoms by a linear combination. The representation is sparse

– the number of non-zeros in it, k = ‖α‖0, is expected to be much smaller than n. Also,
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this is a redundant representation – it is longer than the original signal it represents. In

this paper we consider the family of signals that admit sparse representations over a known

dictionary D and discuss ways to denoise them. Note that at this stage we do not provide a

full and exact definition of this signal family (e.g., we do not specify how the representations

are generated) – such a definition will follow at a later stage in the paper, where a rigorous

analysis is pursued.

Assuming that x = Dα with a sparse representation α, how can we denoise a corrupted

version of it, y? A commonly used denoising technique is to seek the sparsest representation

that synthesizes a signal close enough to the corrupted one [2, 9, 10, 11, 12, 13, 16, 17, 19,

24, 25]. Put formally, one way to define our task is given by

α̂ = arg min
α

‖α‖0 + λ‖y −Dα‖2
2. (1)

The first penalty directs the minimization task towards the sparsest possible representation,

exploiting our a-priori knowledge about the formation of the signal. The second penalty

manifests our knowledge about the noise being white and Gaussian. This overall expression

is inversely proportional to the posterior probability, p(α|y), and as such, its minimization

forms the Maximum A-posteriori Probability (MAP) estimate [2]. The parameter λ should

be chosen based on σ and the fine details that model how the signals’ representations are

generated. As remarked above, there are other ways to formulate our goal – for example, we

could replace one of the penalties with a constraint, if their size is known. Once α̂ is found,

the denoising result is obtained by x̂ = Dα̂.

The problem posed in Equation (1) is too complex in general, requiring a combinatorial

search that explores all possible sparse supports [20]. Approximation methods are therefore

often employed, with the understanding that their result may deviate from the true solution.

One such approximation technique is the Orthogonal Matching Pursuit (OMP), a greedy

algorithm that accumulates one atom at a time in forming α̂, aiming at each step to minimize

the representation error ‖y−Dα‖2
2 [2, 3, 5, 6, 19, 21, 23]. When this error falls below some
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predetermined threshold, or when the number of atoms reaches a destination value, this

process stops. While crude, this technique works very fast and can guarantee near-optimal

results in some cases.

How good is the denoising obtained by the above approach? Past work provides some

preliminary, both theoretical and empirical, answers to this and related questions [2, 8, 9,

10, 12, 13, 16, 17, 24, 25]. Most of this work concentrates on the accuracy with which one

can approximate the true representation (rather than the signal itself), adopting a worst-

case point of view. Indeed, the only work that targets the theoretical question of denoising

performance head-on is reported in [12, 13], providing asymptotic assessments of the de-

noising performance for very low and very high noise powers, assuming that the original

combinatorial problem can be solved exactly.

1.3 This Paper

In the above line of reasoning, we are led to believe that detection of the sparsest represen-

tation is key in the success of the denoising goal. Does this mean that other, competitive yet

slightly inferior, sparse representations are meaningless? This question is critical, especially

due to the often encountered cases where OMP (and other approximation algorithms) fails

to find the truly sparsest representation.

Furthermore, past analysis of approximation algorithms indicates that a measure of coher-

ence of the dictionary can predict the tendency of these methods to fail, and this is especially

true when the sparsity of the target representation is rather mild [2, 9, 10, 16, 17, 23, 24].

The coherence of a dictionary is defined through the worst pair of atoms exhibiting maximal

correlation. If this value is high, it implies that these atoms tend to confuse and mislead any

solver. Thus, non-coherent dictionaries necessarily lead to wrong solutions in many cases;

are these to be considered as complete failures?

In fact, we should ask a more general question: Suppose we are served with a group of
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competing sparse representations, each claiming to explain the signal differently. Can those

be fused somehow to lead to a better result? Surprisingly, the answer to this question is

positive; these representations can definitely be merged to form a more accurate estimate

of the original signal. This means that even when the dictionary is non-coherent, one can

obtain a reasonable denoising, by exploiting this mixture of representations. Why is this

true? How can we exploit this? In this paper we aim to show that there is life beyond the

sparsest representation. More specifically:

• We propose a practical way to generate a set of sparse representations for a given signal

by randomizing the OMP algorithm. This technique samples from the set of sparse

solutions that approximate Dα = y;

• We demonstrate the gain in using such a set of representations through a preliminary

experiment that fuses these results by a plain averaging; and most important of all,

• We provide a clear explanation for the origin of this strange phenomenon. We develop

analytical expressions for the MAP and the Minimum Mean-Squared-Error (MMSE)

estimators for the model discussed, and show that while the MAP estimator aims to

find and use the sparsest representation, the MMSE estimator fuses a collection of rep-

resentations to form its result. Thus, working with a set of candidate representations,

we are surpassing the MAP and tending towards the MMSE estimate, and thereby

getting a more accurate estimation.

• Based on the above rigorous analysis we also provide clear expressions that predict the

MSE of the various estimators, and thus obtain a good prediction for the denoising

performance of the OMP and its randomized version.

This paper is organized as follows. In Section 2 we build a case for the use of several sparse

representations, leaning on intuition and some preliminary experiments that suggests that

this idea is worth a closer look. Section 3 contains the analytic part of this paper, which
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develops the MAP and the MMSE exact estimators and their expected errors, showing how

they relate to the use of several representations. We conclude in Section 4 by highlighting

the main contribution of this paper, and drawing attention to important open questions to

which our analysis points.

2 The Key Idea – A Mixture of Representations

In this section we build a case for the use of several sparse representations. First, we motivate

this by drawing intuition from example-based modelling, where several approximations of

the corrupted data are used to denoise it. Armed with the desire to generate a set of sparse

representations, we present the Randomized Orthogonal Matching Pursuit (RandOMP) al-

gorithm that generates a group of competitive representations for a given signal. Finally, we

show that this concept works quite well in practice and provides a benefit over the use of

a single representation. In the next section we provide a more rigorous explanation of this

phenomenon.

2.1 Why Bother? Some Hand-Waving

Why should we consider the use of more than just one representation? One possible reason

is the fact that a single representation we happen to find may be the wrong one, due to

the tendency of pursuit techniques to fail from time to time. This suggests that one should

possibly seek several representations and choose the best one in some sense, assuming that

this is possible. In doing so, we are still in the realm of the MAP estimator, aiming to

improve the OMP chances to approximate better the desired single representation solution

of Equation (1). As we shall see next, we aim to achieve far more than just that when using

a set of representations.

A second and more relevant reason to consider a mixture of representations is an intriguing

relation between our model and direct example-based techniques. Our model assumes that
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signals in the family we handle can be represented as multiplications of the dictionary D

by sparse vectors. What if we allow D to be more redundant by letting the number of its

columns m to grow? The general tendency we expect to see is a decrease in the number

of non-zeros required in the representations, that is, they become sparser. At the extreme,

when the dictionary contains m →∞ columns, reflecting many possible instances of signals,

the required sparsity should tend towards k = 1, since almost every original signal is available

as an atom (possibly up to a scale).

This extreme case is exactly the one practiced in direct example-based methods [1, 14,

15, 22, 7]. Suppose we are given many instances of noisy signals {yi}N
i=1. We refer to those

as our training data, and form a dictionary D by simply concatenating them as our atoms.

When aiming to denoise a newly obtained signal y, an example-based denoising algorithm

suggests that we seek in D a set of nearby atoms. Each such neighbor found is an extremely

sparse representation with cardinality 1, and with the coefficient being 1 as well. We may

consider a slightly more general search for neighbors that allows for scaling, which enriches

the span of the dictionary signal set.

Using one neighbor atom only as our suggested solution implies that we replace the noise

in y by the noise in this atom, rather than cleaning it, which is of-course useless. Suppose

that in the set of neighbors chosen we have managed to find instances of the same original

signal with different realizations of noise. In such a case, averaging these solutions leads to

an attenuation of the additive noise. Thus, a collection of very sparse representations joins

forces to produce a better estimate.

If the above is true for the extreme case, why should it not be relevant for the lower

redundancy case as well? The rationale is that each sparse representation found recommends

its own way of denoising, and their fusion may lead to a better overall noise removal effect.

Could this be true? In order to explore this idea, we must start by finding a practical way

to generate a set of candidate representations, which is our next topic.
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2.2 RandOMP

Here is a clear definition of our goal: Given a dictionary D and a signal y, we aim to find a

group of sparse representations αi, such that each satisfies ‖Dαi − y‖2 ≤ T , and all aim to

be as sparse as possible yet different from each other. Alternatively, we may desire to find

this set such that each has the same pre-specified number of non-zeros, k, and all aim to get

residuals, ‖Dαi − y‖2, that are as low as possible. We shall work in this section with the

former option, since it is more relevant to denoising in cases when the noise power is fixed

and known, as in the case studied here.

Figure 1 presents the OMP algorithm with a stopping rule that depends on the residual

energy [2, 3, 5, 6, 19, 21]. At each iteration, the set {ε(j)}m
j=1 is computed, whose jth term

indicates the error that would remain if atom j is added to the current solution. The atom

chosen is the one yielding the smallest error. Note that if there are several candidate atoms

that show a relatively small residual energy, the smallest one is chosen regardless of the

proximity of the others to it. This brings us naturally to the randomization approach we

intend to apply.

In order to use this algorithm to generate a set of (probably) distinct sparse representa-

tions, all that we need to do is to randomize the choice of the next atom to be added. For

example, rather than choose the atom that minimizes ε(j), we can choose it at random with

a probability inversely proportional to these error values, or proportional to |dT
j rk−1|2/‖dj‖2

2

(since ε(j) = ‖rk−1‖2
2 − |dT

j rk−1|2/‖dj‖2
2). For reasons to be explained in detail in the next

section, the specific way we choose to draw the next atom is with probability linearly pro-

portional to exp{ c2

2σ2 · |dT
j rk−1|2/‖dj‖2

2}, with

c2 =
σ2

x

σ2
x + σ2

. (2)

Here σx is the variance of the non-zero entries of the representation of the original signal.

By running this algorithm J0 times, this randomization leads to J0 solutions {αi}J0
i=1, as

desired. Common to all these representations are the facts that (i) their representation error
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Task: Approximate the solution of minα ‖α‖0 s.t. ‖Dα− y‖2 ≤ T .

Parameters: The matrix D, the signal y, and the error threshold T .

Initialization: Initialize k = 0, and set

• The initial solution α0 = 0.

• The initial residual r0 = y −Dα0 = y.

• The initial solution support S0 = Support{α0} = ∅.
Main Iteration: Increment k by 1 and perform the following steps:

• Sweep: Compute the errors ε(j) = minzj ‖djzj − rk−1‖2
2 for all j

using the optimal choice z∗j = dT
j rk−1/‖dj‖2

2.

• Update Support: Find j0–the minimizer of ε(j), and update the
support, Sk = Sk−1 ∪ {j0}.

• Update Solution: Compute αk, the minimizer of ‖Dα − y‖2
2

subject to Support{α} = Sk.

• Update Residual: Compute rk = y −Dαk.

• Stopping Rule: If ‖rk‖2 < T , stop. Otherwise, apply another
iteration.

Output: The proposed solution is αk obtained after k iterations.

Figure 1: The OMP – a greedy algorithm.
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‖Dαi − y‖2 is below T due to the stopping rule enforced; and (ii) all of them tend to be

relatively sparse due to the greedy nature of this algorithm that aims to decrease the residual

energy, giving preference to those atoms that serve this goal better. Figure 2 presents this

algorithm.

Task: Approximate the solution of minα ‖α‖0 s.t. ‖Dα− y‖2 ≤ T .

Parameters: The matrix D, the signal y, and the error threshold T .

Initialization: Initialize k = 0, and set

• The initial solution α0 = 0.

• The initial residual r0 = y −Dα0 = y.

• The initial solution support S0 = Support{α0} = ∅.
Main Iteration: Increment k by 1 and perform the following steps:

• Sweep: Compute the errors ε(j) = minzj ‖djzj − rk−1‖2
2 for all j

using the optimal choice z∗j = dT
j rk−1/‖dj‖2

2.

• Update Support: Draw j0 at random with probability propor-
tional to exp{ c2

2σ2 · |dT
j rk−1|2/‖dj‖2

2}, and update the support,

Sk = Sk−1 ∪ {j0}.
• Update Solution: Compute αk, the minimizer of ‖Dα − y‖2

2

subject to Support{α} = Sk.

• Update Residual: Compute rk = y −Dαk.

• Stopping Rule: If ‖rk‖2 < T , stop. Otherwise, apply another
iteration.

Output: The proposed solution is αk obtained after k iterations.

Figure 2: RandOMP – generating random sparse representations.

We demonstrate the behavior of this algorithm by performing the following simple test.

First, we build a random dictionary D of size 100 × 200 by drawing its entries at random

from the normal distribution N (0, 1), and then `2 normalizing its columns. We then generate

a random representation α0 with k = 10 non-zeros chosen at random and with values drawn

from N (0, σx) with σx = 1. The clean signal is obtained by x = Dα, and its noisy version

y is obtained by adding white Gaussian noise with entries drawn from N (0, σ) with σ = 1
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as well.

Armed with the dictionary D, the corrupted signal y and the noise threshold T = nσ2 =

100, we first run the plain OMP, and obtain a representation αOMP with cardinality k = 2,

and with a representation error ‖DαOMP − y‖ = 99.82. We can also check the denoising

effect obtained by evaluating the expression ‖DαOMP − x‖2
2/‖y − x‖2

2. The value obtained

is 0.168, suggesting that the noise was indeed attenuated nicely by a factor close to 6.

We proceed by running RandOMP J0 = 1, 000 times, obtaining 1, 000 candidate represen-

tations {αRandOMP
j }1,000

j=1 . Among these, there are 999 distinct ones, but we allow repetitions.

Figure 3-a presents a histogram of the cardinalities of the results. As can be seen, all the

representations obtained are relatively sparse, with cardinalities in the range [2, 21], indi-

cating that the OMP representation is the sparsest. Figure 3-b presents a histogram of the

representation errors of the results obtained. As can be seen, all the representations give an

error slightly smaller than the threshold chosen, T = 100.

We also assess the denoising performance of each of these representations as done above

for the OMP result. Figure 3-c shows a histogram of the denoising factor ‖DαRandOMP
j −

x‖2
2/‖y − x‖2

2. The results are in the range [0.128, 0.296], with roughly half surpassing the

OMP performance and the other half performing more poorly. However, can we detect the

better performing representations? Figure 3-d shows the relation between the representa-

tions’ cardinality and their expected performance, and as can be seen, it is hard to choose the

best performing one judging only by their cardinalities. This brings us to the next discussion

about a way to fuse the results to get an enhanced overall denoising performance.

2.3 Rule of Fusion

While it is hard to pinpoint the representation that performs best among those created by

the RandOMP, their averaging is quite easy to obtain. The questions to be asked are: (i)

What weights to use when averaging the various results? and (ii) Will this lead to better
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overall denoising? We shall answer these questions intuitively and experimentally below. In

Section 3 we revisit these questions and provide a justification for the choices made.

From an intuitive point of view, we might consider an averaging that gives a precedence

to sparser representations. However, our experiments indicate that a plain averaging works

even better. Thus, we use the formula1

αAV E =
1

J0

J0∑
j=1

αRandOMP
j . (3)

We return to the experiment described in the previous sub-section, and use its core to

explore the effect of the averaging described above. We perform 1, 000 different experiments

that share the same dictionary but generate different signals α, x and y using the same

parameters (σx = σ = 1 and k = 10). For each experiment we generate J0 = 100 RandOMP

representations and average them using Equation (3).

Figure 4 presents the results – for each experiment a point is positioned at the denoising

performance of the OMP and the corresponding averaged RandOMP. As can be seen, the

general tendency suggests much better results with the RandOMP. The average denoising

performance over all these experiments is 0.186 for the OMP and 0.105 for the averaged

RandOMP method. The mean denoising factor of OMP versus that of RandOMP is denoted

by a square symbol.

The above results are encouraging and immediately lead to more questions: (i) How many

different representations are enough in order to enjoy the gain of the RandOMP averaging?

(ii) How does this gain behave as a function of the input Signal to Noise Ratio (SNR) ?

(iii) How does this gain behave for different cardinalities of the original representation? (iv)

What is the effect of the dictionary (and its redundancy) on these results? (v) Are these

results related to some sort of known estimator? and most important of all, (vi) Why do we

get this gain at all? We shall provide experimental answers to questions (i)-(iv) in the next

1In Section 3 we show that both the OMP and RandOMP solutions should actually be multiplied by a

shrinkage factor, c2, defined in (2), which is omitted in this experiment.
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sub-section, and treat questions (v)-(vi) in Section 3 by providing a detailed analysis of the

estimation problem at hand.

Just before leaving this section, we would like to draw attention to the following interesting

behavior. When averaging the representations in forming the denoising estimate, we obtain

a new representation αAV E that is no longer sparse. Nevertheless, this representation is the

one that leads to the improved results. Figure 5 shows the true representation, the OMP

one, and αAV E obtained with 1, 000 runs of the RandOMP, in a sequel to the experiment

shown in Section 2.2. As can be seen, these three representations are quite distinct, and

yet they lead to very similar signals (the denoising factor obtained in this case is 0.168 for

the OMP, and 0.06 for the averaged representation). While the OMP uses less atoms than

the original one, the averaged representation is dense, using all the atoms with appropriate

weights.
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Figure 5: The true (original) representation, the one found by the OMP, and the one obtained

by averaging 1, 000 representations created by RandOMP.
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2.4 Hey, It Works! Some Experiments and Results

In this section we shall empirically answer some of the questions raised above, with an aim

to better map the behavior of the RandOMP averaging method in different scenarios for

various settings.

First we address the question of how many different representations to use in order to

enjoy the gain of RandOMP averaging. As the complexity of the new estimator with J0

different representations is about J0 times higher than that of the plain OMP, there is a

strong incentive to reduce J0 as much as possible without sacrificing performance. Figure 6-a

presents the averaged results over 1, 000 experiments, for a varying number of representations

in the range J0 ∈ [5, 200]. We see that while more representations improve the results, the

lion’s share of the improvement over the OMP is obtained even for small values of J0.

All the tests done so far assumed σ = σx = 1 with k = 10. This case corresponds to

a very low SNR of k/n and below, since the noise power is nσ2, while the signal power is

below kσ2
x (depending on the k atoms chosen and their relative orientations.) Thus, we must

ask – how is the gain observed affected by the input SNR? In order to explore this, we fix

the parameters σx = 1, k = 10, J0 = 40, vary the noise power in the range σ ∈ [0.1, 2],

and average the denoising results over 200 experiments. Figure 6-b presents the denoising

performance of the averaging as a function of σ, and as can be seen, our method is better

for all the choices of σ, but the gain it provides is higher for lower SNR.

The next test we perform considers the complexity of the original signal, by varying k

in the range [1, 40]. The sparser the representation of the original signal, the easier it is

supposed to be denoised. Naturally, we desire to find out how the gain of the RandOMP

average behaves for different cardinalities of the original representation. Figure 6-c presents

the results obtained for σ = σx = 1, showing that the OMP is inferior to the averaged results

for all cardinalities.

The last test we present studies the effect of the redundancy of the dictionary on the
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denoising performance. We fix the parameters σ = σx = 1, k = 10, J0 = 40, the dimension of

the signal is set to n = 100, and we vary the number of the atoms in the range m ∈ [10, 400].

Averaging the denoising results over 200 experiments we obtain the results as shown in

Figure 6-d. These clearly show that for a wide range of redundancies, the gain obtained by

the averaging of the RandOMP results remains unchanged, and the denoising factor appears

to be independent of m (as opposed to the one obtained by the OMP which deteriorates).

The case of underdetermined dictionaries (m ≤ n = 100) and especially for m → k is special,

since there the representations found tend to be full, leading to a convergence of the two

methods (OMP and RandOMP).

We add that a similar test done on a redundant DCT dictionary2 led to very similar

results, suggesting that the the behavior we observe is robust with respect to the dictionary

properties.

2.5 Summary

If we have at our disposal several competing sparse representations of the same noisy signal,

they can be averaged to provide better denoising performance. The combined representation

is no longer sparse, but this does not reduce its efficiency in attenuating the noise in the

signal. In this section we described how to obtain such a group of representations, how

to fuse them, and what to expect. Specifically, we found out that the method we propose

appears to be very effective, robust with respect to the signal complexity, dictionary type

and redundancy, and yields benefits even when we merge only a few representations. We now

turn to provide a deeper explanation of these results by a careful modelling of the estimation

problem and development of MAP and MMSE estimators.

2This dictionary is obtained by assigning

d[i, j] = cos((i− 1)(j − 1)π/m) for 1 ≤ i ≤ n and 1 ≤ j ≤ m,

removing the mean from all the atoms apart from the first, and normalizing each atom to unit `2-norm.
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Figure 6: Various tests on the RandOMP algorithm, checking how the denoising is affected

by (a) The number of representations averaged; (b) The input noise power; (c) The original

representation’s cardinality; and (d) The dictionary’s redundancy.
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3 Why Does it Work? A Rigorous Analysis

In this section we start by modelling the signal source in a complete manner, define the

denoising goal in terms of the MSE, and derive several estimators for it. We start with a

very general setting of the problem, and then narrow it down to the case discussed above on

sparse representations. Our main goal in this section is to show that the MMSE estimator

can be written as a weighted averaging of various sparse representations, which explains the

results of the previous section. Beyond this, the analysis derives exact expressions for the

MSE for various estimators, enabling us to assess analytically their behavior and relative

performance, and to explain results that were obtained empirically in Section 2. Towards

the end of this section we tie the empirical and the theoretical parts of this work – we

again perform simulations and show how the actual denoising results obtained by OMP and

RandOMP compare to the analytic expressions developed here.

3.1 A General Setting

3.1.1 Notation

We denote continuous (resp., discrete) vector random variables by small (resp., capital) let-

ters. The probability density function (PDF) of a continuous random variable a over a

domain Ωa is denoted p(a), and the probability of a discrete random variable A by P (A). If

b1, . . . , bk is a set of continuous (and/or discrete) random variables, then p(a|b1, . . . , bk) de-

notes the conditional PDF of a subject to b1 AND b2, ... AND bk. Similarly, P (A|B1, . . . , Bk)

denotes the conditional probability for discrete event A. With E denoting expectation, we

denote the mean of a by

M(a) = E(a) =

∫

Ωa

ap(a) da ,

and the variance by

V(a) = E (‖a−M(a)‖2
)

=

∫

Ωa

‖a−M(a)‖2p(a) da.
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Similarly, in the discrete case,

M(A) = E(A) =
∑
ΩA

AP (A) ,

and

V(A) = E (‖A−M(A)‖2
)

=
∑
ΩA

‖A−M(a)|‖2P (A).

Finally, we denote conditional means and variances by

Mb1,...,bk
(a) = E(a|b1, . . . , bk) =

∫

Ωa

ap(a|b1, . . . , bk) da,

Vb1,...,bk
(a) = E (‖a−Mb1,...,bk

(a)‖2|b1, . . . , bk

)

=

∫

Ωa

‖a−Mb1,...,bk
(a)‖2p(a|b1, . . . , bk) da ,

MB1,...,Bk
(A) = E(A|B1, . . . , Bk) =

∑
ΩA

AP (A|B1, . . . , Bk) ,

VB1,...,Bk
(A) = E (‖A−M(A)‖2|B1, . . . , Bk

)

=
∑
ΩA

‖A−MB1,...,Bk
(a)‖2P (A|B1, . . . , Bk) .

3.1.2 Modelling the Problem

Given a dictionary D ∈ Rn×m, let Ω denote the set of all 2m sub-dictionaries, where a sub-

dictionary, S, will interchangeably be considered as a subset of the columns of D or as a

matrix comprised of such columns. We assume that a random signal, x ∈ Rn, is selected

by the following process. With each sub-dictionary, S ∈ Ω, we associate a non-negative

probability, P (S), with
∑

S∈Ω P (S) = 1. Furthermore, with each signal x in the range of S

(that is, such that there exists a vector z ∈ Rk satisfying Sz = x,) denoted x ∈ R(S), we

associate a conditional PDF, p(x|S). Then, the clean signal x is assumed to be generated by

first randomly selecting S according to P (S), and then randomly choosing x ∈ S according

to p(x|S). After the signal is generated, an additive random noise term, v, with PDF pv(v),

is introduced, yielding a noisy signal y = x + v.

Note that P (S) can be used to represent a tendency towards sparsity. For example, we

can choose P (S) to be a strongly decreasing function of the number of elements in S, or
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we can choose P (S) to be zero for all S’s except those with a particular (small) number of

elements, etc.

Given y, and assuming we know pv(v), P (S) and p(x|S), our objective is to find an

estimator, x̂, that will be as close as possible to the clean signal x in some sense. In this

work we will mainly strive to minimize the conditional mean square error (MSE),

MSEy = E (‖x̂− x‖2 |y)
. (4)

Note that typically one would expect to define the overall MSE without the condition over

y. However, this introduces a formidable yet unnecessary complication to the analysis that

follows, and we shall avoid it.

3.1.3 Main Derivation

We first write the conditional MSE as the sum

MSEy =
∑
S∈Ω

MSES,yP (S|y), (5)

with MSES,y defined as

MSES,y = E (‖x̂− x‖2 |S,y
)
. (6)

The first factor of the summation in (5) is the MSE subject to a noisy signal y and a given

sub-dictionary S, and the second factor is the probability of S given a noisy signal y. By

Bayes’s formula, the latter is given by

P (S|y) =
p(y|S)P (S)

p(y)
, (7)

where

p(y|S) =

∫

x∈R(S)

pv(y − x)p(x|S) dx (8)

is the PDF of y given the sub-dictionary S.
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Note that p(y) – the PDF of y – can be computed directly or, more easily, obtained from

the normalization requirement
∑
S∈Ω

P (S|y) = 1. (9)

Nevertheless, as we shall soon see, it is not explicitly needed in our analysis.

Next, we consider the first factor of the summation in (5), MSES,y, the MSE for a given

y and sub-dictionary S. Using the fact that MS,y(x) = E (x |S,y), we have

E (‖x‖2 |S,y
)

= E (‖MS,y(x) + x−MS,y(x)‖2 |S,y
)

(10)

= ‖MS,y(x)‖2 + E (‖x−MS,y(x)‖2 |S,y
)

= ‖MS,y(x)‖2 + VS,y(x).

This property, along with the linearity of the expectation, can be used to rewrite the first

factor of the summation in (5) as follows:

MSES,y = E (‖x̂− x‖2 |S,y
)

= E (‖x̂‖2 − 2x̂Tx + ‖x‖2 |S,y
)

(11)

= ‖x̂‖2 − 2x̂TMS,y(x) + ‖MS,y(x)‖2 + VS,y(x)

= ‖x̂−MS,y(x)‖2 + VS,y(x).

Finally, plugging this into (5) we obtain

MSEy =
∑
S∈Ω

[‖x̂−MS,y(x)‖2 + VS,y(x)
]
P (S|y) (12)

= E (‖x̂−MS,y(x)‖2|y)
+ E (VS,y(x)|y) ,

with P (S|y) given by (7). As we have already mentioned, the overall MSE is given by

MSE = E (MSEy) =

∫

y∈Rn

MSEyp(y) dy , (13)

but we shall not need this measure here.

3.1.4 The Optimal Estimator

By (12), the optimal x̂ that minimizes MSEy is, not surprisingly, given by

x̂MMSE = E (MS,y(x)|y) , (14)
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and, plugged to Equation (12), the resulting optimal conditional MSE is given by

MSEMMSE
y = E (‖MS,y(x)− E (MS,y(x)|y) ‖2|y)

+ E (VS,y(x)|y) . (15)

Finally, from (12) and (14) we obtain for an arbitrary estimator x̂ the conditional MSE

MSEy = MSEMMSE
y + ‖x̂− x̂MMSE‖2. (16)

This can be used to determine how much better the optimal estimator does compared to

any other estimator.

3.1.5 The Maximum a-Posteriori (MAP) Estimator

The MAP estimator is obtained by maximizing the probability of x given y,

x̂MAP = arg max
x

p(x|y)

= arg max
x

p(y|x)p(x)

p(y)
(17)

= arg max
x

pv(y − x)p(x) ,

with

p(x) =
∑

S∈Ω : x∈R(S)

p(x|S)P (S) .

At the moment these expressions remain vague, but as we turn to use the specific signal and

noise models discussed in Section 3.1.2, these will assume an explicit form.

3.1.6 The Oracle

Suppose that the sub-dictionary S that was chosen in the generation of x is revealed to us.

Given this information, we clearly minimize MSEy by setting x̂ = MS,y(x) for the given S.

We call this the oracle estimator. The resulting conditional MSE is evidently given by the

last term of (12),

MSEoracle
y = E (VS,y(x)|y) . (18)

We shall use this estimator to assess the performance of the various alternatives and see how

close we get to this “ideal” performance.
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3.2 Back to Our Story – Sparse Representations

Our aim now is to harness the general derivation to the development of a practical al-

gorithm for the sparse representation and white Gaussian noise. Motivated by the sparse-

representation paradigm, we concentrate on the case where P (S) depends only on the number

of atoms (columns) in S, denoted |S|. We start with the basic case where P (S) vanishes

unless |S| is exactly equal to some particular 0 ≤ k ≤ min(n,m), and S has column rank k.

We denote the set of such S’s by Ωk, and define the uniform distribution

P (S) =





1
|Ωk| S ∈ Ωk ,

0 otherwise.

We assume throughout that the columns of D are normalized, ‖dj‖ = 1, for j = 1, . . . , n.

This assumption comes only to simplify the expressions we are about to obtain. Next, we

recall that the noise is modelled via a Gaussian distribution with zero mean and variance

σ2, and thus

p (y|x) = pv (y − x) =
1

(2πσ2)n/2
· exp

{−‖y − x‖2

2σ2

}
. (19)

Similarly, given the sub-dictionary S from which x is drawn, the signal x is assumed to be

generated via a Gaussian distribution with mean zero and variance σ2
x, thus p(x|S) is given

by

p (x|S) =





1

(2πσ2
x)k/2 · exp

{
−‖x‖2
2σ2

x

}
x ∈ R(S)

0 otherwise.
(20)

Note that this distribution does not align with the intuitive creation of x as Sz with a

Gaussian vector z ∈ Rk with i.i.d. entries. Instead, we assume that an orthogonalized basis

for this sub-dictionary has been created and then multiplied by z. We adopt the latter model

for simplicity; the former model has also been worked out in full, but we omit it here because

it is significantly more complicated and seems to afford only modest additional insights.

For convenience, we introduce the notation c2 = σ2
x/(σ

2 + σ2
x) (cf. (2)). Also, we denote
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the orthogonal projection of any vector a onto the subspace spanned by the columns of S by

aS = S
(
STS

)−1
STa.

We now follow the general derivation given above. From Equation (8) we can develop a

closed-form expression for p(y|S). By integration and rearrangement we obtain

p(y|S) =

∫

x∈R(S)

1

(2πσ2)n/2 · (2πσ2
x)

k/2
· exp

{−‖y − x‖2

2σ2
+
−‖x‖2

2σ2
x

}
dx

=
(1− c2)k/2

|Ωk| (2πσ2)n/2
· exp

{−(1− c2)‖y‖2

2σ2

}
· exp

{−c2‖y − yS‖2

2σ2

}
. (21)

Since the only dependence of p(y|S) on S is through the right-most factor, we immediately

obtain by (7) and (9) the simple formula

P (S|y) =
exp

{
− c2‖y−yS‖2

2σ2

}

∑
S′∈Ωk

exp
{

c2‖y−yS′‖2
2σ2

} . (22)

The denominator here is just a normalization. The numerator implies that, given a noisy

signal y, the probability that the clean signal was selected from the subspace S decays at a

Gaussian rate with the distance between y and S, i.e., ‖y − yS‖. This result is expected,

given the Gaussian noise distribution.

Continuing to follow the general analysis, we compute the conditional mean, MS,y(x), for

which we require the conditional probability

p(x|S,y) =
p(y|S,x) p(x|S)

p(y|S)

=
1

p(y|S)
· 1

(2πσ2)n/2
· exp

{−‖y − x‖2

2σ2

}
· 1

(2πσ2
x)

k/2
· exp

{−‖x‖2

2σ2
x

}
. (23)

By integration, we then obtain the simple result,

MS,y(x) =

∫

x∈R(S)

xp(x|S,y)dx = c2yS. (24)

Now the conditional variance can be computed, yielding

VS,y(x) =

∫

x∈R(S)

‖x− c2yS‖2p(x|S,y)dx = kc2σ2, (25)
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which is independent of S and y. Thus, the oracle MSEy in this case is simply

MSEoracle
y = kc2σ2. (26)

The optimal estimator is given by Equation (14),

x̂MMSE = c2
∑
S∈Ωk

ySP (S|y) (27)

=
c2

∑
S′∈Ωk

exp
{
− c2‖y−yS′‖2

2σ2

} ·
∑
S∈Ωk

exp

{−c2‖y − yS‖2

2σ2

}
yS,

with P (S|y) taken from (22). This MMSE estimate is a weighted average of the projections

of y onto all the possible sub-spaces S ∈ Ωk, as claimed. The MSE of this estimate is given

by

MSEMMSE
y = kc2σ2 +

∑
S∈Ωk

‖x̂MMSE − c2yS‖2P (S|y). (28)

The latter can also be written as

MSEMMSE
y = kc2σ2 − ‖x̂MMSE‖2 +

∑
S∈Ωk

‖c2yS‖2P (S|y). (29)

We remark that any spherically symmetric pv(v) and p(x|S) produce a conditional mean,

MS,y(x), that is equal to yS times some scalar coefficient. The choice of Gaussian distribu-

tions makes the result in (24) particularly simple in that the coefficient, c2, is independent

of y and S.

Next, we consider the Maximum a Posterior (MAP) estimator, using (17). For simplicity,

we shall neglect the fact that some x’s may lie on intersections of two or more sub-dictionaries

in Ωk, and therefore their PDF is higher according to our model. This is a set of measure

zero, and it therefore does not influence the MMSE solution, but it does influence somewhat

the MAP solution for y’s that are close to such x’s. We can overcome this technical difficulty

by modifying our model slightly so as to eliminate the favoring of such x’s. Noting that P (S)

is a constant for all S ∈ Ωk, we obtain from (17)

x̂MAP = arg max
x∈R(Ωk)

exp

{−‖y − x‖2

2σ2

}
· exp

{−‖x‖2

2σ2
x

}
, (30)
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where R(Ωk) is defined as the union of the ranges of all S ∈ Ωk. Multiplying through by

exp(2c2σ2), we find that the maximum is obtained by minimizing c2‖y−x‖2 + (1− c2)‖x‖2,

subject to the constraint that x belongs to some S ∈ Ωk. The resulting estimator is readily

found to be given by

x̂MAP = c2ySMAP
, (31)

where SMAP is the sub-space S ∈ Ωk which is closest to y, i.e., for which ‖y − yS‖2 is the

smallest. The resulting MSEy is given by substituting x̂MAP for x̂ in (16).

Note that in all the estimators we derive, the oracle, the MMSE, and the MAP, there is a

factor of c2 that performs a shrinking of the estimate. For the model of x chosen, this is a

mandatory step that was omitted in Section 2.

3.3 Combining It All

It is now time to combine the theoretical analysis of section and the estimators we tested in

Section 2. We have several goals in this discussion:

• We would like to evaluate both the expressions and the empirical values of the MSE for

the oracle, the MMSE, and the MAP estimators, and show their behavior as a function

of the input noise power σ,

• We would like to show how the above aligns with the actual OMP and the RandOMP

results obtained, and

• This discussion will help explain two choices made in the RandOMP algorithm – the

rule for drawing the next atom, and the requirement of a plain averaging of the repre-

sentations.

We start by building a random dictionary of size 20× 30 with `2-normalized columns. We

generate signals following the model described above, by randomly choosing a support with
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k columns (we vary in the range [1, 3]), orthogonalizing the chosen columns, and multiplying

them by a random i.i.d. vector with entries drawn from N(0, 1) (i.e. σx = 1). We add noise

to these signals with σ in the range [0.1, 2] and evaluate the following values:

1. Empirical Oracle estimation and the MSE it induces. This estimator is simply the

projection of y on the correct support, followed by a multiplication by c2, as described

in Equation (24) .

2. Theoretical Oracle estimation error, as given in Equation (26).

3. Empirical MMSE estimation and its MSE. We use the formula in Equation (27) in

order to compute the estimation, and then assess its error empirically. Note that in

applying this formula we gather all the
(
30
k

)
possible supports, compute the projection

of y onto them, and weight them according to the formula. This explains why in the

experiment reported here we have restricted the sizes involved.

4. Theoretical MMSE estimation error, using Equation (29) directly.

5. Empirical MAP estimation and its MSE. We use the analytic solution to (30) as

described above, by sweeping through all the possible supports, and searching the one

with the smallest projection error. This gives us the MAP estimation, and its error is

evaluated empirically.

6. Theoretical MAP estimation error, as given in Equation (16), when plugging in the

MAP estimation.

7. OMP estimation and its MSE. The OMP is the same as described in Section 2, but

the stopping rule is based on the knowledge of k, rather than on representation error.

Following the MAP analysis done in Section 3, the result is multiplied by c2 as well.

8. Averaged RandOMP estimation and its MSE. The algorithm generates J0 = 100

representations and averages them. As in the OMP, the stopping rule for those is the

28



number of atoms k, and the result is also multiplied by c2.

The above process is averaged over 1, 000 signal generations, and the resulting values are

shown in Figures 7 for k = 1, 2, and 3.

First we draw attention to several general observations. As expected, we see in all these

graphs that there is a good alignment between the theoretical and the empirical evaluation

of the MSE for the oracle, the MMSE, and the MAP estimators. In fact, since the analysis

is exact for this experiment, the differences are only due to the finite number of tests per

σ. We also see that the denoising performance weakens as k grows. A third and intriguing

observation that we will not explore here is the fact that there appears to be a critical

input noise power (σ ≈ 0.4) for which the MAP and the MMSE estimators (and their

approximations) give their worst denoising performance, as exhibited by the hump in all the

MMSE/MAP cases.

The OMP algorithm is an attempt to approximate the MAP estimation, replacing the

need for sweeping through all the possible supports by a greedy detection of the involved

atoms. As such, we expect it to be competitive and close to the MAP results we get (either

analytically or empirically). In fact, for k = 1 it aligns perfectly with the empirical MAP,

since both are going through the same computational stages. As k grows, there are some

differences between the empirical MAP and the OMP, and especially for low noise, but for

the cases studied here these differences are relatively small.

Just as OMP is an attempt to approximate the MAP estimation, the RandOMP averaging

is approximating the MMSE estimator, thereby yielding much better denoising than OMP.

The core idea is to replace the summation over all possible supports with a much smaller

selected group of representations that are sampled from the distribution governed by the

weights in Equation (27). Indeed, the representations chosen by RandOMP are those that

correspond to large weights, since they are built in a way that leads to small projection error

‖y − yP‖2 for the k atoms chosen. Since the sampling already mimics approximately the
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required distribution, all that remains is a simple averaging, as indeed we do in practice.

What is required is to tune the sampling to be faithful, and for that we revisit the case of

k = 1.

Considering the case of k = 1, we see from Equation (27) that an atom should be chosen

as a candidate representation with a probability proportional to exp{−c2‖y − yP‖2/2σ2}.
This in turn implies that this probability is also proportional to3 exp{c2|yTdi|2/2σ2}. Thus,

RandOMP as described in Section 2 is with perfect agreement with this probability, and this

explains the goodness of fit of RandOMP with the empirical MSE in Figure 7-a. However,

we also see that RandOMP remains close to the empirical MMSE for k = 2 and 3, implying

that while our sampling strategy is not perfect, it is fair enough. Further investigation is

required to better sample the representations in order to get closer to the MSE estimate.

Finally, we note an additional advantage of RandOMP: the MMSE estimator varies con-

tinuously with y, whereas the MAP estimator does not, possibly leading to artifacts.

3.4 Summary

Under the assumptions of this section, we obtain simple explicit expressions for the optimal

(MMSE) estimator and its resulting MSEy. The optimal estimator turns out to be a weighted

average of the orthogonal projections of the noisy signal on the feasible subspaces, multiplied

by a “shrinkage factor” c2, which tends to zero when the noise variance, σ2, is large compared

to the signal variance, σ2
x, and to 1 when the opposite is true. The weights in the weighted

average depend on the distances between y and the subspaces, favoring short distances of

course, especially when c2‖y‖2/σ2 is large.

While the expressions obtained are indeed simple, they involve either an intolerable sum-

mations over
(

m
k

)
(for the MMSE estimate), or searching over this amount of sub-spaces (for

3Since the columns of the dictionary are normalized, the projection is given by yP = (yT di) · di. Thus,

‖y − yP ‖2 = ‖y‖2 − (yT di)2. The term exp{−c2‖y‖2} is therefore a constant that cancels-out in the

normalization.
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Figure 7: Various empirical and theoretical evaluations of the MSE as a function of the input

noise for k = 1 (a), k = 2 (b), and k = 3 (c).
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the MAP). Thus, these formulas are impractical for a direct use. In that sense, one should

consider the RandOMP approach in Section 2 as a sampler from this huge set of subspaces

over which we average. Roughly speaking, since the RandOMP algorithm tends to find

near-by sub-spaces that lead to sparse representations, it gives priority to elements in the

summation in Equation (27) that are assigned higher weights. We see experimentally that

RandOMP samples well from the representations, judging by the proximity of its results to

the MMSE error (both empirical and theoretical).

The results of this section can easily be extended to the case where we allow a range of

values of k with given probabilities. That is, we can extend these results for the case where

P (S) = f(|S|), (32)

for general non-negative functions f .

4 Summary and Conclusions

The Orthogonal Matching Pursuit is a simple and fast algorithm for approximating the

sparse representation for a given signal. It can be used for denoising of signals, as a way

to approximate the MAP estimation. In this work we have shown that by running this

algorithm several times in a slightly modified version that randomizes its outcome, one can

obtain a collection of competing representations, and those can be averaged to lead to far

better denoising performance. This work starts by showing how to obtain a set of such

representations to merge, how to combine them wisely, and what kind of results to expect.

The analytic part of this paper explains this averaging as a way to approximate the MMSE

estimate as a sampler of the summation required. Future work on this topic should consider

better sampling strategies for better approximation of the MMSE result, an analytical and

numerical study of the required number of samples, an assessment of the robustness of

this approach with respect to non-Gaussian distribution of signals and limited accuracy in
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determining their variance, and exploration of special cases for which practical deterministic

algorithms are within reach.
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