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Abstract. A parallel version of the self-verified method for solving linear sys-
tems was presented in [16, 15]. In this research we propose improvements aiming
at a better performance. The idea is to implement an algorithm that uses tech-
nologies as MPI communication primitives associated to libraries as LAPACK,
BLAS and C-XSC, aiming to provide both self-verification and speed-up at the
same time. The algorithms should find an enclosure even for very ill-conditioned
problems. In this scenario, a parallel version of a self-verified solver for dense
linear systems appears to be essential in order to solve bigger problems. More-
over, the major goal of this research is to provide a free, fast, reliable and accurate
solver for dense linear systems.

Many real problems are simulated and modeled using dense linear systems of equa-
tions like Ax = b with an n X n matrix A € R"*™ and a right hand side b € R"™.
This is true for functional linear equations that occur like partial differential equations
and integral equations that appear in several problems of Physics and Engineering [4].
Many different numerical algorithms contain this task as a subproblem.

There are numerous methods and algorithms which compute approximations to the
solution z in floating-point arithmetic. However, usually it is not clear how good these
approximations are, or if there exists a unique solution at all. In general, it is not possible
to answer these questions with mathematical rigor if only floating-point approximations
are used. These problems become especially difficult if the matrix A is ill conditioned.
The use of self-verified methods can lead to more reliable results [9]. Verified comput-
ing provides an interval result that surely contains the correct result [17, 14]. Like that
the algorithm also proves the existence and uniqueness of the solution of the problem.
The algorithm will, in general, succeed in finding an enclosure of the correct solution. If
the solution is not found, the algorithm will let the user know. One possibility to imple-
ment verified computing is using interval arithmetic combined with suitable algorithms.

Dagstuhl Seminar Proceedings 08021 1
Numerical Validation in Current Hardware Architectures
http://drops.dagstuhl.de/opus/volltexte/2008 /1438



There is a multitude of tools and algorithms that provide verified computing. Among
them, an option is C-XSC (C for eXtended Scientific Computing) [14]. C-XSC is a free
and portable programming environment for C and C++ programming languages, of-
fering high accuracy and automatic verified results. This programming tool allows the
solution of many standard problems with reliable results. The Matlab toolbox for self-
verified algorithms, INTLAB [12], is also an option. Like C-XSC, it also provides inter-
val arithmetic for real and complex data including vectors and matrices, interval arith-
metic for real and complex sparse matrices, rigorous real interval standard functions,
rigorous complex interval standard functions, rigorous input/output, accurate summa-
tion, dot product and matrix-vector residuals, multiple precision interval arithmetic with
error bounds, and more. However, this solver can be used just together with the com-
mercial MATLAB environment, what can increase the costs to prohibitive values. To
understand performance and accuracy issues, a comparison among C-XSC, INTLAB
and LAPACK [1] was performed. LAPACK is a well known linear algebra package,
considered very fast and optimized.

The results show that C-XSC has the most reliable results and the highest accuracy.
LAPACK is the one that presents the best performance, but results are not verified, and
in some cases less accurate. INTLAB is the best compromise between performance and
accuracy. However, as said before, it requires Matlab which is not free. The tests show
that the method used in C-XSC is a good choice, but it should be optimized to gain
performance.

The method for solving linear systems with high accuracy can be found in [14, ?],
where the verified method for solving linear system using the C-XSC library is based
on the enclosure theory described in [25].

These enclosure methods are based on the following interval Newton-like iteration:

Tp1 = Rb+ (I — RA)xy, k=0,1,... (D)

This equation is used to find a zero of f(x) = Ax—b with an arbitrary starting value
7o and an approximate inverse R ~ A~! of A.If there is an index k with [x]51 C[z]x
(the C operator denotes that [z]j1 is included in the interior of [x]), then the matrices
R and A are regular, and there is a unique solution x of the system Ax = b with
x € [x]k+1. We assume that Az = b is a dense square linear system and we do not
consider any special structure of the elements of A.

The use of verified computing makes it possible to find the correct result. However,
finding the verified result often increases the execution times dramatically [20]. The
research already developed show that the execution time of verified algorithms are much
larger than the execution time of algorithms that do not use this concept [11, 10].

To compensate the lack of performance of such verified algorithms, some works
suggest the use of midpoint-radius arithmetic to achieve a better performance, since its
implementation can be done using only floating-point operations [23, 24]. This would
be a way to increase the performance of verified methods.

The advent of parallel computing and its impact in the overall performance of many
algorithms on numerical analysis can be seen in the past years [6]. The use of clus-



ters plays an important role in such a scenario as one of the most effective manner to
improve the computational power without increasing costs to prohibitive values. The
parallel solutions for linear solvers found in the literature explore many aspects and
constraints related to the adaptation of the numerical methods to high performance en-
vironments [5,22, 8,28, 18, 21]. However, those implementations do not deal with veri-
fied methods. In the field of verified computing many important contributions have been
done in the last years. Some works related to verified solvers for dense linear systems [7,
14,9,26, 19] can be found in the literature. However, only a few papers on verified
solvers for dense systems together with parallel implementations were found [13,27,
241], but these authors implement other numerical problems or use a parallel approach
for other architectures than clusters.

The self-verified method presented above is divided in several steps. By tests, the
computation of R, the approximate inverse of matrix A, takes more than 50% of the
total processing time. Similarly, the computation of the interval matrix [C] that contains
the exact value of I — RA (iterative refinement) takes more than 40% of the total time,
since matrix multiplication requires O(n?) execution time, and the other operations are
mostly vector or matrix-vector operations which require at most O(n?). Due to this, both
parts of the algorithm were optimized using mathematical concepts and parallelization.
The evaluation of [C] is composed of operations that are suitable for parallelization,
since all components can be computed independently.

A parallel version of the self-verified method for solving linear systems was pre-
sented in [16, 15]. In this research we propose the following improvements aiming at a
better performance:

Calculation of R using just floating-point operations;

Avoid the use of C-XSC elements that could slow down the execution;

Use of the fast and highly optimized libraries: BLAS and LAPACK in the first se-
quential version (for the parallel version PBLAS and SCALAPACK respectively);
Use of both interval arithmetics: infimum-supremum and midpoint-radius (as pro-
posed by Rump [24] );

Use of techniques to avoid the switching of rounding mode (proposed by Bohlen-
der [2, 3]).

The new algorithms should find an enclosure even for very ill-conditioned problems.
Moreover, the major goal of this research is to provide a free, fast, reliable and accurate
solver for dense linear systems.

New algorithms based on the C-XSC methods were implemented, but using just
libraries like BLAS and LAPACK to achieve better performance. The idea of reducing
the switching of rounding mode presented by Bohlender was implemented as well as
an optimization of the residuum based on the INTLAB method. In other words, the new
implementations try to join the best aspects of each library.

To ensure that an enclosure will be found, interval arithmetic was used. To find the
best arithmetic for this method, the algorithms for point and interval input data were
written using both infimum-supremum and midpoint-radius arithmetic. Until now, the
implemented algorithms show a good performance.



Aiming at a better performance, the algorithms are being parallelized using the li-

braries SCALAPACK and PBLAS. The idea of using popular and highly optimized
libraries to gain performance will also be maintained in the parallel version.

One important advantage of the presented algorithm is the ability to find a solution

even for very ill-conditioned problems (in tests on personal computers an enclosure
could be found for condition number up to 10'®) while most algorithms may lead to
an incorrect result when it is too ill-conditioned (above condition number 10%). Our
main contribution is to increase the use of verified computing through its optimization
and parallelization, once without parallel techniques it becomes the bottleneck of an
application.
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