Termination of Integer Term Rewritirig

C. Ruhs, J. Giesl, M. Plucker P. Schneider-Kamp S. Falke
LUFG Informatik 2 Dept. of Mathematics & CS CS Department
RWTH Aachen University University of Southern Denmark University of New Mexico
Aachen, Germany Odense, Denmark Albuquerque, NM, USA
Abstract

When using rewrite techniques for termination analysis of programs, a main problem are pre-
defined data types like integers. We extend term rewriting by built-in integers and adapt the depen-
dency pair framework to prove terminationinfeger term rewritingautomatically.

1 Introduction

Rewrite techniques and tools have been successfully applied to prove termination automatically for diffe-
rent programming languages. The advantage of rewrite techniques is that they are very powerful for algo-
rithms on user-defined data structures, since they can generate well-founded orders comparing arbitrary
forms of terms. But in contrast to techniques for termination of imperative programs, rewrite techniques
do not support data structures like integers which are pre-defined in most programming languages.

To solve this problem, we extend TRSs by built-in integers and adapt the popular dependency pair
(DP) framework for termination of TRSs to integers in SEct. 2. In $kct. 3, we improve the main processor
of the adapted DP framework by consideritmnditionsand explain how to generate suitable orders for
termination proofs of integer TRSs (ITRSs). SEtt. 4 evaluates our implementaéddiraVE [6].

2 Integer Dependency Pair Framework

We represent each integer by a pre-defined constant of the same name. So the signature is split into
two disjoint subsets”? and.Zin. Zin: containsZ = {0,1,—1,...}, B = {true,false}, and pre-defined
operation&ArithOp= {+,—,*, /,%}, RelOp= {>,>,<,<,==,!=}, andBoolOp= {A,=}. AnITRS

Z is a (finite) TRS overZ W. %, where for all ruled — r, we havel € 7 (F UZUB,¥) and(¢ ZUB.

The rewrite relation— of an ITRSZ is defined as— 4 _pp, WherePD is an infinite set of rules to
evaluate the pre-defined operations. For exanijilegontains the rule®+«21 — 42, 42 > 23 — true, and
true A false — false. So pre-defined operations can only be evaluated if both their arguments are integers
resp. Booleans. For example, consider the ITB3s= {(1),(2),(3)} wheresum(x,y) computesy i, i.

sum(X,y) — sif(x = y,xy) (1) sif(true,X,y) — y+sum(x,y+1) (2) sif(false,x,y) — 0 (3)

The termsum(1,1) can be rewritten as followsum(1,1) g, sif(1 > 1,1,1) <4, sif(true,1,1) <4,
14+sum(1,141) =z 14+sum(1,2) —gp 1+sif(1 > 2,1,2) — 4 1+sif(false,1,2) — 2 14+ 0—4, 1.

We extend theDP framework|d, 5, [7,[8] to ITRSs. The main problem is that proving innermost
termination of% U PD automaticallyis not straightforward, aBD is infinite. Therefore, we will not
consider the ruleBD explicitly, but integrate their handling in the processors of the DP framework. The
resulting method should be as powerful as possible for term rewriting on integers, but at the same time it
should have the full power of the original DP framework when dealing with other function symbols.

For an ITRSZ, the definedsymbolsZ are the root symbols of left-hand sides of rulesztu PD,

i.e., 2 also includeg\rithOpuRelOpuBoolOp However, we ignore these symbols when building DPs.

Definition 1 (DP). For all f € 2\ %, we introduce a frestuple symbolF with the same arity. If
t="f(ty,...,tn), let t* = F(ty,...,tn). If £ —r1 € % for an ITRSZ and t is a subterm of r withoot(t) <
P\ Fin, thent® — t* is adependency paof %Z. DP(Z) is the set of all DPs.

For examplePP(#1) = {SUM(x,y) — SIF(x > y,X,y) (4), SIF(true,x,y) — SUM(x,y+1) (5)}.
*Supported by the DFG grant Gl 274/5-2 and by the G.I.F. grant 966-116.6.

Dagstuhl Seminar Proceedings 09411
Interaction versus Automation: The two Faces of Deduction
http://drops.dagstuhl.de/opus/volltexte,/2010,/2423

Termination of Integer Term Rewriting Fuhs, Giesl, PluckeSchneider-Kamp, Falke

Forany TRSZ? and ITRSZ, a #2-chainis a sequence of variable renamed psirs> t;,S — to, ...
from &7 such that there is a substitutian(with possibly infinite domain) whergo —7, 5,10 andso
is in normal form w.r.t<— 4, for all i. We get the following corollary from the standard results on DPs.

Corollary 2. An ITRSZ is terminating (w.r.t—) iff there is no infinite DRP%)-chain

Termination techniques are now callBdP processorsaand they operate on sets of DPs (call2#é
problem3. A DP processoProc takes a DP problem as input and returns a set of new DP problems
which have to be solved insteadroc is soundif for all DP problems&? with an infinite 42-chain there
is also a2’ € Proc(#?) with an infinite 27’-chain. Termination proofs start with the initial DP problem
DP(#). Then the DP problem is simplified repeatedly by sound DP processors. If all resulting DP
problems have been simplified tw, then termination is proved. Many processors (like (gtimated)
dependency graph processdi; [5]) do not rely on the rules of the TRS, but just on the DPs and on the
defined symbols. Therefore, they can also be directly applied for ITRSs.

But an adaption is non-trivial for one of the most important processorsethetion pair processor
For a DP problemZ?, this processor generates constraints which should be satisfied by a suitable order
on terms. Here, we consider orders basednax-polynomial interpretationf3]. The set ofmax-poly-
nomialsis the smallest set containing the integérshe variables, ang+q, p*q, and maxp, q) for all
max-polynomialsp andg. A max-polynomial interpretation Pahaps evenn-ary function symbolf to
a max-polynomialfpg overn variablesxs, ..., X,. This mapping is extended to terms as usual.

Consider the interpretatioRol whereSUMpg = X1 — X2, SIFpgl = X2 — X3, +pol = X1 + X2, Npgl = N
for all n € Z, and >pg = truepy = falsepo = 0. For any ternt and positionrtin t, t is 7 pg-dependent
on 1t iff there exist termau, v wheret|u]; #pol t[V]. Here,~po = Zpol N Zpoi- SO in our example,
SIF(b,x,y) is Zpoi-dependent on 2 and 3, but not on 1. A tetrnis ~pg-increasingon 7t iff u ZZpg v
impliest[u],; ZZpol t[V]; for all termsu,v. SoSIF(b,X,y) is ZZpo-increasing on 1 and 2, but not on 3.

The reduction pair processor requires that all DPgAnare strictly or weakly decreasing and all
usable rulesZ, pp(2?) are weakly decreasing. Then one can delete all strictly decreasing DPs. The
usable ruled], [7] include all rules that can reduce terms’ifpo-dependent positions of?’s right-
hand sides when instantiating their variables with normal forms. Moreoverp@ss nhot monotonic in
general, we require that defined symbols only occul-gg-increasing positions of right-hand sides.

When using interpretations into the integersy, is not well founded. However, for any bound, there
is no infinite > pg-decreasing sequence that remains greater than the bound. Hence, the reduction pair
processor transforms a DP problem iméa new problems. As before, the first problem results from
removing all strictly decreasing DPs. The second DP problem results from removing al-BPfom
& that arebounded from below.e., DPs which satisfy the inequalisy_ c for a fresh constant.

However, there are two problems: BP is infinite and thus, there are usually infinitely many usable
rules, which is a problem for the automation. (ii) Defined symbols {ikeften occur on norEpg -
increasing positions (e.g., in the right-hand side of (5) when uBaigbove). To solve these problems,
we now restrict ourselves to so-callédhterpretationswherenpg = n for all n € Z, +pol = X1 + Xo,

—Pol = X1 — X2, *po| = X1 * X2, Yopg| = |X1|, and /p0| = |X1| — min(|x2| — 1,|X1|). We say that an I-
interpretation isproper for a termt if all defined symbols except, —, andx* only occur onzpg-
increasing positions dfand if symbols fromRelO ponly occur on-pg-independent positions of

The concept oproper l-interpretations ensures that we can disregard the (infinitely many) usable
rules for the symbols frorRelO pand that the symbols/* and “%” only have to be estimated “upwards”.
Moreover, we may allow+, —, andx* on arbitrary positions and we only have to regard the usable rules
w.r.t. Z UBO. Here,BO are the (finitely many) rules for the symboisand=- in BoolOp

Theorem 3 (Reduction Pair Processor for ITRSt)et # be an ITRS, Pol be an I-interpretation, and
Poound= {S— 1t € P | sz py c} for a fresh constant. Then the following processor Proc is sound.

2

Termination of Integer Term Rewriting Fuhs, Giesl, PluckeSchneider-Kamp, Falke

{ P\ =pol;, P\ Poound}, If P C ZpotU =pol, %zuso(Z?) C Zpol,
Proc(2) = and Pol is proper for all right-hand sides oP U %4 (%)
{2}, otherwise

To solve the DP problem” = {(4), (5)}, we use an I-interpretatiofol whereSUMpg = X3 — X2 and
SIFpol = X2 — X3. We haveZ4 so(Z?) = @, as the+- and>-rules are not included i¥ UBO. The DP
(5) is strictly decreasing, but no DP is bounded, siBod/(x,y) 7 pol c andSIF (true, X,y) 7 poi ¢ for any
value ofcpol. Thus, the processor returns the probleit® } and{(4),(5)}, i.e., it does not simplify?.

3 Conditional Constraints and Generation of I-Interpretations

To solve this problem, we consideonditionsfor inequalities likes 7t or s c. So to include (4) in
Ppounds We do not demanfUM(x,y) - c for all x andy. It suffices to require the inequality only for those
instantiations ok andy which can be used in chains. So we req@itBVi(x,y) 7 c only for instantiations

o where (4)’s instantiated right-hand sif&-(x > y,x,y)o reduces to an instantiated left-hand side
for some DPu — v whereuo is in nhormal form. Hereuy — v should again be variable renamed. As
our DP problem contains two DPs (4) and (5), we get the following ¢tenditional constraintgby
considering alu — v € {(4),(5)}). We include (4) in%ound if both constraints are satisfied.

SIF(x>y,xy) =SUM(X.y) = SUM(xy)Zc (6) SIF(x>y,xy) = SIF(true,x,y') = SUM(xy) Zc (7)

To check whether conditional constraints are valid requires reasoning about reachability w.r.t. TRSs
with infinitely many rules. To this end, we developed rules to simplify conditional constraints. These
rules detect that (6)'s premise is unsatisfiable and hence, (6) is valid. Moreover, they transform (7) into

XZy = SUM(xy) Zc (8)

To automate the reduction pair processor, one has to generate an l-interpretation satisfying a given
conditional constraint. One starts with abstractl-interpretation. It maps each function symbol to
a max-polynomial withabstractcoefficients. So we could use an abstract I-interpretalohwhere
SUMpg) = ag+ a1 X1 +ap X2, SIFpo) = bg+ b1 X1 + b2 %o + bz X3, andcpg = cy. Of course, the interpretation
for the symbols irZ U ArithOpis fixed as for any I-interpretation (i.e5pol = X1 + X2, €tc.).

Then we transform the conditional constraint intoiaaquality constraintoy replacing all atomic
constraints &= t” by “ [gpo = [t]po” @and “s = t”" by “ [gpo = [t]poi +1". S0 “SUM(X,y) = c” is trans-
formed into ‘ag+a; X+ axy > ¢y". Here, the abstract coefficierts, a1, a, ¢y are implicitly existentially
quantified and the variablesy € ¥ are universally quantified. SBl(8) is transformed into

VXEZYEZ (Xx=y = ap+aix+ay>) 9)

Now we remove universally quantified variables from such constraints. Rule (A) handles conditions
“X 2 pn Or up 2 Xu for a poly_

nomial p without x. So [9)
VXEZ,... (X= VXEZ,... >
is transformed to'y€ Z,ze N e x>pré=0) o (p>XA 0> 0)

20-+ar (y+2)+ay>co (10). VZEN,... (¢[x/p+F=[x/p+Z) VzeN,... (¢[x/p—2 = Y[x/p—72)
To replace all remaining quantifiers ov&rby quantifiers 5" Split
overN, Rule (B) splits the inequality constraigitinto the cases

wherey is positive resp. negative. Thus, (10) is transformed in
the conjunction of (11) and (12).

A. Eliminating Conditions

wez ¢
VyeN ¢ A WyeN ¢[y/—y]

—

Termination of Integer Term Rewriting Fuhs, Giesl, PluckeSchneider-Kamp, Falke

VWeN,zeN ay+a(y+2)+apy>co (11) WweN,zeN ay+a;(—-y+2—apy=>c (12

Note that (11) can be reformulated &/c N,ze N (a3 +a)y+a1z+ (ap— Co) = 0”. So we now
have to ensure non-negativeness of “polynomials” over variabley bkelz ranging oveilN, where the
“coefficients” are polynomials liked; +a,” over the abstract variables. To this end, it suffices to require
that these “coefficients” are 0 [9]. In other words, now one can eliminate all universally quantified va-
riables likey, zand transform (11) into thBiophantine constrainta; +a, >0 A a; >0 A ag—cy > 0".

To search for abstract coefficients that satisfy the resulting Diophantine constraints, one fixes upper
and lower bounds for their values. Then one can translate such Diophantine constraints into a SAT
problem which can be handled by SAT solvers efficieritly [2]. The constraints resulting from the initial
inequality constraint{9) are for example satisfiedagy= 0, a; = 1, a, = —1, andcy = 0. With these
values, the abstract interpretatiag+ ai x; + axxp for SUM is turned into the concrete interpretation
X1 — X2. With the resulting concrete I-interpretati®ol, we would have?,. = {(5)} and Zpouna= {(4)}.

The reduction pair processor of Thigh. 3 would therefore transform the initial DP pro#lem{(4), (5)}
into the two problems?” \ 2. = {(4)} and & \ Ppound= {(5)}. Both are easy to solve.

4 Experiments and Conclusion

We adapted the DP framework to ITRSs. To evaluate our approach, we implementédProME [6]

and tested it on a data base of 117 ITRSs containing also numerous examples from papers on termination
of imperative programs. With a timeout of 1 minute per example, the new versiBR@VVE proves
termination of 104 examples (88.9 %). We also tested the previous versii?ro¥/E (AProVE08) and

the tool T, [10] that do not support built-in integers. Here, we converted integers into terms constructed
with 0, s, pos, andneg (e.g.,—1 is represented aség(s(0))”) and we added rules for pre-defined opera-
tions on integers in this representation. AlthodgProVEOS8 won the lasiTermination Competitio2008

for term rewriting andIT, was secondAProVEOS8 resp.TqT» only proved termination of 24 (20.5 %)
resp. 6 examples (5.1 %). This clearly shows the benefits of built-in integers in term rewriting. For
details on our experiments and to run the new versiolABfoVE, we refer tohttp://aprove.
informatik.rwth-aachen.de/eval/Integer/. A longer version of this paper appearedLih [4].

References

[1] T. Arts, J. Giesl. Termination of term rewriting using dependency painsComp. S¢236:133-178, 2000.

[2] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. SAT solving for termina-
tion analysis with polynomial interpretations.Bmoc. SAT'07LNCS 4501, pp. 340-354, 2007.

[3] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. Maximal termination. In
Proc. RTA'O8LNCS 5117, pp. 110-125, 2008.

[4] C.Fuhs,J. Giesl, M. Plucker, P. Schneider-Kamp, and S. Falke. Proving termination of integer term rewriting.
In Proc. RTA'09 LNCS 5595, pp. 32-47, 2009.

[5] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combining techniques for
automated termination proofs. Rroc. LPAR'04 LNAI 3452, pp. 301-331, 2005.

[6] J. Giesl, P. Schneider-Kamp, and R. ThiemaARroVE 1.2: Automatic termination proofs in the depen-
dency pair framework. IiProc. IJCAR’06 LNAI 4130, pp. 281-286, 2006.

[7] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency pairs.
Journal of Automated Reasonirj/(3):155-203, 2006.

[8] N. Hirokawa and A. Middeldorp. Automating the dependency pair meth&d, 199(1,2):172-199, 2005.
[9] H. Hong and D. Jakus. Testing positiveness of polynomialaut. Reasoning1(1):23-38, 1998.
[10] M. Korp, C. Sternagel, H. Zankl, A. Middeldorpyrolean Termination Tool 2. Proc. RTA'09 LNCS, 2009.

	Introduction
	Integer Dependency Pair Framework
	Conditional Constraints and Generation of I-Interpretations
	Experiments and Conclusion

