
Simplification of Controlled PUF primitives

Boris Škorić and Marc X. Makkes

Physical Unclonable Functions (PUFs) are physical objects that are unique, prac-
tically unclonable and that behave like a random function when subjected to
a challenge. Their use has been proposed for authentication tokens and anti-
counterfeiting. A Controlled PUF (CPUF) consists of a PUF and a control layer
that restricts a user’s access to the PUF input and output. CPUFs can be used
for secure key storage, authentication, certified execution of programs, and cer-
tified measurements. In this paper we modify a number of protocols involving
CPUFs in order to improve their security. Our modifications mainly consist of
encryption of a larger portion of the message traffic, and additional restrictions
on the CPUF accessibility. We simplify the description of CPUF protocols by
using flowchart notation. Furthermore we explicitly show how the helper data
for the PUFs is handled.

The concept of a CPUF was introduced by Gassend et al. in 2002. A CPUF is
a combination of a PUF and a control layer in which the PUF is inseparably
embedded. The control layer completely shields off the PUF inputs and outputs
from the outside world. Any communication with the PUF has to occur through
the control layer electronics. Any attempt to force the components apart will
damage the PUF. A CPUF has considerably stronger security than a bare, un-
protected PUF, since attackers cannot probe and query the PUF at will. In effect,
the CPUF is a sort of trusted computing environment. A way was presented by
Gassend et al. to employ this trusted environment for the purpose of outsourcing
computations. The idea is roughly as follows. First, Challenge-Response Pairs
(CRPs) of the PUF are handed to users in a secure way. Everybody can remotely
run programs on the CPUF control layer. There is a special Application Pro-
gramming Interface (API) for accessing the PUF. With the help of this API a
user can instruct the CPUF to generate a ‘proof’ of the correct execution of the
outsourced program. This proof can be thought of as a MAC over the executed
program and the program output, using the PUF response as the MAC key. If
the user has a valid CRP, he can verify the MAC. This procedure is referred to
as ‘certified execution’. The proof is verifiable only by the user who sends the
task to the CPUF. This was later generalized to a proof (‘E-proof’) that can be
verified by third parties as well.
In this paper we propose a modification of the main CPUF security primitives.
These modifications improve the overall security by putting additional restric-
tions on access to the CPUF and by encrypting more of the exchanged messages.
We represent the protocols in a different way from Gassend et al., namely in the
form of flowcharts, which improves the comprehensibility of the protocols and of
their security properties. In the API formulation, hashes of API programs play an
important role in the security primitives. In some cases, a function call involves
a hash of a piece of the program containing the function call. We feel that such a
formulation is needlessly complicated. Especially the self-referential nature of the

Dagstuhl Seminar Proceedings 09282 
Foundations for Forgery-Resilient Cryptographic Hardware 
http://drops.dagstuhl.de/opus/volltexte/2010/2404



program hashes is confusing. In our flowchart notation, each security primitive
corresponds to a ‘mode’ of the CPUF, in which the control layer has a certain
fixed input/output behaviour. A user can instruct a CPUF in which mode to
operate, but cannot change the CPUF’s sequence of actions in that mode. For
each mode we present a flowchart. There are no hashes of control layer pro-
grams; the security clearly derives from the secrecy of the challenge-response
pairs. Avoiding the program hashes allows for more efficient implementation.

In contrast to Gassend et al., we do not allow just anybody to outsource com-
putations to the CPUF, but we first demand that a user establishes a secure
channel with the control layer, based on a shared CRP. Any further communi-
cation has to take place through this channel. The advantage of this approach
is twofold: (i) it provides more data confidentiality, e.g. the outsourced job and
the results are not revealed to eavesdroppers, and (ii) it restricts the opportuni-
ties for attacks. Finally, we explicitly show how the helper data is handled; this
makes no essential difference with respect to the prior literature but completes
the data flow overview.

Fig. 1. Flowcharts for bootstrapping, Secure Channel setup and renewal. P =pre-
challenge; C = PUF challenge; w =helper data; k =key; R = response.

Fig. 2. The E-proof generation and verification are run through a Secure Channel (SC).
The SC-key in use is the hash of the secret key k; this k never leaves the CPUF. The
key k is used by the MakeProof function to certify the program hash, the result of the
computation, and the SC setup parameters C,w.




