
Algorithms for ray class groups and Hilbert class fields∗

Kirsten Eisenträger† Sean Hallgren‡

Abstract

This paper analyzes the complexity of problems from class

field theory. Class field theory can be used to show the

existence of infinite families of number fields with constant

root discriminant. Such families have been proposed for

use in lattice-based cryptography and for constructing error-

correcting codes. Little is known about the complexity

of computing them. We show that computing the ray

class group and computing certain subfields of Hilbert class

fields efficiently reduce to known computationally difficult

problems. These include computing the unit group and class

group, the principal ideal problem, factoring, and discrete

log. As a consequence, efficient quantum algorithms for

these problems exist in constant degree number fields.

1 Introduction

The central objects studied in algebraic number theory
are number fields, which are finite extensions of the ra-
tional numbers Q. Class field theory focuses on special
field extensions of a given number fieldK. It can be used
to show the existence of infinite families of number fields
with constant root discriminant. Such number fields
have recently been proposed for applications in cryptog-
raphy and error correcting codes. In this paper we give
algorithms for computing some of the objects required
to compute such extensions of number fields. Similar to
the approach in computational group theory [BBS09]
where there are certain subproblems such as discrete
log that are computationally difficult to solve, we iden-
tify the subproblems and show that they are the only
obstacles. Furthermore, there are quantum algorithms
for these subproblems, resulting in efficient quantum al-
gorithms for constant degree number fields for the prob-
lems we study.

In class field theory the main problem is computing
extensions of number fields: given a number K field,

∗This work was supported in part by the National Security

Agency (NSA) under Army Research Office (ARO) contract
number W911NF-08-1-0298.

†Department of Mathematics, Penn State University, eisen-

tra@math.psu.edu. Partially supported by National Science

Foundation grant DMS-0801123 and a Sloan Research Fellowship.
‡Department of Computer Science and Engineering, Penn

State University, hallgren@cse.psu.edu. Partially supported by

National Science Foundation grant CCF-0747274.

compute a field extension L ⊃ K with certain proper-
ties. A central extension studied in class field theory
is the Hilbert class field H of K. This extension field
has very nice properties. For example, H has the same
root discriminant as K, and it is the maximal abelian
unramified extension of K. Class field theory also de-
scribes the subfields of the Hilbert class field and for
these the root discriminant is constant as well. A re-
lated more general type of extension is the ray class
field of K and its subfields. These extensions also have
limited ramification and bounded root discriminant.

In addition to their central nature in number the-
ory, such extensions have also been shown to have appli-
cations in computer science. Peikert and Rosen [PR07]
have proposed using families of number fields for lattice-
based cryptography. The ideals inside the ring of inte-
gers of a number field are special types of lattices. Peik-
ert and Rosen showed that if a family of number fields
with constant root discriminant is used, then the lattices
arising from this family allow a very good connection
factor in a worst-case to average-case reduction between
lattice problems. The main open problem they give is
how to compute such families of number fields. Similar
number fields also appeared in an alternate construction
of error-correcting codes by Guruswami [Gur03].

Computing families of number fields with bounded
root discriminant appears to be very difficult. The
Golod-Shafarevich theorem [Roq67] implies that infinite
families of number fields with constant root discrim-
inant exist. That they are computable via Kummer
thoery follows from algorithms in the two books by Co-
hen [Coh93, Coh00]. More recent developments appear
in [BS08]. However, this is a relatively recent field and
little is known about the complexity of computing these
extensions. The focus has been on developing the fun-
damental algorithms, with the additional requirement
that they be practical and that small examples can be
computed. Running times are rarely given, and at times
objects that are exponential size are used. Our focus
will be different since we will require algorithms with
asymptotically bounded running times.

To show the existence of infinite families of num-
ber fields with constant root discriminant as described
above one constructs an infinite tower of Hilbert class
fields. This is done by computing a tower of field ex-

471 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

tensions H0 ⊂ H1 ⊂ H2 ⊂ · · · , starting with a carefully
chosen base field H0, and, at each step, computing the
Hilbert class field Hi+1 of Hi. The Golod-Shafarevich
theorem [Roq67] gives sufficient conditions on the base
field H0 to ensure that this tower is infinite.

In this paper our goal is to understand the com-
plexity of two problems related to computing number
fields of bounded root discriminant. In the first prob-
lem a number field K is given, and the goal is to com-
pute an extension contained in the Hilbert class field
of K. The second is to compute the ray class group
of a given number field K. We give efficient reductions
from these problems to a set of problems which are be-
lieved to be hard classically. These include factoring
integers, computing discrete logs, computing the unit
group of a number field, computing the class group of
a number field, solving the principal ideal problem in
a number field and factoring ideals. One reason to do
this is that it clearly identifies the obstacles to finding
efficient algorithms. Furthermore, in certain instances
the problems in the reduction may not be as difficult as
the instances used in cryptography. The second reason
for this approach is that, with the exception of ideal
factorization, there are already known efficient quan-
tum algorithms for these problems when the degree of
the number field is constant. We show that ideal fac-
torization reduces to integer factorization, and therefore
there is an efficient quantum algorithm for this problem
and efficient quantum algorithms for ray class groups
and certain subfields of the Hilbert class field in the
constant degree case. There are no complexity theo-
retic results ruling out quantum algorithms for the ar-
bitrary degree case since the problems are known to be
in NP∩coNP [Thi95].

There are two parameters for number fields, the
degree and the discriminant, and the degree of the
input number field is particularly difficult to deal with.
Problems such as computing the unit group of an
arbitrary degree number field are exponential in the
degree, even for current quantum algorithms. One
potential way to handle this obstacle is to use the more
general ray class fields. These field extensions have
the right requirements for some of the applications, but
are more flexible than Hilbert class field towers, which
are determined completely by the base field. Ray class
fields have an extra parameter m that allows different
field extensions to be computed at every level of the
tower. The extensions are tied to the ray class group
Clm(K). This approach gives a wider choice in how
to construct a tower, and perhaps the extra choice can
help in making the computations more efficient. We
give an efficient quantum algorithm for computing ray
class groups which are necessary for computing ray class

fields.
Approach and open problems. The algorithm

for the ray class group Clm(K), given a number field
K and a modulus m, follows the algorithm described
in [Coh00] (see also [CDO98, CDO01]) and computes
a group extension from the following four-term right-
exact sequence:

U(K)
ρ→ (OK/m)∗

ψ→ Clm(K)
φ→ Cl(K) → 1.

To compute Clm(K) from this exact sequence we have to
have generators and relations for the other three groups
appearing in the exact sequence and we have to show
that the three maps ρ, ψ and φ and their inverses are
efficiently computable. Since we are showing reductions
to computing the unit group U(K) and class group
Cl(K) (among other problems), we show that (OK/m)∗

and the three maps can all be efficiently computed,
and then a group extension algorithm can be used for
Clm(K). As far as quantum algorithms are concerned,
it does not seem clear how to directly compute the ray
class group without going through the exact sequence,
as one would need a notion of reduced ideal in the ray
class group.

For both the Hilbert class field and the ray class
group we are required to change the exponential-size
representation used [Coh00] for algebraic numbers to
two different compact representations. In each of the
cases where the representation changes to a compact
one we must show that we can still compute the same
output even though we only have access to the compact
representations, which are polynomial-size representa-
tions of the same object. For the Hilbert class field we
show that compact representations of virtual units can
be computed and that the field extension can be com-
puted efficiently using these representations. For the
ray class group we show that the maps and relations
can be computed efficiently using these representations.
We also change to a different representation for com-
puting modulo an ideal, instead of the heuristic using
the LLL algorithm from [Coh00] in order to bound the
running time and prove correctness. We must analyze
other algorithms such as factoring ideals and comput-
ing valuations. We show that factoring ideals reduces
to factoring integers. We also show that for ψ, there is
a way to efficiently map elements into Clm(K) using the
closest vector problem in a lattice.

There are several open problems related to this
work. One question is whether computing a family of
number fields with constant root discriminant reduces
to problems such as computing the unit group and class
group in arbitrary degree number fields, or whether
there exist constructions that avoid the degree. Another
question is if there are quantum algorithms for comput-

472 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

ing the unit group, class group, and solving the prin-
cipal ideal problem in arbitrary degree number fields.
These problems are known to be in NP∩CoNP, which
makes them good candidates for quantum algorithms.
Another open problem is how to pass between various
compact representations of algebraic numbers in arbi-
trary degree number fields. A related open question is
whether the approximate shortest vector problem can
be solved in ideal lattices. As pointed out in [PR07],
these lattices have enough structure so that unlike the
general case, the length of the shortest vector can be
approximated. Perhaps the additional structure, using
the fact that they are ideals and not just lattices would
make them easier to solve by either a quantum or clas-
sical algorithm.

2 Background

The main objects we will compute in this paper are
the ray class group Clm(K) of a number field K and
modulus m and certain subextensions of the Hilbert
class field of K. To do this we will need to compute
the unit group U(K), the class group Cl(K), the group
(OK/m)∗, and maps between them. We start with the
definition of a number field. A number field K is a finite
extension of Q. For references about the computational
aspects see [Len92, Coh93, Thi95, Coh00, Hal05]. As a
field extension, K can be generated by a single element
θ in C, K = Q(θ). The element θ is a root of a
monic irreducible polynomial of degree n with rational
coefficients, which is called the minimal polynomial of
θ. The number n is called the degree of K (over Q)
and an extension of degree n is also an n-dimensional
vector space over Q. As a basis for the vector space
of K/Q we can choose 1, θ, θ2, ..., θn−1. There are
different polynomial-time equivalent ways of describing
the number field, such as an approximation to θ, or by
giving θ’s minimal polynomial.

First we define some quantities associated with
number fields. A number field K = Q(θ) of degree
n has n embeddings into C, which we will denote by
Ki. If an embedding Ki is contained in R we call
Ki a real embedding. Otherwise we refer to Ki as
a complex embedding. Let s denote the number of
real embeddings and t the number of pairs of complex
conjugate embeddings. Then n = s + 2t. Let m =
s + t. An element in K has n conjugates, and K
has m absolute values, all of which correspond to the
embeddings. Given an element α ∈ K, α =

∑n−1
i=0 aiθ

i

for some rational numbers ai ∈ Q, let α(j) denote the
jth conjugate of α, that is, α(j) =

∑n−1
i=0 aiθ

i
j . Here

θ1, . . . , θn are the roots of the minimal polynomial of
θ. The jth absolute value | · |j of a number α is a
function of the absolute value in the jth conjugate field:

|α|j = |α(j)| if the embedding is real, and |α|j = |α(j)|2
if the embedding is complex.

There are several problems associated to number
fields which can be solved efficiently with a quantum
algorithm [Hal05, SV05]. The first is computing the
unit group, where a fundamental system of units for
the finitely generated infinite abelian group can be
computed. The second is computing the class group,
which is a finite abelian group without unique group
representatives. The third problem is the principal ideal
problem, which computes a generator of a principal
ideal. Classically, the best known algorithms take
exponential time. The running times are in terms of
the discriminant ∆ and degree n of K.

The ring of integers is defined as the set of elements
in K that are the root of some monic polynomial in
Z[x]. Computing OK is polynomial-time equivalent
to finding the largest square factor of a given positive
integer [Chi89, BL94]. The unit group O∗K is the set of
invertible elements in OK . In the trivial case of K = Q
and OK = Z, O∗K = {±1}. By Dirichlet’s unit theorem,
the unit group in general will be isomorphic to r copies
of Z, together with an efficiently (in constant dimension)
classically computable root of unity. With a quantum
algorithm it is possible to compute a fundamental
system of units ε1, . . . , εr that generate O∗K . This is not
the entire story, yet, because these fundamental units
may have exponentially many bits. Up to a root of
unity µ, any ε ∈ O∗K can be written as ε = µεk11 · · · εkr

r ,
where k1, . . . , kr ∈ Z.

Representation of elements. We now discuss
how to represent K and OK , how to represent elements
of K, and which computations with these elements
are polynomial time. The standard representation of
a number field K with its ring of integers OK is to
specify a Z-basis ω1, . . . , ωn for OK , together with its
multiplication table. That is, any number in α ∈ OK
can be uniquely written as α =

∑n
i=1 aiωi, where

a1, . . . , an ∈ Z. This basis will also be a Q basis for K,
so any α ∈ K can be uniquely written as α =

∑n
i=1 aiωi,

where a1, . . . , an ∈ Q. The multiplication table is a
set of n3 integers (cijk)ijk that defines multiplication
in K: ωiωj =

∑n
k=1 cijkωk. The discriminant ∆ of K

is the determinant of the matrix (Tr (ωiωj))ij , where
Tr : K → Q is the trace map. The multiplication table
for OK can be transformed so that it has O(n4(2 +
log |∆|)) bits. For the purposes of analyzing running
times it is customary to use ∆ as the input, and
an algorithm is polynomial time if it is polynomial
in log |∆| and the degree n. In this representation,
addition, multiplication, and division are polynomial
time. However, representing a fundamental set of units
for O∗K is not polynomial size.

473 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Compact representations allow a polynomial-size
representation of the fundamental units. Generally
speaking, a compact representation of a number α ∈ K
is a set of numbers γ1, . . . , γm ∈ K in the standard rep-
resentation and k1, . . . , km ∈ Z, where the total amount
of data is polynomial size, and α = Πm

i=1γ
ki
i . This

representation is not unique. Elements in this com-
pact representation can be added, multiplied, and di-
vided provided that the number field is restricted to
constant dimension. Another polynomial-size represen-
tation is from the Log embedding into Rr, defined by
α 7→ Logα = (log |α|1, . . . , log |α|r). These are irrational
numbers, but keeping them to some precision will suf-
fice.

Fractional ideals. Another object we will need
are the (fractional) ideals of OK . An ideal I of OK is
a subset of OK that is closed under addition and under
multiplication by elements of OK . An ideal has a Z-
basis β1, . . . , βn and is represented by an integer matrix
(aij)ij ∈ Zn×n where βi =

∑n
j=0 aijωj . A fractional

ideal I of K is a subset of K such that dI is an ideal
for some integer d, and representing fractional ideals
includes the extra parameter d. The matrix (aij)ij
representing the ideal can be kept in HNF form, and
in this way representation of ideals is unique. It is
possible to multiply two ideals in polynomial time, and
to multiply an ideal by an element of K. There is an
important class of ideals called reduced ideals for which
it is possible to keep the representation size bounded by
a polynomial.

Every (fractional) ideal I can be written in a unique
way as I =

∏
p pvp(I), where the product is over the set

of prime ideals of OK , the exponents vp(I) are integers,
and only finitely many exponents are nonzero. The
exponent vp(I) is called the valuation of I at the prime
ideal p. Two ideals I, J ⊆ OK are called coprime, if
I + J = OK , or equivalently if their factorizations into
powers of prime ideals have no common factor p that
occurs with nonzero exponent in both factorizations. A
fractional ideal a is coprime to an ideal I if we can write
a = b/c with b, c integral ideals which are coprime to
I. We say that an element α ∈ K∗ and an ideal I are
coprime if the ideals (α) and I are coprime. For an ideal
I ⊆ OK , we define the norm of I to be the cardinality
of the finite quotient ring OK/I and denote it by N (I).

The ray class group. Let m be a modulus
of a number field K, i.e. a pair (m0,m∞), where m0

is an integral ideal of OK and m∞ is a subset of
the real embeddings of K into C. Given an element
α ∈ K∗ we define α ≡ 1 mod ∗m to mean that for
all primes p appearing in the factorization of m0 we
have vp(α − 1) ≥ vp(m0) and that σi(α) > 0 for all
embeddings σi : K ↪→ R in m∞. The ray class group

Clm(K) is defined as the set of ideals coprime to m
modulo the principal ideals coprime to m that can be
generated by an element α with α ≡ 1 mod ∗m.

Given a modulus m = (m0,m∞) as above,
we define the group (OK/m)∗ to be (OK/m)∗ =
(OK/m0)∗ × F|m∞|2 . There is a natural group homo-
morphism ρ from the elements α ∈ K which are coprime
to m into (OK/m)∗. Given such an α, write α = β/γ
with β, γ ∈ OK and coprime to m. Now define ρ(α) to
be (β/γ, (sign(σi(α)σi∈m∞))). Here (sign(σi(α)σi∈m∞)
is the vector of signs of α under the embeddings in m∞.
(These embeddings are all real-valued.) This vector is
also referred to as the signature of α, and also denoted
s(α).

Hilbert class fields. Finally, to define the Hilbert
class field of a number field K we need to introduce the
notion of an unramified extension. An extension L/K
of number fields is unramified if any prime ideal p of
K factors in L as pOL =

∏
q qeq with all exponents

being 0 or 1 and if all real embeddings of K extend
to real embeddings in L. An extension L/K is abelian
if it is Galois with abelian Galois group. We define
the Hilbert class field H of a number field K to be the
maximal abelian unramified extension of K. It follows
from class field theory that the Galois group of H over
K is isomorphic to the class group of K, and K and H
have the same root discriminant because the extension
H/K is unramified.

3 Computing groups (OK/I)∗

Let I be an ideal of OK . In this section we show
how to compute the finite abelian multiplicative group
(OK/I)∗. In the special case where I is a prime ideal,
(OK/I)∗ is the multiplicative group of a finite field,
but for our algorithms we need the generalization to
arbitrary ideals. This will be used to compute the ray
class group, where a subset of the generators will come
from (OK/m)∗ for a modulus m. It will also be used to
compute Hilbert class fields.

We start by describing the algorithm for computing
(OK/I)∗, then we describe how each of the steps work.
The description will be in the context of (OK/m)∗,
which is slightly more general, since m also includes a
subset m∞ of the real embeddings. Recall that elements
of (OK/m)∗ are pairs (ᾱ, w) where α ∈ OK is coprime
to m0 and w ∈ F|m∞|2 . So we have to compute (OK/m0)∗

and the infinite part.
We change the representation of ideals used

in [Coh00] for asymptotic efficiency. Let m0 = Π pvi
i .

We need generators and relations for (OK/m0)∗ which is
isomorphic to (OK/pv11)∗×(OK/pv22)∗×· · ·×(OK/pv`

`)∗

by the Chinese Remainder Theorem. Lemma 3.1 below

474 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

shows how to compute generators for (OK/m0)∗ from
generators for (OK/pk)∗ for a prime ideal p and a posi-
tive integer k. In Section 3.1 we will show how to obtain
generators for the groups (OK/pk)∗.

Lemma 3.1. (CRT for ideals) Let a, c be coprime ideals
of OK , and let b = ac. Assume that the decompositions
of (OK/a)∗ and (OK/c)∗ are known. Assume that
(OK/a)∗ =

⊕
(Z/aiZ)αi, with αi ∈ OK and that

(OK/c)∗ =
⊕

(Z/cjZ)γj with γj ∈ OK .

1. We can find a ∈ a, c ∈ c in time poly(n, log ∆K)
such that a+ c = 1.

2. We have

(OK/b)∗ =
⊕

(Z/aiZ)(cαi + a)⊕⊕
(Z/cjZ)(aγj + c).

Proof. The claim is [Coh00], Lemma 4.2.1 (1). The
second is [Coh00], Lemma 4.2.1 (3).

This motivates the following algorithm.

Algorithm 3.1. Computing (OK/m)∗

Input: K, OK , modulus m = m0m∞
Output: Generators εp,i and relations

1. Factor m0 = Πpp
vp using Algorithm 4.1 in Sec-

tion 4.

2. For each prime p in the factorization, compute gen-
erators δp,i and integers dp,i such that (OK/pvp)∗ =⊕

i(Z/dp,iZ)δp,i. The generators δp,i will be co-
prime to p.

3. Adjust each generator so that it is coprime to m0:
compute ap ∈ pvp and cp ∈ m0/p

vp whose sum is 1,
and set εp,i = (cpδp,i + ap, 0).

4. Add generators ej for the infinite part F|m∞|2 , where
ej are standard basis vectors (1 ≤ j ≤ |m∞|).

5. The relations matrix is a diagonal matrix with dp,i

the entry for generator εp,i.

Theorem 3.1. Given a number field K, OK , and a
modulus m, computing the group (OK/m)∗ reduces to
factoring m and discrete log in finite groups in time
poly(n, log ∆, log(N (m0))).

Proof. Computing (OK/pk)∗ can by done by
Lemma 3.2. By definition of (OK/pk)∗, genera-
tors for this group are coprime to p. These generators
can be reduced modulo the ideal m0, and coprimeness is
preserved by Proposition 3.1 below. Elements ap, cp as
in Algorithm 3.1 can be computed in polynomial time
by Lemma 3.1 and computing the linear combination
is efficient. Steps 4 and 5 are trivial.

Proposition 3.1. Suppose I ⊆ OK is an ideal and
a ∈ OK is coprime to I. Let b be an element of OK
with a ≡ b (mod I). Then b is coprime to I.

Proof. Let I =
∏

p pvp for vp > 0 be the factorization of
I into powers of prime ideals. We have a ≡ b (mod I),
so b = a + α for some element α ∈ I. Since α ∈ I,
(α) ⊆ I, and hence 0 ≤ vp(I) ≤ vp(α) for all prime
ideals p of OK ([Coh93, p.193]). Hence for all prime
ideals p appearing in the above factorization of I we
have vp(b) = vp(a + α) = 0, by standard properties
of valuations since vp(a) = 0 and vp(α) ≥ 1. Hence
the factorizations of (b) and I have no prime ideals in
common, and so b and I are relatively prime.

3.1 Computing (OK/pk)∗. In this section we show
how to compute (OK/pk)∗, which is used for computing
(OK/m)∗ the ray class group and Hilbert class fields.
First we need to define the group (1 + a)/(1 + b).

Definition 3.1. Let K be a number field. Let a and
b be two nonzero ideals of OK with a | b | a` for some
integer `. We denote by (1 + a)/(1 + b) the quotient of
the multiplicative set 1 + a by the equivalence relation
R given by (1 + x)R(1 + y) if and only if x ≡ y
mod b. Then multiplication in K induces multiplication
(1 + a)/(1 + b) and makes the set (1 + a)/(1 + b) into
an abelian group.

Proof. This is Definition and Proposition 1.3, page 776,
in [CDO98].

Lemma 3.2. Given a prime ideal p of OK , OK , and
an integer k, computing the group (OK/pk)∗ reduces
to computing discrete log in finite groups in time
poly(n, log ∆K , logN (p), k).

Proof. Following the outline of the algorithm in [Coh00],
we analyze the running time and prove correctness
below. The computationally difficult parts are order
finding in (OK/p)∗ and discrete log in the (1+p)/(1+pk)
groups.

The approach is based on the following proposition
which decomposes (OK/pk)∗ into a product of two
groups:

Proposition 3.2. Let p be a prime ideal of OK and let
p be a prime such that q = pf is the cardinality of the
residue field OK/p. Let

W = {x ∈ (OK/pk)∗ : xq−1 = 1}

and
Gp = (1 + p)/(1 + pk).

Then (OK/pk)∗ = W ×Gp.

475 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

First generators are computed for each factor. Com-
pute generators for (1 + pa)/(1 + p2a) for increasing
values of a from 1 up to (around) k. These can be
computed from generators for p, by taking powers and
adding 1. Next compute an element g0 of order q − 1
of (OK/p)∗ by randomly selecting an element and com-
puting the order in that group to test if it is q−1. Then
Hensel lifting can be applied to lift g0 to a generator of
W in polynomial time.

Next relations must be computed for these gen-
erators. This will require computing discrete logs in
(1 + p)/(1 + pk) with respect to the set of generators
from all (1 + pa)/(1 + p2a) groups taken mod (1 + pk)
to compute the relations.

4 Factoring ideals and computing valuations

In this section we show that factoring ideals in number
fields reduces to factoring integers and that computing
valuations in any number field is polynomial time in
log(∆K) and n. Factoring an ideal I can be done
by first computing a set of potential prime ideals that
may divide the ideal I, and then computing valuations
to see which ones occur in the factorization. It is
sufficient to compute the set of prime ideals above
each prime integer p dividing the norm of I. For a
prime integer p, the prime ideals above p are the prime
ideals of OK which contain pOK . They are exactly
the prime ideals which occur in the factorization of
pOK . Obtaining them is the main computational step
in the algorithm. The outline of the ideal factorization
algorithm is described in [Coh00] as Algorithm 2.3.22.
Our aim is to analyze the running time of this algorithm
and show that factoring is the only computationally
difficult part.

Algorithm 4.1. Ideal factorization
Input: Number field K, fractional ideal I = (d,A) of K.
Output: Prime ideals p, integers vp = vp(I) such that
I = Πpvp .

1. Compute the norm N of the integral ideal dI.

2. Factor N as N = Πpep , with ep > 0.

3. For each prime p dividing N , compute the prime
ideals p1, ..., pk above p.

4. For each prime p dividing N , and each p ⊃ pOK
from Step (3), compute vp(dI), giving the exponent
of p in the factorization of dI.

5. For each p found with nonzero valuation, output
p, vp(dI). We have dI = Π pvp(dI).

6. Repeat steps (1)–(5) for the integral ideal dOK ,
then subtract the exponents of dOK from the

exponents computed above for the ideal dI for each
prime, giving the primes p and the exponents vp

such that I =
∏

pvp .

Lemma 4.1. Factoring fractional ideals of a number
field K into a product of prime ideals of OK reduces
to factoring integers in polynomial time.

Proof. First compute the ring of integers OK , which
reduces to factoring [Chi89, BL94]. If an integral ideal
J is given by its HNF (or by any matrix A) on a basis
of OK , then the norm of J is the absolute value of the
determinant of A. (See [Coh93, Proposition 4.7.4].)

In Section 4.1 we show that computing the primes
above p can be done in polynomial time and in Sec-
tion 4.2 we show that computing valuations can be done
in polynomial time.

4.1 Computing the primes above p. Let K be a
number field which is generated over Q by an algebraic
integer θ. For a prime integer p, computing the primes
above p in the special case when p - [OK : Z[θ]] can
be done using the well-known theorem below. We first
describe this case and then give an algorithm that works
in the general case. Note that Lenstra [Len92, Theorem
4.9] gives a sketch of a different algorithm that also
works for orders.

Theorem 4.1. Let K be a number field of degree n,
generated over Q by an algebraic integer θ. Let f(X)
be the minimal polynomial of θ. Let p be a prime
such that p - [OK : Z[θ]]. Consider the factorization
f(X) = Πfi(X)ei into irreducible factors over Fp. Then
pOK = Πpei

i where pi = pOK + fi(θ)OK .

Proof. This is Theorem 27 in [Mar77, Chapter 3].

Therefore, factoring pOK when p - [OK : Z[θ]] now
works as follows. First compute θ and f , and factor f ,
each of which is polynomial time [Rab80, Len92]. Next
compute the desired prime ideal pi using the identity
pi = pOK + fi(θ)OK .

Next we describe a general algorithm that does
not require any assumptions on p. The approach is
as follows. If an ideal I is a product of distinct
prime ideals, then OK/I is a product of fields, and
we can decompose it by finding idempotents. When
all the prime ideals appearing in the factorization of I
are primes above p then OK/I is an Fp-algebra, and
non-trivial idempotents can be found efficiently. The
algorithm below first computes the radical Ip of pOK ,
which is the product of all distinct prime ideals above
p, and then decomposes OK/Ip. We next describe this
in more detail.

476 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Definition 4.1. Let I be a proper ideal in a commuta-
tive ring R (with identity). The radical or nilradical of I
is the intersection of all prime ideals of R containing I.
The radical of the zero ideal, i.e. the intersection of all
prime ideals of R, is often referred to as the nilradical
of the ring R.

The following theorem gives a different description
that will allow computation of the radical.

Theorem 4.2. Let I be an ideal in a commutative ring
R. The radical of I equals

{r ∈ R : rn ∈ I for some n ∈ Z+}.

Proof. This is Theorem 2.6 in [Hun80, p. 379].

Now let A = OK/Ip, where Ip is the radical of pOK .
By the above theorem, together with the fact that in
rings of integers the intersection of distinct prime ideals
equals their product, we have

Ip = {x ∈ OK : xm ∈ pOK for some m ∈ Z+}

=
∏

p⊇pOK

p,

and the product is over all distinct primes lying above p.
Let p1, . . . , pm be the distinct prime ideals of OK above
p. By the Chinese Remainder Theorem, A is isomorphic
to OK/p1×· · ·×OK/pm, so A is a product of finite fields
and also an Fp-algebra.

We can now give the algorithm to compute the
primes above any prime integer p. In the first part of
the algorithm we compute a Z-basis of Ip. For this we
first compute an Fp-basis for Ip/pOK by using the fact
that the nilradical of the finite ring OK/pOk is Ip/pOK .
From this we can easily obtain a generating set and then
a basis of Ip.

Algorithm 4.2. Primes above p
Input: Number field K, OK , prime p.
Output: The set of prime ideals above p.

1. Compute a Z-basis of Ip.

(a) Compute an Fp-basis of Ip/pOK .
i. Choose q to be a power of p larger than n.

ii. Consider the homomorphism OK/pOK →
OK/pOK defined by x 7→ xq. Compute
the matrix A ∈ Fn×np of this homomor-
phism by solving equations mapping the basis
{ω1, ..., ωn} to {ωq1, ..., ωqn}.
iii. Compute kerA, which identifies the nil-
radical Ip/pOK of OK/pOK .

(b) Compute a basis of Ip from generators consist-
ing of pullbacks of the generators of Ip/pOK
together with the basis pω1, ..., pωn of pOK .

2. Given an ideal I that is a product of distinct prime
ideals lying above a prime p, this step gives a
nontrivial factorization if one exists or specifies it
is prime. Repeating this factors I completely.

(a) Compute an idempotent ē ∈ OK/I, and let e
be any lift to OK .

(b) If a non-trivial idempotent was found, com-
pute H1 = I + eOK and H2 = I + (1− e)OK ,
giving a nontrivial factorization I = H1H2.
Otherwise I is prime.

Proposition 4.1. Given a number field K, OK , and a
prime p, Algorithm 4.2 computes the primes above p in
polynomial time.

Proof. The map x 7→ xq is a power of the pth
power Frobenius map, which is a homomorphism since
OK/pOK is an Fp-algebra. So step 1 requires solving
linear equations over finite fields and computing the ker-
nel of matrix. By [Coh93, Lemma 6.16] the kernel of A
is the desired nilradical. For step 2, the an idemptotent
in this case can be computed efficiently and a factoriza-
tion of I results by by [Coh93, Proposition 6.2.8] and
the following discussion. The Z-basis for Ip can be com-
puted in polynomial time.

4.2 Computing valuations in any number field.
Here we analyze the running time of the algorithm
in [Coh93] for computing valuations. For K and OK ,
this algorithm takes a prime ideal p and an ideal I and
computes vp(I). The steps are to compute a ∈ K −OK
such that ap ⊂ OK , and then to compute the largest
v ∈ Z such that avI ⊂ OK . To compute a, we use
the fact that a = β/p, where p ∈ p (p is on the
diagonal of the HNF of p) and we set up a systems
of linear equations to solve mod p to get β. We
need mn equations in n indeterminates for β ∈ OK ,
β ∈ OK −pOK , and βp ⊂ pOK . After we have a we try
each possible exponent v up to O(n·logN (I)), each time
checking whether or not N (avI) = N (aOK)vN (I) ∈ Z.
So computing valuations is polynomial time also in the
degree.

The following proposition allows us to compute
valuations:

Proposition 4.2. Let p be a prime ideal of a number
field K, and let I be an integral ideal of the ring of
integers OK . There exists a ∈ K − OK such that
ap ⊂ OK . The valuation vp(I) of I is the largest integer
v such that avI ⊂ OK .

477 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Proof. The existence of the element a follows from
Lemma 2 in [Mar77, Chapter 2]. The second part of
the claim is Proposition 9.1 in [Ste08].

4.2.1 Computing a suitable element a ∈ K−OK .

Lemma 4.2. Let K be a number field and p a prime
ideal such that OK/p has characteristic p. Let
ω1, . . . , ωn be a Z-basis for OK , and let γ1, . . . , γm be
generators of p which are given in terms of the Z-basis.
Then we can compute an element a as in Proposition 4.2
in polynomial time.

Proof. This proof analyzes the running time of the
algorithm described in [Coh93, p. 202]. To find an
element a as in the lemma proceed as follows: The
condition ap ⊂ OK implies that ap ∈ OK , so a = β/p
with β ∈ OK . Since a ∈ K − OK , we must have
β ∈ OK − pOK . Also βp = (ap)p = p(ap) ⊂ pOK .

Since β ∈ OK , we can write β as

β =
n∑
i=1

xiωi with xi ∈ Z.

The condition that β ∈ OK − pOK is equivalent to
saying that not all xi are divisible by p. Since βp ⊂
pOK , we have that βγj is divisible by p, j = 1, . . . ,m.
Hence

βγj =

(∑
i

xiωi

)
γj = p · δj

for some δj ∈ OK (j = 1, . . . ,m). Let

ωiγj =
∑

1≤k≤n

ai,j,kωk.

We have

βγj =

(
n∑
i=1

xiωi

)
γj

=
n∑
i=1

xi(ωiγj)

=
n∑
i=1

n∑
k=1

ai,j,kωk

=
n∑
k=1

ωk

n∑
i=1

xiai,j,k.

Since the ωk’s form a Z-basis of OK and since βγj is
divisible by p, this implies that we get the following
system of n · m equations: For all j ∈ {1, . . . ,m} and
k ∈ {1, . . . , n} we have

n∑
i=1

ai,j,kxi ≡ 0 mod p.

This is a system of mn equations in n indetermi-
nates x1, . . . , xn that we want to solve in Z/pZ. (If
β ∈ OK has the right properties, then clearly β + pωi
works as well, so it is enough to determine the coeffi-
cients xi of β modulo p.) Since β is not divisible by p in
OK , this is the same as looking for a nontrivial solution
x1, . . . , xn in Z/pZ.

4.2.2 Computing vp(I).

Proposition 4.3. Let K be a number field with ring
of integers OK . Let I be an ideal of OK in HNF. Let
ω1, . . . , ωn be a Z-basis of OK , and let p be a prime ideal
with generators γ1, . . . , γm. The valuation vp(I) can be
computed in polynomial time.

Proof. By Proposition 4.2 we have to compute an
element a ∈ K−OK as in the proposition and we have to
compute the largest integer v such that avI ⊂ OK . By
Lemma 4.2 we can compute the element a in polynomial
time. To find the value of v, we compute the norm
N (akI) = N (akOK)N (I) for different values of k.
Since a fractional ideal is integral if and only if its
norm is an integer, we want the largest v such that
N (avI) ∈ Z. This v can be determined as follows: we
can compute the norm of I and the norm of aOK . Then
N (akOK) = N (aOK)k. Let N (I) =

∏
pei
i with ei > 0.

Let N (aOK) =
∏
qai
i , with only primes qi appearing for

which ai 6= 0. Since N (aOK) ∈ Q−Z, some ai must be
less than zero. Then 0 ≤ v ≤ n ·max ei ≤ n · logN (I),
where n = [K : Q], so we can just test the possible
values and compute the norm each time.

5 Computing subfields of Hilbert class fields

In this section we show how to compute subfields of
Hilbert class fields of prime degree ` when the field
contains a primitive `th root of unity. Class field theory
tells us that the Galois group of the Hilbert class field
L of K is isomorphic to the class group Cl(K) of K.
By Galois theory this implies a that there is a one-to-
one correspondence between subgroups of Cl(K) and
subfields of L containing K. Since the class group can
have exponential size it is not possible in general to have
an efficient algorithm for the Hilbert class field in terms
of the input size. Therefore we restrict to subfields of
smaller size. The approach below constructs the desired
subfield of the Hilbert class field via Kummer theory
which is why we require a primitive `th root of unity in
the field. In this situation our desired subfield is then
given by a defining equation of the form X` − α.

We give an explicit algorithm for computing exten-
sions of degree ` = 2. This can easily be generalized to
compute extensions of prime degree ` of K contained
in the Hilbert class field, as long as K contains a prim-

478 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

itive `th root of unity. A field K always contains −1,
the 2nd root of unity, so we can always construct an
extension of degree ` = 2 if one exists. An `th root can
be added but at the expense of increasing the degree of
the number field. In general, K will only have an ex-
tension of degree ` contained in the Hilbert class field
if the class group is divisible by `. So Algorithm 5.1
for ` = 2 requires that the order of the class group be
even. Algorithm 5.1 below uses virtual units and builds
on the unit and class group. We must show that we can
compute valuations of elements that are only given in
the Log representation. We show that this can be done
by relating them to the factorization of certain ideals.

We now assume that ` = 2. The group of virtual
units (modulo powers of 2), V2(K)/(K∗)2, is generated
by a basis for the unit group and the generators α from
ideals gd = αOK , where g is a generator of the class
group of order d with 2 | d. Since the elements are
taken modulo (K∗)2, α2 = 1 for any α, and the number
of generators is rc + ru + 1, where ru is the rank of
the unit group (so ru + 1 accounts for the generator of
torsion part of the unit group), and rc is the 2-rank of
the class group.

The following algorithm is a special case of Algo-
rithm 5.2.14 in [Coh00] with trivial modulus m. We
also change the representation of elements to a compact
representation for efficiency. It computes a subfield of
Hilbert class field rather than subfields of the ray class
field. In this case we can analyze the running time of
the algorithm.

Algorithm 5.1. Degree two subextension of the
Hilbert class field of K
Input: Number field K whose class group has even
order, OK .
Output: The generator Log(α) of the generating
polynomial X2 − α of the extension.

1. Compute generators v1 = Log(ε1), ..., vru+1 =
Log(εru+1) of the unit group, and a basis of the
class group Cl(K) =

⊕gc

i=1(Z/diZ)āi ordered such
that the first d1, ..., drc

are divisible by 2. For each
generator ai of the class group, compute vru+1+i =
Log(αi), where αiOK = adi

i .

2. Factor each generator a of the class group as a =∏
p
sj

j . Then ad =
∏

p
dsj

j .

3. Factor 2OK = Πm
i=1p

ei
i into powers of prime ideals

with ei > 0. For each pi compute an element
πi ∈ pi − p2

i .

4. For each αj and each pi with 1 ≤ j ≤ rc, 1 ≤ i ≤ m,
let αij = αj/π

djsi

i , so αij is coprime to pi, and
compute it as Log(αij) = Log(αj)− djsiLog(πi).

5. Compute the following matrix M with (ru+1+rc)
columns. For the first ru + 1 columns, column j
has m blocks, where the ith block consists of the
exponents of the discrete log of εj in (OK/p2ei

i)∗

relative to a set of generators from decomposing
that group.

For the last rc columns, the ith block of column
ru+1+j consists of the exponents of the discrete log
of αij in (OK/p2ei

i)∗ relative to a set of generators
from decomposing that group.

6. Reduce the coefficients of M modulo 2, pick a
nonzero vector x ∈ Frc+ru+1

2 in the kernel of M ,
and output Log(α) =

∑
i xivi.

Theorem 5.1. Let K be a number field containing an
`th root of unity for a fixed prime `. Computing a degree
` extension of K contained in the Hilbert class field of K
reduces to computing the unit group and class group of
K, solving the principal ideal problem in K, factoring
ideals, and computing discrete logs in finite groups in
polynomial time.

Proof. For ease of notation the algorithm above is for
the case ` = 2. It can be easily modified to compute an
α such that X` − α is a degree ` extension inside the
Hilbert class field.

If aj factors as Πpsi
i then vpi

(aj) = si. Hence
vpi

(adj

j) = djsi. Thus the valuation of αj at the prime
pi, vpi

(αj), equals djsi. Hence the above algorithm
shows that we can compute the valuation of αj from
only the Log representation. Since αij = αj/π

djsi

i

is coprime to pi and to powers of pi it reduces to
computing discrete logs of αij in (OK/p2ei

i)∗.
Factoring 2OK reduces to factoring as shown in

Section 4.

6 Computing the maps for the ray class group

In this section we show how to compute images and
preimages for the three maps ρ, ψ, φ in the exact se-
quence

U(K)
ρ→ (OK/m)∗

ψ→ Clm(K)
φ→ Cl(K) → 1,(6.1)

as they are necessary for computing the ray class group
Clm(K). Recall that the ray class group of a number
field was defined to be as the set of ideals coprime to m
modulo the principal ideals coprime to m that can be
generated by an element α with α ≡ 1 mod ∗m.

We now define the maps that appear in this exact
sequence. There is a natural group homomorphism ρ
from the elements of K∗ which are coprime to m into
(OK/m)∗ defined as follows. If α is such an element

479 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

in K∗, then α can be written as β/γ with β, γ ∈ OK
and coprime to m. We define the class α ∈ (OK/m0)∗

to be α := β/γ. This does not depend on the choice
of β and γ. Then ρ(α) is defined to be ρ(α) =
(α, sign(σi(α))σi∈m∞). We denote the restriction of this
map to U(K) by ρ again, and this is the first map in
the exact sequence.

To define the map ψ we proceed as follows. By
strong approximation, any element of (OK/m)∗ can be
written as ρ(α), for some α ∈ OK which is coprime to m.
The map ψ is then defined by sending an element ρ(α)
to the ideal class of Clm(K) represented by αOK . The
map φ sends an ideal class of Clm(K) represented by an
ideal a to the ideal class of Cl(K) represented by a. The
map φ is surjective by the approximation theorem for
rings of integers.

6.1 Image of ψ : (OK/m)∗ → Clm(K). First we
show how to map an element (ᾱ, v) ∈ (OK/m)∗ to
an element of Clm(K). In order to do this, (ᾱ, v)
must be mapped to an element β ∈ OK such that
α ≡ β mod∗ m0 and such that the signature of β, which
is the sign homomorphism from K∗ to F|m∞|2 , equals v,
i.e. s(β) = v. By the definition of ψ, the desired image
of (ᾱ, v) under ψ is then βOK . Cohen [Coh00, page 205]
gives a heuristic to do this computation. We show how
to reduce this to an approximate closest vector problem.

The goal is to compute elements (1 + βj), βj ∈ m0,
such that the sign of (1 + βj) is negative under the jth
embedding and positive under the other embeddings.
Then to obtain an element β with signature v, we start
with α and adjust its signature while staying in the
same equivalence class modulo m0. That is, we take
β = α ·Πi(1+βi), where i is over the coordinates of s(α)
that are different from v. Then β is clearly congruent
to α since (1 + βj) ≡ 1 mod m0, and α was modified by
a product of such elements.

To compute βj ∈ m0 such that the jth co-
ordinate of (1 + βj) has negative sign and the
rest have positive sign we proceed as follows. Let
M > 2n det(m0). We can find a closest vector
to a point in Qk to within a factor of 2k. Let
x = (2k+1M, ..., 2k+1M,−2k+1M, 2k+1M, ..., 2k+1M),
where the negative coordinate is at position j. Call CVP
on the ideal lattice m0 and x, and let y be the vector
returned [Len92]. Convert y into an element y′ ∈ m0,
and output 1 + y′. The conversion can be done by just
outputting the first coordinate since we can choose our
original embedding such that the first coordinate is the
identity. By choice of M , we know there is a lattice
point within M of x. Using CVP we get a point within
2kM . Therefore, the sign of each coordinate is pre-
served, even after adding 1 to it. The element β will

have polynomial representation size. Each βi has size
bounded log(2n det(m0)k2k+1), so the product of n is
small. Therefore the output βOK can be computed in
time poly(n, log ∆K , logN (m0)).

6.2 Preimage of ψ and image of ρ. In this sec-
tion we modify the approach in [Coh00] by using the
multiplicative representation of the units, rather than
using the exponentially large standard representation.
We must show that we can still get the same output
even though we only have access to the compact repre-
sentations, which are polynomial-size representations of
the same object.

Let g ∈ Clm(K) be an element in the image of ψ.
Such an element is represented by an ideal g of OK
which is coprime to m0. One challenge with this map
is that while we know that g = αOK for some α ∈ K∗

(since the sequence is exact), we cannot take it modulo
m0 since α may be not in OK . It is also not possible to
express α as a quotient of elements of OK and output
these elements since they will in general be too large.
Instead, the next algorithm finds βγ−1 ∈ (OK/m0)∗

of polynomial size and a vector v ∈ F|m∞|2 such that
ψ(βγ−1, v) = g.

Algorithm 6.1. Preimage of ψ
Input: Ideal g ⊆ OK such that g ∈ Clm(K) is in the
image of ψ.
Output: Element β̄γ̄−1 and vector v such that
ψ(βγ−1, v) = g.

1. We have φ(g) = g, which is trivial in Cl(K),
because the sequence (6.1) is exact. Hence g =
αOK , for some α ∈ K∗ and α is coprime to m0

because g is.

Compute a multiplicative representation of α using
the principal ideal algorithm in Cl(K).

2. Compute d, the lcm of the denominators of the
coordinates of α. This is the denominator in input,
which is the HNF of the input g = αOK .

3. Compute b = dOK+m0. Factor b as b = Πpvp into
powers of prime ideals.

4. Compute k = maxp|bbvp(d)e(p)/vpc + 1. The
quantity e(p), i.e. the power of p in pOK , was
computed when we factored pOK . Here p is the
prime number such that (p) ⊆ p, and vp(d) denotes
the exponent of p in d.

5. Compute d = dOK + bk and d−1. Compute
a ∈ dd−1 and c ∈ bkd−1 such that a + c = 1,
by applying Lemma 3.1 part (1) below with a =
dd−1, c = bkd−1.

480 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

6. Let β = aα and γ = a. Then β, γ ∈ OK , and
β · γ−1 ∈ (OK/m0)∗.

7. Let (β1, ..., βk, e1, ..., ek) be the multiplicative rep-
resentative of β. Compute

β + m0 = βe11 · · ·βek

k + m0

by iterating through each i, multiplying by the
next βi, and reducing mod m0. This keeps the
representation size small. Multiply by γ−1.

8. Compute the signature v of βγ−1 using the multi-
plicative representation of β.

9. Output βγ−1 and the signature v.

Lemma 6.1. Computing the preimage of a given ele-
ment under ψ reduces to computing the unit and class
group of K, the principal ideal problem in K, and fac-
toring integers, in time poly(2n, log ∆K).

Proof. The algorithm above shows that compact repre-
sentations can be used to compute the image of ψ.

Factoring b is efficient since we have the factoriza-
tion of m0, and m0 ⊆ b. The only possible primes ap-
pearing in the factorization of b are those appearing in
the factorization of m0, and so computing valuations at
these primes is sufficient.

Given the multiplicative representation, computing
modulo the ideal to keep the elements polynomial size.
Computing the signature of β can be done efficiently
also by using the multiplicative representation and using
the fact that the signature map is a homomorphism
K∗ → F|m∞|2 .

To see that the image of an element under the map
ρ can be computed efficiently we do the following. Given
an element ε ∈ U(K) in a multiplicative representation
and then map it into (OK/m)∗ by following Step 7
above and by computing the signature of ε by using
the multiplicative representation as explained above.

6.3 Preimage and image of φ : Clm(K) → Cl(K).
Elements of the class group are represented by ideals of
OK while elements of the ray class group are represented
by ideals which are coprime to m. Hence, inverting φ re-
quires taking any element in the class group represented
by an ideal a and computing an equivalent ideal b (in
the class group) which is coprime to m. This can be
done using the factorization of m using Corollary 1.3.9
in [Coh00] in time poly(n, log ∆, logN (m0)).

Evaluating φ is trivial, because this is simply the
identity map g 7→ g.

7 Computing ray class groups

In this section we describe how to compute ray class
groups and how to solve the principal ideal problem in
the ray class group given the algorithms in Section 3
and for the maps in Section 6.

We will follow the strategy described in [CDO98]
which computes the ray class group as a group extension
using the following four-term right-exact sequence:

U(K)
ρ→ (OK/m)∗

ψ→ Clm(K)
φ→ Cl(K) → 1.

Theorem 7.1. Computing the ray class group of a field
K, given a modulus m and OK , reduces to computing
the unit and class group of K, discrete logs in the class
group and finite groups, the principal ideal problem in K
and factoring m0, in time poly(2n, log ∆K , logN (m0)).

Proof. Algorithm 5.1 of [CDO01] discusses how to ob-
tain generators and relations for a finite group G that
is part of a four-term right-exact sequence

A→ B → G→ C → 1.

Computing the ray class group by this method requires
generators for the unit group U(K), generators and
relations for the class group Cl(K), as well as solving the
discrete log problem and the principal ideal problem in
Cl(K). We also require generators and relations for the
group (OK/m)∗ and discrete log computations in this
group, the ability to compute the image of an element
for ρ, ψ, φ, and the ability to compute a preimage of an
element for ψ and φ.

In Section 3 we showed that computing
generators and relations for the finite group
(OK/m)∗ reduces to factoring m0 and discrete
log in finite groups (just order finding) in time
poly(n, log ∆K , logN (m0)). In Section 6 we showed
that computing images and preimages of the required
maps reduces to factoring m0 in time poly(2n, log ∆K)

8 Examples

Below we give several examples of factorizations of
ideals in number fields, of ray class groups and Hilbert
class fields.

1. Let K := Q[
√
m], where m is a square-free integer.

Then
OK = {a+ b

√
m : a, b ∈ Z}

if m ≡ 2 or 3 (mod 4) and

OK = {(a+ b
√
m)/2 : a, b ∈ Z, a ≡ b (mod 2)}

if m ≡ 1 (mod 4) [Mar77, p. 15].

481 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Suppose that p is an odd prime dividing m. Then
p := (p,

√
m) is a prime ideal of OK and pOK =

(p,
√
m)2. Hence vp(pOK) = 2. The Galois group

Gal(K/Q) has two elements, so it is cyclic of order
2.

2. Let L := Q(ζn) with ζn a primitive nth root of
unity (say ζn = e2πi/n). The ring of integers
of L is OL = Z[ζn] [Mar77, p. 35]. We have
[L : Q] = φ(n), and the map sending an integer k
which is coprime to n to the automorphism ζn 7→ ζkn
gives an isomorphism of Gal(L/Q) with (Z/nZ)∗

[Mar77, p. 18].

Now let ζp be a pth root of unity with p prime.
The ideal P generated by (1− ζp) is a prime ideal
of OL = Z[ζp] and pOL = (1 − ζp)(p−1) [Mil08a,
p. 90]. So vP(pOL) = p− 1.

3. It is not always the case that the ring of integers can
be generated by one element over Z. The following
example goes back to Dedekind. Let M := Q(α),
where α is a root of X3+X2−2X+8. Then OM 6=
Z[β] for any β ∈ OK ([Mil08a, p. 32]). One can
show that 2OM factors as a product of 3 distinct
prime ideals which implies that 2 | [OM : Z[β]] for
any β ∈ OM by Theorem 4.1.

4. Let K := Q(
√
−5). The Hilbert class field of K has

degree 2 over K since the class group of K has two
elements [Mar77, p. 133]. It is not hard to check
that Q[

√
−5, i] is unramified over K at all finite

and infinite places, and so by degree considerations
it must be the Hilbert class field of K.

5. Let K := Q(
√

3), and let m be the modulus that
consists of the unit ideal together with the two
real embeddings of K. The number field K has
trivial class group, but Clm(K) has order 2 [Mil08b,
p. 148].

6. For the field Q and the modulus m = (p)∞ with
p any odd prime, the ray class group is cyclic of
order p − 1, Clm ∼= (Z/pZ)∗. The ray class group
for the modulus (p) is isomorphic to (Z/pZ)∗/{±1}
[Mil08b, p. 155].

7. Let K1 := Q(
√
−30030). Then K1 has an infinite

Hilbert class field tower [Roq67]. The field K2 :=
Q(
√

9699690) has an infinite class field tower as well
[Roq67]. The proof, however, is not constructive.

9 Efficient quantum algorithms in constant
degree number fields

The core problems listed in the reductions have effi-
cient quantum algorithms. Assume a constant degree

number field is given. Computing the ring of integers
reduces to factoring. See [Chi89] and [BL94, Theorem
1.3]. The Log representation of generators of the unit
group can be efficiently computed by a quantum algo-
rithm [Hal05, SV05] and then transformed into a mul-
tiplicative representation [Thi95]. The class group can
be computed and the principal ideal problem can be
solved efficiently by a quantum algorithm. Discrete log
in finite groups (assuming unique efficiently computable
representatives) can be computed in quantum polyno-
mial time [Sho97].

Lemma 9.1. There is a polynomial-time quantum algo-
rithm that factors fractional ideals of a number field K
into a product of prime ideals of OK .

Proof. In Section 4 we show that factoring ideals in
number fields reduces to factoring integers.

Corollary 9.1. There is a polynomial-time quantum
algorithm that computes the ray class group of a con-
stant degree number field K, given a modulus m.

Proof. There is a polynomial-time quantum algorithm
for computing the preimage of a given element under
ψ in constant degree number fields: Computing the
generator Log(α) is possible with an efficient quantum
algorithm. Mapping the Log representation of α into
(OK/m)∗ can be done by first converting it into a
multiplicative representation [Thi95]. Also, the group
(OK/m)∗ can be computed in quantum polynomial
time. Computing the unit group and class group are
efficient in the constant degree case.

Corollary 9.2. (Consequence of Theorem 5.1)
There is an efficient quantum algorithm to compute
degree 2 extensions inside the Hilbert class field of
constant degree number fields K.

Corollary 9.3. There is an efficient quantum algo-
rithm for computing discrete logs in the ray class group
and for the principal ideal problem in the ray class group
of a constant degree number field.

References

[BBS09] László Babai, Robert Beals, and Ákos Seress.
Polynomial-time theory of matrix groups. In STOC
’09: Proceedings of the 41st annual ACM symposium
on Theory of computing, pages 55–64, New York, NY,
USA, 2009. ACM.

[BL94] J. A. Buchmann and H. W. Lenstra, Jr. Approx-
imating rings of integers in number fields. J. Théor.
Nombres Bordeaux, 6(2):221–260, 1994.

482 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[BS08] J. P. Buhler and P. Stevenhagen, editors. Algorith-
mic Number Theory: Lattices, Number Fields, Curves
and Cryptography, volume 44 of Mathematicial Science
Research Institute publications. Cambridge University
Press, 2008.

[CDO98] H. Cohen, F. Diaz y Diaz, and M. Olivier. Com-
puting ray class groups, conductors and discriminants.
Math. Comp., 67(222):773–795, 1998.

[CDO01] Henri Cohen, Francisco Diaz y Diaz, and Michel
Olivier. Algorithmic methods for finitely generated
abelian groups. J. Symbolic Comput., 31(1-2):133–
147, 2001. Computational algebra and number theory
(Milwaukee, WI, 1996).

[Chi89] A. L. Chistov. The complexity of the construction
of the ring of integers of a global field. Dokl. Akad.
Nauk SSSR, 306(5):1063–1067, 1989.

[Coh93] Henri Cohen. A course in computational algebraic
number theory. Springer-Verlag New York, Inc., New
York, NY, USA, 1993.

[Coh00] Henri Cohen. Advanced topics in computational
number theory, volume 193 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 2000.

[Gur03] Venkatesan Guruswami. Constructions of codes
from number fields. IEEE Trans. Inf. Th., 49(3):594–
603, 2003.

[Hal05] Sean Hallgren. Fast quantum algorithms for com-
puting the unit group and class group of a number field.
In Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, pages 468–474, 2005.

[Hun80] Thomas W. Hungerford. Algebra, volume 73 of
Graduate Texts in Mathematics. Springer-Verlag, New
York, 1980. Reprint of the 1974 original.

[Len92] H.W. Lenstra. Algorithms in algebraic number
theory. Bulletin of the AMS, 26(2):211–244, 1992.

[Mar77] Daniel A. Marcus. Number fields. Springer-Verlag,
New York, 1977. Universitext.

[Mil08a] James S. Milne. Algebraic number theory (v3.01),
2008. Available at www.jmilne.org/math/.

[Mil08b] J.S. Milne. Class field theory (v4.00), 2008. Avail-
able at www.jmilne.org/math/.

[PR07] Chris Peikert and Alon Rosen. Lattices that admit
logarithmic worst-case to average-case connection fac-
tors. In STOC ’07: Proceedings of the thirty-ninth an-
nual ACM symposium on Theory of computing, pages
478–487, New York, NY, USA, 2007. ACM Press.

[Rab80] Michael O. Rabin. Probabilistic algorithms in finite
fields. SIAM Journal on Computing, 9(2):273–280,
1980.

[Roq67] Peter Roquette. On class field towers. In Algebraic
Number Theory (Proc. Instructional Conf., Brighton,
1965), pages 231–249. Thompson, Washington, D.C.,
1967.

[Sho97] Peter W. Shor. Polynomial-time algorithms for
prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Computing,
26(5):1484–1509, 1997.

[Ste08] Peter Stevenhagen. The arithmetic of number rings.
In Algorithmic number theory: lattices, number fields,
curves and cryptography, volume 44 of Math. Sci. Res.
Inst. Publ., pages 209–266. Cambridge Univ. Press,
Cambridge, 2008.

[SV05] Arthur Schmidt and Ulrich Vollmer. Polynomial
time quantum algorithm for the computation of the
unit group of a number field. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing,
pages 475–480, 2005.

[Thi95] Christoph Thiel. On the complexity of some prob-
lems in algorithmic algebraic number theory. PhD the-
sis, Universität des Saarlandes, Saarbrücken, Germany,
1995.

483 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

