
Termination of Integer Term Rewriting∗

C. Fuhs, J. Giesl, M. Plücker
LuFG Informatik 2

RWTH Aachen University
Aachen, Germany

P. Schneider-Kamp
Dept. of Mathematics & CS

University of Southern Denmark
Odense, Denmark

S. Falke
CS Department

University of New Mexico
Albuquerque, NM, USA

Abstract
When using rewrite techniques for termination analysis of programs, a main problem are pre-

defined data types like integers. We extend term rewriting by built-in integers and adapt the depen-
dency pair framework to prove termination ofinteger term rewritingautomatically.

1 Introduction

Rewrite techniques and tools have been successfully applied to prove termination automatically for diffe-
rent programming languages. The advantage of rewrite techniques is that they are very powerful for algo-
rithms on user-defined data structures, since they can generate well-founded orders comparing arbitrary
forms of terms. But in contrast to techniques for termination of imperative programs, rewrite techniques
do not support data structures like integers which are pre-defined in most programming languages.

To solve this problem, we extend TRSs by built-in integers and adapt the popular dependency pair
(DP) framework for termination of TRSs to integers in Sect. 2. In Sect. 3, we improve the main processor
of the adapted DP framework by consideringconditionsand explain how to generate suitable orders for
termination proofs of integer TRSs (ITRSs). Sect. 4 evaluates our implementation inAProVE [6].

2 Integer Dependency Pair Framework

We represent each integer by a pre-defined constant of the same name. So the signature is split into
two disjoint subsetsF andFint . Fint containsZ = {0,1,−1, . . .}, B = {true, false}, and pre-defined
operationsArithOp= {+,−,∗,/,%}, RelOp= {>,>,<,6,==, !=}, andBoolOp= {∧,⇒}. An ITRS
R is a (finite) TRS overF ⊎Fint where for all rulesℓ→ r, we haveℓ∈T (F ∪Z∪B,V) andℓ 6∈Z∪B.

The rewrite relation֒→R of an ITRSR is defined as
i
→R∪PD, wherePD is an infinite set of rules to

evaluate the pre-defined operations. For example,PD contains the rules2∗21→ 42, 42 > 23→ true, and
true∧ false→ false. So pre-defined operations can only be evaluated if both their arguments are integers
resp. Booleans. For example, consider the ITRSsR1 = {(1),(2),(3)} wheresum(x,y) computes∑x

i=y i.

sum(x,y) → sif(x > y,x,y) (1) sif(true,x,y) → y+ sum(x,y+1) (2) sif(false,x,y) → 0 (3)

The termsum(1,1) can be rewritten as follows:sum(1,1) →֒R1 sif(1 > 1,1,1) →֒R1 sif(true,1,1) →֒R1

1+sum(1,1+1) →֒R1 1+sum(1,2) →֒R1 1+sif(1 > 2,1,2) →֒R1 1+sif(false,1,2) →֒R1 1+0 →֒R1 1.
We extend theDP framework[1, 5, 7, 8] to ITRSs. The main problem is that proving innermost

termination ofR ∪PD automaticallyis not straightforward, asPD is infinite. Therefore, we will not
consider the rulesPD explicitly, but integrate their handling in the processors of the DP framework. The
resulting method should be as powerful as possible for term rewriting on integers, but at the same time it
should have the full power of the original DP framework when dealing with other function symbols.

For an ITRSR, thedefinedsymbolsD are the root symbols of left-hand sides of rules inR ∪PD,
i.e.,D also includesArithOp∪RelOp∪BoolOp. However, we ignore these symbols when building DPs.

Definition 1 (DP). For all f ∈ D \Fint , we introduce a freshtuple symbolF with the same arity. If
t = f (t1, ..., tn), let t♯ = F(t1, ..., tn). If ℓ → r ∈ R for an ITRSR and t is a subterm of r withroot(t) ∈
D \Fint , thenℓ♯ → t♯ is adependency pairof R. DP(R) is the set of all DPs.

For example,DP(R1) = {SUM(x,y) → SIF(x > y,x,y) (4), SIF(true,x,y) → SUM(x,y+1) (5)}.

∗Supported by the DFG grant GI 274/5-2 and by the G.I.F. grant 966-116.6.

1

Dagstuhl Seminar Proceedings 09411
Interaction versus Automation: The two Faces of Deduction
http://drops.dagstuhl.de/opus/volltexte/2010/2423

Termination of Integer Term Rewriting Fuhs, Giesl, Plücker, Schneider-Kamp, Falke

For any TRSP and ITRSR, aP-chain is a sequence of variable renamed pairss1 → t1,s2 → t2, . . .
from P such that there is a substitutionσ (with possibly infinite domain) wheretiσ →֒∗

R
si+1σ andsiσ

is in normal form w.r.t.֒→R, for all i. We get the following corollary from the standard results on DPs.

Corollary 2. An ITRSR is terminating (w.r.t.֒→R) iff there is no infinite DP(R)-chain.

Termination techniques are now calledDP processorsand they operate on sets of DPs (calledDP
problems). A DP processorProc takes a DP problem as input and returns a set of new DP problems
which have to be solved instead.Proc is soundif for all DP problemsP with an infiniteP-chain there
is also aP ′ ∈ Proc(P) with an infiniteP ′-chain. Termination proofs start with the initial DP problem
DP(R). Then the DP problem is simplified repeatedly by sound DP processors. If all resulting DP
problems have been simplified to∅, then termination is proved. Many processors (like the(estimated)
dependency graph processor[1, 5]) do not rely on the rules of the TRS, but just on the DPs and on the
defined symbols. Therefore, they can also be directly applied for ITRSs.

But an adaption is non-trivial for one of the most important processors, thereduction pair processor.
For a DP problemP, this processor generates constraints which should be satisfied by a suitable order
on terms. Here, we consider orders based onmax-polynomial interpretations[3]. The set ofmax-poly-
nomialsis the smallest set containing the integersZ, the variables, andp+q, p∗q, and max(p,q) for all
max-polynomialsp andq. A max-polynomial interpretation Polmaps everyn-ary function symbolf to
a max-polynomialfPol overn variablesx1, . . . ,xn. This mapping is extended to terms as usual.

Consider the interpretationPol whereSUMPol = x1− x2, SIFPol = x2− x3, +Pol = x1 + x2, nPol = n
for all n∈ Z, and>Pol= truePol = falsePol = 0. For any termt and positionπ in t, t is %Pol-dependent
on π iff there exist termsu,v wheret[u]π 6≈Pol t[v]π . Here,≈Pol = %Pol ∩ -Pol. So in our example,
SIF(b,x,y) is %Pol-dependent on 2 and 3, but not on 1. A termt is %Pol-increasingon π iff u %Pol v
impliest[u]π %Pol t[v]π for all termsu,v. SoSIF(b,x,y) is %Pol-increasing on 1 and 2, but not on 3.

The reduction pair processor requires that all DPs inP are strictly or weakly decreasing and all
usable rulesUR∪PD(P) are weakly decreasing. Then one can delete all strictly decreasing DPs. The
usable rules[1, 7] include all rules that can reduce terms in%Pol-dependent positions ofP ’s right-
hand sides when instantiating their variables with normal forms. Moreover, as%Pol is not monotonic in
general, we require that defined symbols only occur on%Pol-increasing positions of right-hand sides.

When using interpretations into the integers,≻Pol is not well founded. However, for any bound, there
is no infinite≻Pol-decreasing sequence that remains greater than the bound. Hence, the reduction pair
processor transforms a DP problem intotwo new problems. As before, the first problem results from
removing all strictly decreasing DPs. The second DP problem results from removing all DPss→ t from
P that arebounded from below, i.e., DPs which satisfy the inequalitys% c for a fresh constantc.

However, there are two problems: (i)PD is infinite and thus, there are usually infinitely many usable
rules, which is a problem for the automation. (ii) Defined symbols like+ often occur on non-%Pol-
increasing positions (e.g., in the right-hand side of (5) when usingPol above). To solve these problems,
we now restrict ourselves to so-calledI-interpretationswherenPol = n for all n ∈ Z, +Pol = x1 + x2,
−Pol = x1 − x2, ∗Pol = x1 ∗ x2, %Pol = |x1|, and /Pol = |x1| − min(|x2| − 1, |x1|). We say that an I-
interpretation isproper for a term t if all defined symbols except+, −, and∗ only occur on%Pol-
increasing positions oft and if symbols fromRelOponly occur on%Pol-independent positions oft.

The concept ofproper I-interpretations ensures that we can disregard the (infinitely many) usable
rules for the symbols fromRelOpand that the symbols “/” and “%” only have to be estimated “upwards”.
Moreover, we may allow+, −, and∗ on arbitrary positions and we only have to regard the usable rules
w.r.t. R∪BO. Here,BOare the (finitely many) rules for the symbols∧ and⇒ in BoolOp.

Theorem 3 (Reduction Pair Processor for ITRSs). Let R be an ITRS, Pol be an I-interpretation, and
Pbound= {s→ t ∈ P | s%Pol c} for a fresh constantc. Then the following processor Proc is sound.

2

Termination of Integer Term Rewriting Fuhs, Giesl, Plücker, Schneider-Kamp, Falke

Proc(P)=







{P \≻Pol, P \Pbound}, if P ⊆ %Pol∪ ≻Pol, UR∪BO(P) ⊆ %Pol,
and Pol is proper for all right-hand sides ofP ∪UR(P)

{P }, otherwise

To solve the DP problemP = {(4),(5)}, we use an I-interpretationPol whereSUMPol = x1−x2 and
SIFPol = x2−x3. We haveUR∪BO(P) = ∅, as the+- and>-rules are not included inR ∪BO. The DP
(5) is strictly decreasing, but no DP is bounded, sinceSUM(x,y) 6%Pol c andSIF(true,x,y) 6%Pol c for any
value ofcPol. Thus, the processor returns the problems{(4)} and{(4),(5)}, i.e., it does not simplifyP.

3 Conditional Constraints and Generation of I-Interpretations

To solve this problem, we considerconditionsfor inequalities likes
(
%

)
t or s% c. So to include (4) in

Pbound, we do not demandSUM(x,y) % c for all x andy. It suffices to require the inequality only for those
instantiations ofx andy which can be used in chains. So we requireSUM(x,y) % c only for instantiations
σ where (4)’s instantiated right-hand sideSIF(x > y,x,y)σ reduces to an instantiated left-hand sideuσ
for some DPu → v whereuσ is in normal form. Here,u → v should again be variable renamed. As
our DP problem contains two DPs (4) and (5), we get the following twoconditional constraints(by
considering allu→ v∈ {(4),(5)}). We include (4) inPbound if both constraints are satisfied.

SIF(x > y,x,y) = SUM(x′,y′) ⇒ SUM(x,y) % c (6) SIF(x > y,x,y) = SIF(true,x′,y′) ⇒ SUM(x,y) % c (7)

To check whether conditional constraints are valid requires reasoning about reachability w.r.t. TRSs
with infinitely many rules. To this end, we developed rules to simplify conditional constraints. These
rules detect that (6)’s premise is unsatisfiable and hence, (6) is valid. Moreover, they transform (7) into

x % y ⇒ SUM(x,y) % c (8)

To automate the reduction pair processor, one has to generate an I-interpretation satisfying a given
conditional constraint. One starts with anabstract I-interpretation. It maps each function symbol to
a max-polynomial withabstractcoefficients. So we could use an abstract I-interpretationPol where
SUMPol = a0+a1 x1+a2 x2, SIFPol = b0+b1 x1+b2 x2+b3 x3, andcPol = c0. Of course, the interpretation
for the symbols inZ∪ArithOp is fixed as for any I-interpretation (i.e.,+Pol = x1 +x2, etc.).

Then we transform the conditional constraint into aninequality constraintby replacing all atomic
constraints “s% t” by “ [s]Pol > [t]Pol” and “s≻ t” by “ [s]Pol > [t]Pol + 1”. So “SUM(x,y) % c” is trans-
formed into “a0+a1 x+a2 y> c0”. Here, the abstract coefficientsa0,a1,a2,c0 are implicitly existentially
quantified and the variablesx,y∈ V are universally quantified. So (8) is transformed into

∀x∈ Z,y∈ Z (x > y ⇒ a0 +a1x+a2 y > c0) (9)

Now we remove universally quantified variables from such constraints. Rule (A) handles conditions

A. Eliminating Conditions
∀x∈ Z, . . . (x > p∧ ϕ ⇒ ψ)

∀z∈N, . . . (ϕ[x/p+z]⇒ ψ[x/p+z])

∀x∈ Z, . . . (p > x ∧ ϕ ⇒ ψ)

∀z∈N, . . . (ϕ[x/p−z]⇒ ψ[x/p−z])

“x > p” or “p > x” for a poly-
nomial p without x. So (9)
is transformed to∀y∈Z,z∈N

a0+a1 (y+z)+a2y> c0 (10).

B. Split
∀y∈ Z ϕ

∀y∈N ϕ ∧ ∀y∈ N ϕ[y/−y]

To replace all remaining quantifiers overZ by quantifiers
overN, Rule (B) splits the inequality constraintϕ into the cases
wherey is positive resp. negative. Thus, (10) is transformed into
the conjunction of (11) and (12).

3

Termination of Integer Term Rewriting Fuhs, Giesl, Plücker, Schneider-Kamp, Falke

∀y∈ N,z∈ N a0 +a1 (y+z)+a2y > c0 (11) ∀y∈ N,z∈ N a0 +a1 (−y+z)−a2y > c0 (12)

Note that (11) can be reformulated as “∀y∈N,z∈ N (a1+a2)y+a1 z+(a0−c0) > 0”. So we now
have to ensure non-negativeness of “polynomials” over variables likey andz ranging overN, where the
“coefficients” are polynomials like “a1+a2” over the abstract variables. To this end, it suffices to require
that these “coefficients” are> 0 [9]. In other words, now one can eliminate all universally quantified va-
riables likey,zand transform (11) into theDiophantine constraint“a1+a2 > 0 ∧ a1 > 0 ∧ a0−c0 > 0”.

To search for abstract coefficients that satisfy the resulting Diophantine constraints, one fixes upper
and lower bounds for their values. Then one can translate such Diophantine constraints into a SAT
problem which can be handled by SAT solvers efficiently [2]. The constraints resulting from the initial
inequality constraint (9) are for example satisfied bya0 = 0, a1 = 1, a2 = −1, andc0 = 0. With these
values, the abstract interpretationa0 + a1 x1 + a2 x2 for SUM is turned into the concrete interpretation
x1−x2. With the resulting concrete I-interpretationPol, we would haveP≻ = {(5)} andPbound= {(4)}.
The reduction pair processor of Thm. 3 would therefore transform the initial DP problemP = {(4),(5)}
into the two problemsP \P≻ = {(4)} andP \Pbound= {(5)}. Both are easy to solve.

4 Experiments and Conclusion

We adapted the DP framework to ITRSs. To evaluate our approach, we implemented it inAProVE [6]
and tested it on a data base of 117 ITRSs containing also numerous examples from papers on termination
of imperative programs. With a timeout of 1 minute per example, the new version ofAProVE proves
termination of 104 examples (88.9 %). We also tested the previous version ofAProVE (AProVE08) and
the toolTTT2 [10] that do not support built-in integers. Here, we converted integers into terms constructed
with 0, s, pos, andneg (e.g.,−1 is represented as “neg(s(0))”) and we added rules for pre-defined opera-
tions on integers in this representation. AlthoughAProVE08 won the lastTermination Competition2008
for term rewriting andTTT2 was second,AProVE08 resp.TTT2 only proved termination of 24 (20.5 %)
resp. 6 examples (5.1 %). This clearly shows the benefits of built-in integers in term rewriting. For
details on our experiments and to run the new version ofAProVE, we refer tohttp://aprove.
informatik.rwth-aachen.de/eval/Integer/. A longer version of this paper appeared in [4].

References

[1] T. Arts, J. Giesl. Termination of term rewriting using dependency pairs.Th. Comp. Sc., 236:133-178, 2000.

[2] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. SAT solving for termina-
tion analysis with polynomial interpretations. InProc. SAT’07, LNCS 4501, pp. 340-354, 2007.

[3] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. Maximal termination. In
Proc. RTA’08, LNCS 5117, pp. 110-125, 2008.

[4] C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination of integer term rewriting.
In Proc. RTA’09, LNCS 5595, pp. 32-47, 2009.

[5] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combining techniques for
automated termination proofs. InProc. LPAR’04, LNAI 3452, pp. 301-331, 2005.

[6] J. Giesl, P. Schneider-Kamp, and R. Thiemann.AProVE 1.2: Automatic termination proofs in the depen-
dency pair framework. InProc. IJCAR’06, LNAI 4130, pp. 281-286, 2006.

[7] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency pairs.
Journal of Automated Reasoning, 37(3):155-203, 2006.

[8] N. Hirokawa and A. Middeldorp. Automating the dependency pair method.I & C , 199(1,2):172-199, 2005.

[9] H. Hong and D. Jakuš. Testing positiveness of polynomials.J. Aut. Reasoning, 21(1):23-38, 1998.

[10] M. Korp, C. Sternagel, H. Zankl, A. Middeldorp.Tyrolean Termination Tool 2. Proc. RTA’09, LNCS, 2009.

4

	Introduction
	Integer Dependency Pair Framework
	Conditional Constraints and Generation of I-Interpretations
	Experiments and Conclusion

