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Abstract. We propose a new formalism for reasoning about dynamic
memory heaps, using monotonic abstraction and symbolic backward reach-
ability analysis. We represent the heaps as graphs, and introduce an or-
dering on these graphs. This enables us to represent the violation of a
given safety property as the reachability of a finitely representable set of
bad graphs. We also describe how to symbolically compute the reachable
states in the transition system induced by a program.

1 Introduction

Software verification needs the use of efficient algorithmic techniques for the
analysis of infinite-state models. The sources of infiniteness are multiple and can
be related to complex control such as (potentially recursive) procedure calls and
dynamic creation of processes, or to the manipulation of (unbounded-size) dy-
namic data-structures and variables ranging over infinite data domains. A lot of
work has been devoted in the last decade to the design of automatic verification
techniques for infinite-state models, and several general approaches and formal
frameworks have emerged allowing either to establish decidability results and
derive verification algorithms (e.g., [2, 20]), or to define generic exact/abstract
analysis procedures (e.g., [29, 22, 11, 7]).

One of the widely adopted frameworks in this context of infinite-state verifi-
cation is based on the concept of monotonic systems w.r.t. a well-quasi ordering

[2, 20]. This framework provides a scheme for proving the termination of the
(backward) reachability analysis, and it has been used for the design of verifica-
tion algorithms for various models including Petri nets, lossy channel systems,
timed Petri nets, broadcast protocols, etc. (see, e.g., [5, 18, 19, 6]). The idea is,
given a class of models, to define a preorder � on the configuration space such
that (1) � is a simulation relation on the considered models, and (2) � is a
well-quasi ordering (WQO for short). If such a preorder can be defined, then it
can be proved that the reachability problem of an upward-closed set of config-
urations (w.r.t. �) is decidable. Indeed, (1) monotonicity implies that for any
upward-closed set, the set of its predecessors is an upward-closed set, and (2) the
fact that � is a WQO implies that every upward-closed set can be characterized
by its finite set of minimal elements. Therefore, starting from an upward-closed
set of configurations U , the iterative computation of the backward reachable
configurations from U necessarily terminates since only a finite number of steps
are needed to capture all minimal elements of the set of predecessors of U . Ob-
viously, this requires that upward-closed sets can be effectively represented and
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manipulated (i.e., there are procedures for, e.g., computing immediate prede-
cessors and unions, and for checking entailment). This general scheme can be
applied for the verification of safety properties since this problem can be reduced
to checking the reachability of a set of bad configurations which is typically an
upward-closed set w.r.t. the considered preorder. (For instance, mutual exclusion
is violated as soon as there are (at least) two processes in the critical section.)

Unfortunately, many systems do not fit into this framework, in the sense
that there is no nontrivial (useful) WQO for which these systems are monotonic.
Nevertheless, a natural approach to overcome this problem is, given a preorder
�, to define an abstract semantics of the considered systems which forces their
monotonicity. Basically, the idea is to consider that a transition is possible from
a configuration c1 to c2 if it is possible from any smaller configuration c′1 � c1 to
c2. This simple idea has been used recently in works concerning the verification
of parametrized networks of (finite/infinite-state) processes, and surprisingly, it
leads to quite efficient abstract analysis techniques which allow to handle fully

automatically several non-trivial examples of such systems [3, 4]. This encourages
us to investigate its application to other classes of complex systems.

In [1], we developed a framework based on the approach introduced above
for the verification of sequential iterative programs manipulating dynamic mem-
ory heaps. The issue of verifying automatically such programs has received a
lot of attention in the last few years, and many approaches and techniques have
been developed including static-analysis and abstraction-based frameworks (see,
e.g., [28]), logic-based frameworks(see, e.g., [27, 25]), automata-based frameworks
(see, e.g., [21, 14]), etc. In [1], we introduced a framework based on symbolic
(backward) reachability analysis using upward-closed sets of heap graphs (w.r.t.
some appropriate preorder). As a first step toward this framework, we presented
there the results of our investigations concerning the case of programs manipulat-
ing heap structures with one next-selector, i.e., heaps of programs manipulating
lists with possibility of sharing and circularity.

More precisely, we considered that heaps are represented as labeled graphs,
where labels correspond to positions of program variables. We proposed a pre-
order� between heap graphs which corresponds basically to the following: Given
two graphs g1 and g2, we have g1 � g2 if g1 can be obtained from g2 by a se-
quence of transformations consisting of either deleting an edge, a variable, or an
isolated vertex, or of contracting segments (i.e., sequence of vertices) without
sharing in the graph.

Actually, our graph representations in [1] correspond in general to sets of
heaps instead of a single one. They can be seen as minimal patterns (w.r.t.
�), and they represent all the heaps that subsume (w.r.t. �) these patterns.
Therefore, our graph representations define upward-closed sets of heap graphs.

We also provided procedures for computing sets of predecessors w.r.t. the
abstract semantics we consider (introduced above), and for checking entailment.
These procedures allow to define a simple algorithm which computes an over-
approximation of the set of backward reachable configurations starting from an
upward-closed set of heap graphs (effectively given as a finite set of minimal
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elements). We showed that this algorithm always terminates by proving that the
preorder we defined on heap graphs is a WQO.

Our analysis allows to check properties such as absence of null dereferenc-
ing as well as absence of garbage creation. Moreover, it allows to check shape
(well-formedness) properties of the heaps (for instance the fact that the output is
always a list without sharing). We showed indeed that these kinds of verification
problems can be reduced to the problem of reaching sets of bad configurations
corresponding to the existence in the heap graph of some minimal bad patterns.
We also provided experimental results showing the effectiveness of our approach.
In this report, we propose an alternative order on the graphs which arise, and
show how to compute the predecessor using this new ordering. This new order-
ing allows for checking other properties than the ordering proposed in [1]. For
example, the detection of dangling pointers is possible.

Related work. As mentioned before, several approaches to the automatic anal-
ysis of programs with dynamic linked data structures have been proposed (see,
e.g., [28, 17, 21, 14]). Shape analysis as introduced in [28] is based on the compu-
tation of abstract shape graphs using the so-called instrumentation predicates.
An automata-based approach using abstract regular model checking (ARMC)
[15] has been proposed in [13, 14]. In [17, 10], an automatized analysis approach
based on separation logic combined with abstraction techniques (close to widen-
ing techniques) has been proposed. With respect to these approaches, the one
we present in this paper is conceptually and technically different and simpler.
In particular, the ARMC-based approach needs the manipulation of quite com-
plex encodings of the heap graphs into words or trees (in order to represent
sets of heap encodings using finite-state automata), and use a sophisticated ma-
chinery for manipulating these encodings based on representing program state-
ments as (word/tree) transducers. In contrast, the approach presented here uses
a natural representation of heaps as graphs and employs direct procedures for
computing operations on these graphs. This direct approach has already shown
its advantages w.r.t. the approach using transducers in the context of regular
model checking for parametrized networks of processes [3]. Also, the approach
we present uses a built-in abstraction principle which is different from the ones
used in the existing approaches, and which makes the analysis fully automatic.

The existing approaches mentioned above (shape analysis, abstract regular
model checking, separation logic) can handle some classes of general heap struc-
tures (including doubly linked lists, lists of lists, trees, etc.). Although the tech-
niques presented in this paper concern the case of heap structures with 1-next
selector, our approach (based on upward-closed abstractions w.r.t. preorders on
graphs) can in principle be extended to more general classes of heaps.

Concerning the particular class of programs manipulating heaps with 1-next
selector, there are many other verification approaches which have been devel-
oped recently (see, e.g., [24, 13, 23, 12, 16, 8]). Almost all these works use the fact
that in this case (1) the heap graphs are collections of reversed trees potentially
having their roots connected to a loop, and moreover (2) the number of leaves
and shared vertices in these graphs is bounded linearly in terms of the number
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of program variables. For instance, in [24], these properties are used to define an
abstraction which consists of contracting all segments without sharing. In our
case, we use these properties in order to prove that the preorder we propose on
graph representations is a WQO. However, our abstraction is different from the
one proposed for instance in [24] since we can have graphs which are not minimal
w.r.t. to contraction (e.g., we can express the fact that the length of a segment is
at least some given natural number), and we can also have graphs corresponding
to a partial description of the heap where only a part of the reachable heap from
some of the program variables is constrained.

In [12, 9], translations from programs with lists to counter automata have
been defined based on the representation of heap graph as its contracted version
supplied with the information about the length of each contracted sharing-free
segments. These translations allow to use various existing techniques for the anal-
ysis of counter systems in order to check safety properties involving constraints
relating the lengths of different lists, or to check termination. Such analysis in-
volving quantitative reasoning cannot be done with the techniques presented in
this paper. As said above, these techniques can handle some reasoning about
the sizes of the lists, but only concerning constraints on minimal lengths. How-
ever, extensions of our techniques to more general constraints (e.g., gap-order
constraints [26]) are possible.

Outline. In the next section, we introduce the class of programs we consider to-
gether with their graph representations. In Section 3, we describe a set of graph
operations which we use in the subsequent sections. Section 4 introduces the new
ordering on configurations. In Section 5, we introduce a relation which we use
as the basic step in the reachability algorithm. Finally, in Section 6, we discuss
conclusions and further work.

2 Preliminaries

We consider programs that operate on data structures with one next-pointer
such as traditional singly-linked lists and circular lists (possibly sharing their
parts). We represent the store as a graph, where the vertices represent the list
cells, and the successor of a vertex represents the cell pointed to by the current
one. The graphs are of a special form in the sense that each vertex has at most
one successor. A program also uses a finite set of pointers which we call variables.
A cell is labeled by the (possibly empty) set of variables pointing to it.

For a partial function f , we write f(a) 6= ⊥ to denote that f(a) is in defined,
and f(a) = ⊥ to denote that f(a) is undefined. For a (partial) function f , we
use f [a← b] to denote the function f ′ such that f ′(a) = b and f ′(x) = f(x) if
x 6= a. We will abuse this notation and take f [a← ⊥] to mean the the function
f ′ such that f ′(x) = f(x) if x 6= a and f ′(a) = ⊥. For a (possibly partial)
function f : A → B and a subset A′ ⊆ A, we denote by f |A′ the restriction of
f to the set A′. Formally this means that f |A′ is the function f ′ : A′ → B such
that for all a ∈ A′, f(a) 6= ⊥ =⇒ f ′(a) = f(a) and f(a) = ⊥ =⇒ f ′(a) = ⊥
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Formally, we assume a finite set X of variables. � and # are two con-
stants, which represent uninitialized and null respectively. A graph g is a triple
(V, succ, λ) where V ⊇ {�, #} is a finite set of vertices, succ is a function
succ : (V \ {�, #}) → V and λ is a partial function λ : X ⇀ V . For sim-
plicity, we use W (V ) to denote V \ {�, #}. Intuitively, W (V ) corresponds to
the list cells in the heap. The function succ defines the successors of the list
cells in the heap. For a vertex v ∈ W (V ), succ(v) = # represents that v has
the null pointer as its next-pointer, which in general is a well-defined ending
of a list segment. If succ(v) = �, the list cell represented by v has a dangling
next-pointer. The partial function λ defines the vertex to which a given variable
points. If λ(x) 6= ⊥, the λ(x) is to be interpreted in the same way as succ, i.e. x

is a null pointer, dangling pointer or pointing to a cell.
A program P is a pair (Q, T ) where Q is a finite set of control states and T

is a finite set of transitions. A transition is a triple (q1, a, q2) where q1, q2 ∈ Q

are control states and a is an action. An action is of one of the following forms
x = y, x 6= y, x := y, x.next = y, or x := y.next The transition corresponds to
the program changing control state from q1 to q2 while performing the operation
described in a on the data structure. We choose to work with the above minimal
set of operations. Other operations, e.g., x = y.next , x 6= y.next, etc, can be
expressed using the given set.

A configuration c is a pair (q, g) where q ∈ Q is a control state and g is a graph.
We define a transition relation on configurations as follows. Let t = (q1, a, q2)
be a transition and let c = (q, g) and c′ = (q′, g′) be configurations. We write

c
t
−→ c′ to denote that q = q1, q′ = q2, and g

a
−→ g′, where g

a
−→ g′ holds if one

of the following conditions is satisfied:

– a is of the form x = y, λ (x) 6= ⊥, λ (y) 6= ⊥, λ(x) 6= �, λ(y) 6= �, λ(x) =
λ(y), and g′ = g.

– a is of the form x 6= y, λ (x) 6= ⊥, λ (y) 6= ⊥, λ(x) 6= �, λ(y) 6= �, λ(x) 6=
λ(y), and g′ = g.

– a is of the form x := y, λ (y) 6= ⊥, λ(y) 6= �, V ′ = V , succ′ = succ, and
λ′ = λ [x← λ(y)].

– a is of the form x := y.next, λ(y) 6= ⊥, λ(y) 6= #, λ(y) 6= �, V ′ = V ,
succ′ = succ, and λ′ = λ [x← succ(λ(y))].

– a is of the form x.next := y, λ(x) 6= ⊥, λ (y) 6= ⊥, λ(x) 6= #, λ(x) 6= �,
λ(y) 6= �, V ′ = V , λ′ = λ, and succ′ = succ [λ(x)← λ(y)].

We define −→ as
⋃

t∈T

t
−→ and use

∗
−→ to denote the reflexive transitive closure

of −→. For sets C1 and C2 of configurations, we use C1 −→ C2 to denote that
c1 −→ c2 for some c1 ∈ C1 and c2 ∈ C2. By c1 −→ C2 we mean {c1} −→ C2.

We define c1
∗
−→ C2, C1

∗
−→ C2, etc in a similar manner to above.

3 Operations on Graphs

In this section, we define a number of operations on graphs which we use in
the subsequent sections. For the rest of the section, we assume a graph g =
(V, succ, λ).
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For v ∈ V and w ∈ W (V ), we use (g.succ) [w← v] to denote the graph
g′ = (V ′, succ′, λ′) where V ′ = V , λ′ = λ, and succ′ = succ [w ← v]. Intuitively,
we only modify g so that v becomes the successor of w. We define (g.λ) [x← v]
analogously. That is, we make x point to v.

For a vertex v ∈ W (V ), we say that v is simple if |succ−1(v)| = 1 and
λ−1(v) = ∅. In other words, v has exactly one predecessor and no label. We say
that v is a leaf in g if succ−1(v) = ∅, and λ−1(v) = ∅. In other words, v has
no predecessors and it is not labeled by any variable. We say that v is isolated

in g if v is a leaf, and succ(v) = �. In other words, v is a leaf with successor
uninitialized.
Operations on vertices. For a vertex v 6∈ V , we use g⊕v to denote the graph
g′ = (V ′, succ′, λ′) such that V ′ = V ∪ {v}, succ′ = succ [v ← �], and λ′ = λ,
i.e. we add a new cell to g. Observe that the added vertex is then isolated.

For a vertex v ∈ W (V ), we use g⊖ v to denote the graph g′ = (V ′, succ′, λ′)
such that V ′ = V \ {v}, succ′ = succ|W (V )\{v}, and λ′ = λ. Note that this
operation is not well defined if there is a vertex v′ such that v 6= v′ and succ(v′) =
v.
Operations on variables. We define g ⊕ x to be the set of graphs we get
from g by letting x point anywhere inside g, except on the constant representing
uninitialized. Formally, we define g ⊕ x to be the smallest set containing each
graph g′ such that one of the following conditions is satisfied:

1. There is a v ∈ V such that v 6= � and g′ = (g.λ) [x← v], i.e. we make x

point to some vertex in g.
2. There is a v 6∈ V , a v′ ∈ V and graphs g1, g2 such that g1 = (g ⊕ v)

g2 = (g1.λ) [x← v], g′ = (g2.succ) [v ← v′], i.e. we add a leaf to g and make
x point to it.

3. There is a v 6∈ V and graphs g1, g2 such that g1 = (g⊕v) g2 = (g1.λ) [x← v],
g′ = (g2.succ) [v ← v], i.e. we add an isolated loop to g and make x point to
it.

4. There are v1 ∈ W (V ), v2 6∈ V , and graphs g1, g2, g3, such that g1 =
g ⊕ v2, g2 = (g1.succ) [v2 ← succ(v1)], g3 = (g2.succ) [v1 ← v2], and g′ =
(g3.λ) [x← v2]. i.e. we add a new vertex v2 in between v1 and its successor
and make x point to v2.

5. There are v1 ∈ W (V ), v2, v3 6∈ V , and graphs g1, g2, g3, g4 and g5, such
that g1 = g ⊕ v2, g2 = (g1.succ) [v2 ← succ(v1)], g3 = (g2.succ) [v1 ← v2],
g4 = g ⊕ v3, g5 = (g4.succ) [v2 ← v3], and g′ = (g4.λ) [x← v3]. i.e. we add a
new vertex v2 in between v1 and its successor, add a new leaf v3 to it, and
make x point to v3.

For variables x and y with λ (x) 6= ⊥ and λ(x) 6= �, we define g ⊕=x y to be
the graph g′ = (g.λ) [y ← λ(x)], i.e. we make y point to the same vertex as x.
Furthermore, we define g ⊕ 6=x y to be the smallest set containing each graph g′

such that g′ ∈ (g ⊕ y) and λ′(y) 6= λ′(x), i.e. we make y point anywhere inside
g except to the vertex pointed to by x.

For variables x and y with λ (x) 6= ⊥, λ(x) 6= � and λ(x) 6= #, we define
g⊕x→ y to be the set of graphs we get from g by letting y point to the successor
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of the cell pointed to by x. Formally, we define g ⊕x→ y to be the smallest set
containing each graph g′ such that one of the following conditions is satisfied:

1. g′ = (g.λ) [y ← succ(λ(x))], i.e.we make y point to the successor of the vertex
pointed to by x

2. there is a vertex v 6∈ V , and graphs gi = (Vi, succi, λi) for i = 1, 2, 3, such
that g1 = g ⊕ v, g2 = (g1.succ) [v ← succ1(λ(x)], g3 = (g2.succ) [λ(x)← v],
and g′ = (g3.λ) [y ← v], i.e.we add a new vertex v in between the vertex
pointed to by x and its successor and make y point to v.

For variables x and y with λ (x) 6= ⊥, we define g ⊕x← y to be the set of
graphs we get from g by letting y point to any cell whose successor is pointed to
by x. Formally, we define g ⊕x← y to be the smallest set containing each graph
g′ such that one of the following conditions is satisfied:

1. there is a vertex v ∈ W (V ) such that succ(v) = λ(x), and g′ = (g.λ) [y ← v],
i.e., we make y point to a direct predecessor of λ(x)

2. there is a vertex v 6∈ V and graphs g1, g2, such that g1 = g ⊕ v, g2 =
(g1.succ) [v ← λ(x)], g′ = (g2.λ2) [y ← v]. i.e.we add a new leaf v to g, make
its successor the vertex pointed to by x, and make y point to it.

3. there are vertices v1 ∈ W (V ) and v2 6∈ V , and graphs g1, g2, g3, such that
succ(v1) = λ(y) g1 = g⊕v2, g2 = (g1.succ) [v2 ← λ(x)], g3 = (g2.succ) [v1 ← v2],
and g′ = (g3.λ) [y ← v2]. i.e.we add a new vertex v2 in between the vertex
pointed by x and its predecessors and make y point to v2.

For a variable x, we define g⊖x to be the graph g′ where g′ = (g.λ) [x← ⊥].
Operations on edges. For a graph g with λ (x) 6= ⊥, we define g ⊟ (x →)
to be the smallest set containing each graph g′ such that one of the following
conditions is satisfied:

1. there is a v ∈ V such that g′ = (g.succ) [λ(x)← v], i.e.we make some vertex
in g the successor of g

2. there are vertices v1 ∈ W (V ) and v2 6∈ V and graphs g1, g2, g3 such that
g1 = g ⊕ v2, g2 = (g1.succ) [v2 ← succ(v1)], g3 = (g2.succ) [v1 ← v2], g′ =
(g3.succ) [λ(x)← v2], i.e.we put an new vertex v2 in between v1 and its
successor, and make the new vertex the successor of λ(x)

3. there is a vertex v 6∈ V and graphs g1, g2 such that g1 = g ⊕ v, g2 =
(g1.succ) [v ← v], g′ = (g2.succ) [λ(x)← v], i.e.we add a new single vertex
loop to g, and make the new vertex the successor of λ(x).

4 Ordering

In this section, we introduce an ordering on configurations. Based on the or-
dering, we will define the coverability problem which we use to check safety
properties, and define the abstract transition relation. The latter is an over-
approximation of the concrete transition relation.

Ordering. Let g = (V, succ, λ) and g′ = (V ′, succ′, λ′). We write g�g′ to denote
that one of the following properties is satisfied:
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(i) Variable Deletion: g = g′ ⊖ x for some variable x,
(ii) Leaf Deletion: there is a cell w ∈W (V ′) such that w is a leaf, and g = g′⊖w,
(iii) Isolated Cycle Deletion: there is a cell w ∈ W (V ′) such that w is simple in

g′, succ(w) = w, and g = g′ ⊖ w, or
(iv) Contraction: there are cells w1, w2 ∈ W (V ′), a vertex v ∈ V ′ and a graph

g1 such that w2 is simple, w1 6= w2, w2 6= v, succ′(w1) = w2, succ′(w2) = v,
g1 = (g1.succ) [w1 ← v3] and g = g1 ⊖ w2.

We write g � g′ to denote that there are g0 � g1 � g2 � · · ·� gn with n ≥ 0,
g0 = g, and gn = g′. That is, we can obtain g from g′ by performing a finite
sequence of variable deletion, leaf deletion, isolated cycle deletion and contraction
operations. For configurations c = (q, g) and c′ = (q′, g′), we write c � c′ to
denote that q′ = q and g � g′.

For a configuration c, we use c↑ to denote the upward closure of c, i.e. c↑=
{c′| c � c′}. We use c↓ to denote the downward closure of c, i.e. c↓= {c′| c′ � c}.
For a set C of configurations, we define C↑ as

⋃
c∈C c↑. We define C↓ analogously.

Safety Properties. In order to analyze safety properties, we study the cover-

ability problem defined below.

Coverability
Instance

– Sets CInit and CF of configurations.

Question Is it the case CInit

∗
−→ CF↑?

Intuitively, CF↑ represents a set of “bad” states which we do not want to reach
during the execution of the program. This set is represented by a set CF of
minimal elements. Therefore, checking safety with respect to these properties
amounts to solving the coverability problem.

Abstract Transition Relation. We write c1
t
−→A c2 to denote that there is a

c3 such that c3 � c1 and c3
t
−→ c2. In other words, a step of the abstract transi-

tion relation consists of first moving to a smaller configuration (wrt �) and then
performing a step of the concrete transition relation. Notice that the abstraction
corresponds to an over-approximation and therefore any safety property which
holds in the abstract system will also hold in the concrete one.

5 Computing Predecessors

The main idea behind our algorithm to solve the coverability problem, is to
perform backward reachability analysis. The basic step of the algorithm uses a
relation ; defined on the set of configurations. Intuitively, c ; c′ means that,
from c′, we can perform a transition and reach a configuration in the upward
closure of c. First, we give the formal definition of ;, and then describe some
of its properties, and in particular how it relates to the transition relation −→.

For a graph g = (V, succ, λ), a graph g′, and an action a, we write g
a
; g′ to

denote that one of the following conditions is satisfied:
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1. a is of the form x = y and one of the following conditions is satisfied:
(a) λ (x) 6= ⊥, λ(x) 6= �, λ (y) 6= ⊥, λ(x) = λ(y) and g′ = g.
(b) λ (x) 6= ⊥, λ(x) 6= �, λ (y) = ⊥, and g′ = g ⊕=x y.
(c) λ (x) = ⊥, λ (y) 6= ⊥, and λ(y) 6= �, g′ = g ⊕=y x.
(d) λ (x) = ⊥, λ (y) = ⊥, and g′ = g1 ⊕=x y for some g1 ∈ g ⊕ x.
In order to be able to perform the action, the variables x and y should point
to the same vertex. If one (or both) of them are missing, then we add them
to the graph (with the restriction that they point to the same vertex).

2. a is of the form x 6= y and one of the following conditions is satisfied:
(a) λ (x) 6= ⊥, λ(x) 6= �, λ (y) 6= ⊥, λ(y) 6= �, λ(x) 6= λ(y) and g′ = g.
(b) λ (x) 6= ⊥, λ(x) 6= �, λ (y) = ⊥, and g′ ∈ g ⊕ 6=x y.
(c) λ (x) = ⊥, λ (y) 6= ⊥, λ(y) 6= �, and g′ ∈ g ⊕ 6=y x.
(d) λ (x) = ⊥, λ (y) = ⊥, and g′ ∈ g1 ⊕ 6=x y for some g1 ∈ g ⊕ x.
We proceed as in case 1, but now under the restriction that x and y point
to different vertices (rather than to the same vertex).

3. a is of the form x := y and one of the following conditions is satisfied:
(a) λ (x) 6= ⊥, λ(x) 6= �, λ (y) 6= ⊥, λ(x) = λ(y) and g′ = g ⊖ x.
(b) λ (x) 6= ⊥, λ(x) 6= �, λ (y) = ⊥, and g′ = g1 ⊖ x where g1 = g ⊕=x y.
(c) λ (x) = ⊥, λ (y) 6= ⊥, λ(y) 6= �, and g′ = g.
(d) λ (x) = ⊥, λ (y) = ⊥, and g′ ∈ g ⊕ y.
The difference compared to case 1 is that the variable x may have had any
value before performing the assignment. Therefore, we remove x from the
graph.

4. a is of the form x := y.next and one of the following conditions is satisfied:
(a) λ (x) 6= ⊥, λ(x) 6= �, λ (y) 6= ⊥, λ(y) 6= �, λ(y) 6= #, succ(λ(y)) = λ(x)

and g′ = g ⊖ x.
(b) λ (x) 6= ⊥, λ (y) = ⊥, and g′ = g1 ⊖ x where g1 ∈ g ⊕x← y.
(c) λ (x) = ⊥, λ (y) 6= ⊥, λ(y) 6= �, λ(y) 6= #, and g′ = g.
(d) λ (x) = ⊥, λ (y) = ⊥, and there are graphs g1, g2 such that g1 ∈ g ⊕ x,

g2 ∈ g1 ⊕y← x and g′ = g2 ⊖ x.
Similarly to case 3 we remove x from the graph. The successor of y should
point to the same vertex as x.

5. a is of the form x.next := y and one of the following conditions is satisfied:
(a) λ (x) 6= ⊥, λ(x) 6= �, λ(x) 6= #, λ (y) 6= ⊥, λ(y) 6= �, succ(λ(x)) = λ(y)

and g′ ∈ g ⊟ (x→).
(b) λ (x) 6= ⊥, λ(x) 6= �, λ(x) 6= #, succ(λ(x)) 6= � and λ(y) = ⊥ and

g′ ∈ g1 ⊟ (x→), where g1 ∈ g ⊕x→ y.
(c) λ (x) = ⊥, λ (y) 6= ⊥, λ(y) 6= �, and g′ ∈ g1⊟(x→), where g1 ∈ g⊕y←x.
(d) λ(x) = ⊥, λ(y) = ⊥ and there are graphs g1, g2 such that g1 ∈ g ⊕ y,

g2 ∈ g1 ⊕y← x and g′ ∈ g2 ⊟ (x→).
After performing the action, the successor of the vertex labeled by x should
be the same vertex as the one labeled by y. Before performing the action, the
successor could have been anywhere inside the graph, and the corresponding
edge is therefore removed.

Remark In the above definition, we assume that x and y are different variables.
It is straightforward to handle the case where they are the same variable.
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6 Conclusions

In [1], we give a proof that the ordering on graphs we defined therein is a WQO.
We also supplied a proof for the monotonicity of the predecessor relation. The
same proof ideas can be used for proving that the ordering presented in this
report is a WQO and to prove monotonicity of the predecessor relation.

The main feat of the new approach is the possibility to express new properties
such as dangling pointers, and it seems very promising. It also shows the gener-
ality of the approach, in the sense that using different orderings one can reason
about different properties. This is the key to treating more general structures.
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