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Abstract

This paper presents a novel unsupervised robust clustering tech-
nique based on the Gravitational Law and the second Newton’s
motion Law. The technique automatically determines the num-
ber of clusters in the target data set. Basically, each data record
in the source data set is considered as an object in the feature
space. The objects are moved by using the gravitational force
and the second motion law. Because the clusters define a disjoint
collection of sets, an optimal disjoint set union-find structure is
used to store and update the clusters that are being conformed
by closest objects. The proposed technique is robust to noise,
can be used to generate a partition of the data set at multiple
resolution levels, and can also be used to extract seeds to form a
good summary of the data. Experiments with synthetic and real
data were conducted to show the performance of the proposed
clustering technique.

keywords: Clustering, Gravitational, Robust, Un-
supervised, Scalable

1 Introduction

Clustering is an unsupervised learning technique that
takes unlabeled data points (data records) and classifies
them in different groups or clusters. This is done in
such a way that points assigned to the same cluster
have high similarity, while the similarity between points
assigned to different clusters is low [12]. Many clustering
techniques have relied on the assumption that a data set
follows a certain distribution and is free of noise. In fact,
if noise is introduced, several techniques based on the
least square estimate are spoiled [19]; such is the case of
k-means [16] and fuzzy k-means [3]. Several approaches
have tried to tackle this problem; some of them based on
robust statistics [11, 19], and others based on modifying
the objective of the fuzzy centroid mean to make the
parameter estimate more robust to noise [14, 2, 8]. In
all of these methods, the number of cluster is given in
advance. When the number of clusters is not known, the
clustering techniques are called unsupervised [13, 9, 18].

We propose a novel unsupervised robust clustering
technique based on the Gravitational Law and the sec-
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ond Newton’s motion Law. Basically, each data record
in the source data set is considered as an object in the
feature space and are moved by using the gravitational
force and the second motion law. Gravitational concepts
have been applied to visualize clustering results [5] and
for clustering analysis [22]. The gravitational clustering
algorithm proposed by Wright in [22] is an hierarchi-
cal agglomerative algorithm: the gravitational forces are
used as mechanisms for merging particles (data points)
until only one particle (cluster) remains in the system.
The following is a list of the most important properties
of the dynamic simulation proposed by Wright:

e To determine the new position of a single particle
all the remaining particles in the data set are used.

e When two particles (initially data points) are
enough close to be merged, one of them is removed
from the simulation and the mass of the other is
increased with the mass of the particle removed

e There is a maximum distance that each data point
can move in each iteration of the algorithm. This
is a parameter that has to be fixed by the user.

e As mentioned previously, the simulation is termi-
nated when only one particle remain in the system.

In this paper we propose a new dynamic simulation
strategy (based on gravitational clustering) that can be
used as a clustering algorithm. The main advantages
over the Wright techniques are speed, robustness and
unsupervised (it does not need to know the number
of clusters in advance). This paper is divided in
four sections. Section 1 presents the basic theoretical
aspect of Newton motion laws, the gravitational law
and the optimal disjoint union-find structure used in
the development of the proposed approach. Section
2 describes the proposed approach, compares it with
agglomerative hierarchical clustering techniques, and
gives its computational complexity. Section 3 presents
the experiments performed over synthetic and real data
sets, along with their results and analysis. Section 4
draws some conclusions.

1.1 Newton Motion Laws Kinematics is the sci-
ence of describing and explaining the motion of objects
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in an universe by using some models ([6, 21, 17, 20]).
Isaac Newton (1642-1727) developed a motion model,
The Newton Motion Laws, that describe and ex-
plain with high precision the motion of macro-objects
in our Universe, but cannot explain and describe the
motion of micro-objects. This section will present the
Newton motion laws for a moving object describing a
straight line trajectory in the n-dimensional Euclidean
space.

1.1.1 1-Dimensional Motion Laws Let be z an
object in the Euclidean space, and ¢ be a real number
representing an instant in time. Let x(¢) be the object
position at time ¢, s(t) is the object speed at time ¢,
a(t) is the object acceleration at time ¢, and F(t) is the
force applied on the object at time t. The speed and
acceleration of an object are defined respectively as:

(1.1)

alt) = ds(t) _ d?z(t)

dt dt?

The speed of an object is the derivative function

of the position function, and the acceleration is the

derivative function of the speed function. If the speed

or acceleration functions of an object is known, the
position can be deduced as:!:

(1.2)

(1.3)

z(t) = /Ots(t)dt = /Ot [/Ot a(t)dt] dt

If the acceleration of the object is a constant
function then, the speed and position are:

(1.4)

s(t) = s(0) + at (1.5)

z(t) = z(0) + s(0)t + %

(1.6)

where, z(0) is the initial object position, s(0) is the
initial object speed, and a is the constant value for the
object acceleration.

Equations (1.5) and (1.6) can be used to simulate
the movement of an object when the position and speed
functions cannot be determined analytically. In this
way, the acceleration is considered constant during an

TIn general the acceleration function can be defined as a

differential equation. Therefore, the speed and position functions
are found by solving such a differential equation.

interval of time A(t), and the speed and position of the
object at time ¢ + A(t) are approximated as:

s(t+ A1) = s(t) + alt) At) (1.7)

a(t) A1)

2

Finally, if m, is the mass of the object x, then
the force exerted on the object is defined according to
Newton’s second motion Law as follows:

2(t + A1) = 2(t) + s(t) A(t) + (1.8)

F(t) = mya(t) (1.9)
1.1.2 n-Dimensional Motion Laws for straight
line trajectories The n-dimensional motion laws for
straight line trajectories are the vectorial extension of
the 1-dimensional motion laws. Let = be an object in
the n-dimensional euclidean space, that is moving in the
direction given by the vector d, and ¢ be a real number
representing an instant of time. Let z(t) be the object
position at time ¢, v(t) be the object velocity at time

t, and a(t) be the object acceleration at time ¢. The
velocity and the acceleration vector are defined as the
vectorial extension of (1.1) and (1.2) respectively:

_ st =

o) = 15 (1.10)
) = ag) d (1.11)

Where, HjH is the magnitude of the direction

vector 7, and a(t) and s(t) are the acceleration and
speed of the object in the moving direction 7 If the
acceleration is constant, then the position and velocity
are given by the vectorial extension of (1.5) and (1.6)
respectively:

o(t) = v(0) + @t (1.12)

2

(1) = 2(0) + v(0) * t + 7Tt (1.13)

If the acceleration is not constant, then the move-
ment of an object can be approximated by using the
vectorial extensions of (1.7) and (1.8) respectively:

ot + A(t)) = v(t) + alD A(t) (1.14)

2(t + A®) = 2(t) + v A®R) + w (1.15)
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Figure 1: Gravitational field

1.2 Gravitational Law These days, the most ac-
cepted theory for explaining the structure of the Uni-
verse and the motion of celestial bodies is the gravita-
tional law developed by Isaac Newton. The Universal
Law of Gravitation states that:

“Fach body ezerts an attractive force on any other body.
The force is directed along the direction joining the centers
of the two bodies. Its intensity is directly proportional to the
product of their masses, and inversely proportional to the
square of their center’s distance.”

The force exerted from one object x over another
object y is expressed by the following equation:

Gmgymy
d (z(t), y(t))”
where, m, and m, are the masses of the two objects,
d (z(t),y(t)) is the Euclidean distance between the two
objects, and G is the Universal gravitational constant
(6.67 x 10~11).

The gravitational force exerted by an object over
other objects defines a gravitational field around the
object, as shown in Figure 1.

In this way, an object y is exposed to the gravi-
tational field of object x, that pulls y toward the cen-
ter of this field, with an intensity given by the grav-
itational force, and with the direction defined by the

vector d(—ts = z(t) — y(¢). Using the direction vector 7,
the gravitational force equation can be rewritten as:

F(t) = (1.16)

_ Gmgzmy
el

Figure 2.a shows the movement directions of two objects
(y and 2) that are exposed to the gravitational field of
a third object (x). In Figure 2.a, only the gravitational
field of z is taking into account, i.e., the gravitational
fields of y and z are not considered.

To calculate the final direction of an object’s mo-
tion, it is necessary to calculate the magnitude of the
gravitational force that is exerted on the object for every
other object in the universe. Figure 2.b shows the final
direction of motion and force magnitude of y according

F (t) (1.17)

moving direction
of z

Z moving direction

ofy
force magnitude
and direction
duetoz

force magnitude
and direction
y Y  duetox

(a) Movement direc-
tions of objects ex-
posed to a gravita-
tional field

(b) Movement direc-
tion of an object un-
der the gravitational
field of two objects

Figure 2: Movement directions of objects exposed to
gravitational fields

to the magnitude of the gravitational force exerted by
z and z. The size of an object indicates its mass.
From Newton’s second law of motion (1.9), the
acceleration and acceleration vector of an object, y, due
to the gravitational field of an object, z, are given by:

_ Gmy .
a(t) 7”‘1(75 5 (1.18)
a(t) = d(8) HZT:Z (1.19)

Because the acceleration function is a complex
differential equation, to find the position function of
a given object under the influence of one or more
gravitational fields is not an easy task . Instead, the
movement of an object is approximated by using the
acceleration vector given by (1.19) in the movement
equations (1.14) and (1.15). Therefore, the movement
equations of an object y under the influence of the
gravitational field of an object = are:

vt + AW) = v(t) + d HG7m|3 A(#) (1.20)
bt + A0) = 50 + o)A +dB 2D (91

2acd]

1.3 Optimal Disjoint Set Union-Find Structure
A disjoint set Union-Find structure is a structure that
supports the following three operators [4]:
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Figure 3: Optimal disjoint set union-find structure

o MAKESET(z): Create a new set containing the
single element z

e UNION(z, y): Replace the two sets containing z
and y by their union.

e FIND(z): Return the name of the set containing
the element x.

In the optimal disjoint set union-find structure, each set
is represented by a tree where the root of the tree is the
canonical element of the set, and each child node has
a pointer to the parent node (the root node points to
itself) [4]. Figure 3.a shows all the possible trees for
representing the set {1,2,3} with canonical element 1.
Basically, the three operations in the optimal structure
work as follows:

e The MAKESET(z) creates a set that points to itself

e The FIND(z) returns the canonical element of the
set containing x by traversing the tree using the
parent pointer, and compresses the path between
the node x and the canonical element of the set
by setting the canonical element as parent node of
each element in the path from z to the canonical
element. Figure 3.b shows the path compression
performed by the FIND operator.

e The UNION(z, y) operator applies the path com-
pression over the two set trees and makes the

canonical element of the set with lower rank to
point to the canonical element of the other set.
The information about the set rank is stored in the
canonical element of the new set. Figure 3.c shows
the execution of the UNION operator.

It has been proved that the time complexity of applying
any sequence of m UNION and FIND operations on n
elements is at most O ((m + n)log*n), where log*m
is the inverse function of the Ackerman function [4].

2
Ifn < 2222 ~ 109728 then log*n < 5. Therefore
the time complexity of any sequence of m UNION and
FIND operations on n elements is at most O (m + n) in
practice.

2 Proposed Approach

We developed a robust clustering technique based on
the gravitational law and Newton’s second motion law.
In this way, for an n-dimensional data set with N data
points, each data point is considered as an object in the
n-dimensional space with mass equal to 1. Each point
in the data set is moved according to a simplified version
of Equation (1.21). The basic ideas behind applying the
gravitational law are:

1. A data point in some cluster exerts a higher grav-
itational force on a data point in the same cluster
than on a data point that is not in the cluster.
Then, points in a cluster move in the direction of
the center of the cluster. In this way, the proposed
technique will determine automatically the clusters
in the data set.

2. If some point is a noise point, i.e., does not belong
to any cluster, then the gravitational force exerted
on it from other points is so small that the point is
almost immobile. Therefore, noise points will not
be assigned to any cluster.

The simplified version of Equation (1.21) used for
moving a data point according to the gravitational field
generated by another point (y) is:

st+1) =at) + d—2— (2.22)

[

where, 7 = 7 — 7, and the constant G includes
the division by 2 defined in 1.21.

We considered the velocity at any time, v(t), as the
zero vector and A(t) = 1. In this way the algorithm
does not need extra memory for storing the velocity
vector of each data point. Also the algorithm is faster
because the number of operations is lower than using
the velocity vector.
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Due to a constant gravitational force, after a huge
(infinite) number of iterations, all the points will be
moved to the same position (big crunch), therefore
defining a single cluster. We eliminate this effect by
reducing the gravitational constant G each iteration in a
constant proportion (decay term: A(G)). The proposed
clustering algorithm is:

GRAVITATIONAL( z, G, A(G), M, ¢€)

1 for i=1to N do

2 MAKE(%)

3 for i=1to M do

4 for j=1 to N do
5 k = random point index such that k # j
6 MoVE( z; , zx ) (see Eq (2.22))

7 if dist?( z; , 1 ) <¢ then UNION( j, k)
8 G =(1-A@)*G

9 fori=1to N do

10  FinDp(3)

11 return disjoint-sets

In each iteration, the algorithm creates the clusters
by using the optimal disjoint set union-find structure
and the distance between objects (after simulating the
movement of the object by applying the gravitational
force). When two points are merged, both of them are
kept in the system while the associated set structure
is modified. In order to determine the new position of
each data point, the proposed algorithm only selects
another data point in a random way and move both
of them according to equation 2.22 (MOVE function).
The algorithm returns the sets stored in the disjoint
set union-find structure. It is possible to implement
the disjoint sets structure by using an integer array of
size N, where at position i, is stored the index of the
canonical object of the set containing the data point 4.

Because the previous algorithm assigns every point
in the data set (noisy or normal) to one cluster, it is
necessary to extract the valid clusters. We used an
extra parameter («) to determine the minimum number
of points (percentage of the training data set) that a
cluster should include in order to be considered a valid
cluster. In this way, we used an additional function
GETCLUSTERS that takes the disjoint sets generated by
the Gravitational clustering algorithm and returns the
collection of clusters that have at least the minimum
number of points defined:

GETCLUSTERS( clusters, alpha, data )
newClusters = §

MIN POINTS = aN
for i=0 to number of clusters do
if size( cluster; ) >MIN _POINTS then
newClusters = newClusters U { cluster; }
return newClusters

S UL LW N

Table 1: Similarities between the proposed approach
and Agglomerative Hierarchical Clustering

| Property | Gravitational | Agglom. Hierarchical |
initial step | N sets with 1 point N sets with 1 point
iterative Two sets or more can be | Two sets are joined
steps joined according to according to distance

gravitational force

and distance

2.1 Time Complexity Analysis The time com-
plexity of the MOVE function is constant (the space
dimension is considered constant in this analysis). The
function UNION in executed in the inner for loop j (lines
4-7) at most once, then the complexity of the inner loop
is bounded by N times the execution of the function
UNION. Therefore the time complexity of the inner
loop j is O (N) in practice. The same analysis is done
for loop in lines 9-10. The time complexity of the first
loop (lines 1-2) is O(N) because the time complexity
of the MAKE function is constant. The time complex-
ity to get the disjoint sets is O(N) by traversing the
array of canonical index and separating the objects ac-
cording to it. The parameter M defines the number
of iterations that the algorithm will be executed. This
parameter is independent of the data set and can be
considered as constant (in the experiments performed
here, was fixed to 500. Therefore, the time complex-
ity of the algorithm is O (N). It is clear that the time
complexity of the GETCLUSTERS function is generally
such that O(#clusters) < O(N). Then the time com-
plexity of the complete algorithm (GRAVITATIONAL and
GETCLUSTERS) is O(N) in practice.

2.2 Comparison to agglomerative hierarchical
clustering techniques The Gravitational approach
(G-Algorithm) can be seen as most similar to ag-
glomerative clustering techniques than to partitioning
techniques[12]. Table 1 shows the similarities between
the G-Algorithm with the agglomerative hierarchical
clustering technique.

The G-Algorithm starts with N different clusters,
each one with only one data point, in the same way that
agglomerative clustering techniques do. In each itera-
tion, more than two clusters can be joined if two of their
points are randomly selected and are close enough (with
a distance bounded by €). In agglomerative hierarchical
clustering, two clusters are always joined in each itera-
tion after similarities between all clusters are calculated.
The main differences between the proposed approach
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Table 2: Differences between the proposed approach and
Agglomerative Hierarchical Clustering

| Property | Gravitational | Agglom. Hierarchical |
Complexity O(N) O(N%logN)
Storage cost O(N) O(N?)

Final result Depend on G, A(G) one big cluster

mobile static

Point dynamics

and agglomerative hierarchical clustering techniques are
summarized in table 2. Clearly, the G-algorithm has
several advantages over agglomerative hierarchical tech-
niques, one of them being the time complexity.

2.3 Comparison with Wright’s work Although
the proposed algorithm uses the gravitational law in
the same way that the Wright’s work [22] does, several
differences can be established between them. Table 3
summarizes the main differences between them.

3 Experiments and Results

To illustrate the applicability of the gravitational clus-
tering (G), tests were conducted over three different syn-
thetic data sets (Gaussian clusters: elliptic and spher-
ical) and over a real data set. For each data set, we
normalized the data points to the n-dimensional hyper-
cube [0,1]™, according to the maximum and minimum
values found in the set. Here, n is the number of at-
tributes.

3.1 Synthetic data sets Tests were performed on
the three noisy data sets shown in figure 4. The
total number of points, IV, the number of noisy points,
N,, and the generating center coordinates for these
Gaussian clusters are listed in table 4, respectively. The
values for the G-clustering parameters were: number
of iterations M = 500, initial gravitational force G =
7 % 1079, gravitational force loss A(G) = 0.01, and
minimum distance ¢ = 1074,

Table 4 shows the average and variance of the
performance over ten runs of the proposed approach,
k-Means and fuzzy k-Means. The number of iterations
in the fuzzy k-means and the k-means algorithms were
150 in order to perform a fair comparison between the
time expended by the G-clustering algorithm and these
methods. It is clear that in the first data set (with five
clusters), 100 iterations in k-means or fuzzy k-means
expend the same or more time than 500 iterations of
the G algorithm.

As is shown in table 4, the proposed approach is

robust to noise and in every case, the result were almost
the same (variance values lower than 2), and close to the
real centers. On the other hand, k means and fuzzy k
means were very sensible to noise and the results varied
from one run to the other drastically. In some case the
variance was very high (see third center in second data
set). Figure 5 shows the clusters obtained by the G-
algorithm over the data sets in a sample run. It is clear
that the proposed approach is able to find the clusters
independently of their shape.

For the purpose of an easy presentation of the G-
Algorithm properties, we limited the analysis to the first
data set. Additionally, we took the parameter values
reported here, and we varied each parameter (keeping
the others constant) in order to analyze the sensitivity
of the proposed approach to such parameters.

3.1.1 Scalability and Dynamics of the G-
Algorithm Figure 6 shows the movement of the data
points in a simple run after different number of itera-
tions. Clearly, points inside clusters move in the direc-
tion of their cluster centers while noisy points stay in
almost the same position, confirming our hypothesis of
the cluster agglomeration.

Figure 6.b and 6.c show the concentration of points
around the cluster centers after different number of
iterations. Due to the randomness in the G-Algorithm,
some points inside clusters were not moved in the
direction of the cluster centers. According to this
behavior, it is possible that the G-algorithm does not
require the entire data set to determine the clusters.

In order to determine the scalability of the proposed
approach, we ran the G-algorithm using different per-
centages of the data set (between 1% and 100% with
differences of 1%). The portion of the data set used was
randomly chosen from the original data set. This pro-
cess was repeated 50 times and the reported results are
the average over these repetitions, (see Figure 9).

According to figure 9, the G-algorithm is able to find
the clusters in the data set using only 20% (or more) of
the data set. Therefore, it is not necessary to use the
entire data set to obtain good results.

3.1.2 Sensitivity to a The G-Algorithm uses the
parameter a to extract the valid clusters according to
their size. For the experiments performed with the
synthetic data sets, we found that o = 0.03 (clusters
with size equal or bigger than 3% of the full data set) is
a good value. Figure 8.a shows the number of clusters
for different values of «, while figure 8.b shows the
number of points covered by the clusters (included in
some cluster with the given size). These values are the
average over 50 experiments that were performed.
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Table 3: Comparison of the proposed approach with Wrigh’s work

Property | Proposed

‘Wright’s [22]

Complexity O(N)

O(N?)

End Condition Number of iterations

Only one particle remaining

Particles Number | The same each iteration: N

Variable: according to the merging process

Particles mass Constant = 1

Variable: according to the merging process

Gravity force

The same for each particle, but
decrease with the number of iteration

Different for each particle,
depend on the mass of the particle

Table 4: Performance of different clustering algorithm on the synthetic data sets

‘ Set ‘ N ‘ Np Generating | G-Clustering [ k-Means fuzzy k-Means
centers | Average [ Variance | Average [ Variance | Average [ Variance |
T | 2530 | 626 (50,50) (49.7, 48.4) | (0.16,002) | (508, 52.5) | (0.06, 0.27) | (51.0, 52.33) | (0.02, 0.0)
(150,80) (151.3,77.8) | (0.31, 0.30) | (162.9,70.3) | (2.53,1.82) | (161, 69.6) | (2.35, 0.10)
(100,150) | (100.9, 148.2) | (0.54, 0.97) | (116.6, 145.1) | (767, 3.71) | (81.7, 165.6) | (67, 176)
(170,160) | (170.2, 160.1) | (0.22, 0.23) | (64.3, 197.4) | (83, 236.7) | (165.2,156.9) | (583, 46)
(200,200) | (201.0, 197.6) | (0.49, 0.58) | (195.4, 193.8) | (4.83, 31.3) | (202.7, 203.3) | (8.53, 22.0)
2 | 1157 | 346 (50,50) (50.3, 49.5) | (1.66, 1.17) | (65.8,67.3) | (3.75, 3.49) | (67.6, 64.9) (0.0, 0.0)
(90,90) (89.5, 89.1) | (0.01, 0.05) | (190.3,84.3) | (291, 125) | (113.5, 169.3) | (0.16, 0.07)
(150,150) | (149.2, 147.6) | (0.17,0.21) | (124.7,168) | (939, 166) | (174.3,136.7) | (0.0, 0.11)
3 (50,50) (50.4, 49.2) | (0.91, 0.01) | (58.3, 59.3) | (89.5, 89.2) | (52.1, 49.6) (0.0, 0.0)
(100,100) (99.7, 101.5) | (0.20, 5.98) | (152.6, 88.4) | (1482, 128) | (115.8, 103.1) | (0.0, 0.0)
(150,210) (147.6, 209.7) | (0.09, 0.20) | (138.5, 204.5) | (5.88, 6.0) | (145.2, 207.6) | (0.0, 0.0)

Figure 8 suggests that heuristic techniques can
be applied to determine an appropriate value of this
parameter. Because this parameter is only used in the
extraction of the “valid” clusters (does not affect the
gravitational scheme), this parameter can be used for
analyzing the internal structure of the data set after
the G-Algorithm is applied. For example, according to
figure 8.a the data set 1 has two big clusters, each one
with a size of 10% of the data set size. Figure 7 shows
the clusters obtained by varying the a parameter in a
sample run.

3.1.3 Sensitivity to the Initial Gravitational
force (G) G is the most important parameter in the
G—Algorithm. If it is fixed to a big value, the G-
algorithm will form only one cluster (limit behavior).
On the other hand, if it is fixed to a very low value, the
G-algorithm will not create clusters at all, (see Figure
10). According to figure 10 (using logarithmic scale),
the results of the G-Algorithm rely heavily on the value
given to this parameter.

After careful analysis, we could not define a “univer-
sal” value for this parameter, i.e., a value that works for
all data sets (real or synthetic). Therefore, an optimal
value for this parameter depends on the data set, and
has to be chosen carefully.

3.1.4 Sensitivity to the Gravitational Force De-
cay (A(GQ)) A(G) is avery important parameter in the
G-algorithm. If it is fixed to a big value, for example,

0.1, the G-algorithm will decrease the gravitational force
so fast, that the data points will not have a chance to
form clusters at all. On the other hand, if it is fixed
to a low value, for example, 0.001, the G-algorithm will
decrease the gravitational force so slowly, that the data
points will form only one cluster (the limit behavior),
see Figure 11. According to figure 11, the G-Algorithm
is very sensitive to this parameter. Several experiments
inferred that the best value for this parameter is 0.01.

3.1.5 Sensitivity to Merging Distance (¢) We
varied the epsilon parameter, £, between 0.1 and le — 6
to determine the sensitivity of the G-algorithm to this
parameter. Figure 12 shows that the G-Algorithm is
not very sensitive to this parameter. Only when this
parameter is set to a big value (> 0.01), the results
obtained by the G-algorithm become bad (only one
cluster). This behavior is expected because a value of
0.01 indicates that two points at a distance of 0.1 are
in the same cluster (0.1 is almost 10% of the maximum
distance between any two points in the data set).

3.1.6 Suggested parameter values In general, al-
most all the parameters can be set to a constant value.
The only parameter that cannot be set in advance is the
initial gravitational force (G). According to our experi-
ments, the appropriate values for the other parameters
are: gravitational force decay A(G) = 0.01, cluster size
a = 0.03 = 3%, and epsilon € = le — 4.
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(a) Five clusters data set (b) Three spherical clusters (c) Three clusters elliptical
data set data set

Figure 4: Synthetic data sets

(a) Clusters ’radius’ with (b) Clusters ’radius’ with (c) Cluster ’radius’ with
noise data set 1 noise data set 2 noise data set 3

(d) Clusters without noise (e) Clusters without noise (f) Clusters without noise
data set 1 data set 2 data set 3

Figure 5: Clusters obtained by the G-Algorithm in a sample run

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

90



(a) Original data set (b) Data points after 100 (c) Data points after 200
iterations iterations

Figure 6: Movement of data points in different iterations

(a) Clusters with at least 3 (b) Clusters with at least (c) Clusters with at least
points (o = 0.001) 10 points (o = 0.003) 100 points (o = 0.03)

(d) Clusters with at least (e) Cluster with at least (f) Clusters with at least
200 points (o = 0.06) 330 points (a = 0.1) 360 points (o = 0.12)

Figure 7: Resolution levels in the G-Algorithm, as shown in Figure 8.
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3.2 Real Data Set In order to determine the per-
formance of the proposed approach on real data sets,
experiments were conducted on the intrusion detection
benchmark data set: 10% of the KDD Cup 99 data
set, that is available at the University of Irvine Ma-
chine Learning repository 2. This data set is a version
of the 1998 DARPA intrusion detection evaluation data
set prepared and managed by MIT Lincoln Labs [15].
42 attributes, that usually characterize network traffic
behavior, compose each record of the 10% data set (33
of them numerical). Also, the number of records in the
10% data is large (492021).

In general, the problem of intrusion detection can
be stated as follows: to detect when a computer system
is being attacked or an intrusion is in progress [1], i.e.,
to classify a data sample in two classes -normal (there
is no intrusion in progress) or abnormal (an intrusion
is in progress). Table 5 shows the number of records of
each class in the 10% data set.

3.2.1 Preprocessing Because the G-Algorithm can
be applied only to numerical data, we generated a
reduced version of the 10% data set including only
the numerical attributes, i.e., the categorical attributes,
including the class label, were removed. Therefore the
reduced 10% data set is composed of 33 attributes. Also,

Zhttp://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
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Table 5: Kdd-cup 99 data set

[ CLASS | NUMBER OF SAMPLES

95278 (19.3%)
396745 (80.7%)

Normal

Abnormal

in order to give the same importance to each attribute,
the attributes were normalized between 0 and 1 using
the maximum and minimum values obtained.

3.2.2 Experimental Settings Following the analy-
sis done with the synthetic data sets in section 3.1.6, we
kept the values for ¢, A(G), and «, and we tested sev-
eral values for the initial gravitational force parameter.
The reported results were obtained using the following
parameter values: gravitational force, G = le — 4, grav-
itational force decreasing factor, A(G) = 0.01, cluster
size, a = 0.03, epsilon, € = 1le — 6, and maximum num-
ber of iterations M = 100. In order to determine the
scalability property of the proposed approach, the G-
algorithm was run using only 1% (randomly generated)
of the reduced data set. This process was repeated 100
times, each run with a different 1%, and the reported
results are the average over these repetitions.

3.2.3 Clustering-Classification Score Strategy
In order to use the G-algorithm as a classification
learning tool, we follow used the following strategy. Let
¢i, t =1, .., K be the collection of K clusters generated
by the clustering algorithm. Let 7" be the number of
classes in the classification problem (in our case two),
and let n;; the number of training data records that
belong to class t that were assigned to cluster i. This
strategy basically consist of two steps:

1. Building the classification model: Assign to
each cluster ¢; the class with more data records
assigned to that cluster. Clearly, only the data
records used by the clustering algorithm are used
(in our case only 1%).

2. Prediction: Given an unknown data record, the
record is assigned to the closest cluster. The
distance between a data record and a cluster is
given by the distance between the data record and
the center of the cluster.

3.2.4 Results and Analysis There are two ele-
ments that define the cost function of an intrusion de-
tection system: the false alarm rate, (FA): the system
produces an alarm in normal conditions, and the detec-
tion rate, (DR): the system detects an attack. The best

Table 7: Comparison of the G-Algorithm against k& —
means and fuzzy k — means

Algorithm FA% DR%
mean | variance | mean | variance
G-Algorithm 0.1 0.07 93.15 0.38
k Means 13.3 4.81 94.05 5.47
fuzzy k Means | 30.27 | 100.40 95.29 100.32

intrusion detection system has low FA and high DR.
Table 6 compares the performance of the G-Algorithm
against other methods found in the literature.

As shown in table 6, our approach compares well
with such methods. Because we are interested in a
simple model, we calculated the average number of
clusters generated by the G-Algorithm (3.03). Clearly,
the G-algorithm creates a simple model of the data set
only using 1% of the data set. Finally, we compared the
performance of the G-Algorithm against k-Means and
fuzzy k-means. We used k = 3 in order to do a fair
comparison with the proposed approach. Table 7 shows
the results obtained by these three methods over 100
tests.

Although the DR of the k means and fuzzy k means
are higher than the G-algorithm the false alarms rates
are huge too. Also, the k means and fuzzy k means have
a high variance in the performance reached. In general
the G-algorithm performs better than (fuzzy) k means.

4 Conclusions and Future Work

A new clustering algorithm based on the gravitational
law and Newton’s second law of motion was presented
in this paper. Several experiments with synthetic data
sets and with a real data set were performed in order to
show the performance of the proposed approach. The
proposed approach successfully determines the number
of clusters (unsupervised) in data sets that contain noise
(i-e., the algorithm is robust). Also, it is clear that
the proposed approach can be used as a pre-processing
tool to eliminate the noise from a data set, and as a
tool to determine the internal structure of the data set.
Although the algorithm is defined by four parameters,
according to the experiments performed here, three of
them can be set to a constant values (the decay of
gravitational force, the clusters size, and the epsilon
parameter). Further work will concentrate on:

e Extending the proposed approach to use different
metrics (not only the Euclidean distance), and sim-
ilarities measures (for non-numerical attributes).

o Establishing the relation between the initial gravi-
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Table 6: Performance reached by G-Clustering

Algorithm Training | Testing | FA% | DR% | Complexity
set size set size

G-Clustering 1% 100% 0.1 93.15 O(n/100)

EFRID[10] 30% 20% 70 | 98.95 O(n)

RIPPER-AA[7] 80% 20% 2.02 94.26 O(nlogn)

SMARTSIFTER[23] 80% 20% - 82.0 O(n?)

tational force and the data set, in order to set au-
tomatically this parameter. According to figure 10
it is possible to design an heuristic technique for
setting this parameter.

o Integrate fuzzy logic in order to perform a better

cluster analysis.
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