Dependence Clusters Causes

Dawvid Binkley*
King's College London,
Centre for Research on Evolution, Search and Testing (CREST)
Strand, London, WC2R 2LS, UK

Abstract As a static analysis example, consider a tool designed to
extract a selected subcomponent from a program. If this
A dependence cluster is a maximal set of program cosuthcomponent overlaps a dependence cluster then the tool
ponents that all depend upon one another. For small prifiist extract the entire cluster.
grams, programmers as well as static-analysis tools camwo common dependences are tiata dependence
overcome the negative effects of large dependence clygd control dependence. Alata dependenceonnects
ters. However, this ability diminished as program sizg definition of a variable with each use of the variable
increases. Thus, the existence of large dependence dldgched by the definition [6]. Aontrol dependenceon-
ters presents a serious challenge to the scalability of m@gcts a predicate to a component whenp has at least
ern software. Recent ongoing work into the existence afjgh control-flow-graph successors, one of which can lead
causes of dependence clusters is presented. A bettertgihe exit node without encounterirgand the other al-
derstanding of clusters and their causes is a precursoftys leads eventually to [1, 8]. For structured code,

the construction of more informed analysis tools and idgontrol dependence reflects the nesting structure of the
ally the eventual breaking or proactive avoidance of largeogram.

dependence clusters. Figure 1 shows an example simple dependence cluster
where the predicate< 10 data depends on the assign-
ment tol, this assignment control depends on the predi-
cate of thef statement, and thié control depends on the
redicate < 10. Thus, the three statements are tied to-
Bther into a cluster by their dependences. Recent empir-

. . . o work has shown that dependence clusters are surpris-
bearing on many aspects of software engineering. For

: ! jly prevalent [3].
ample, it has been linked to ease of program understan On a small scale, programmers and tools can overcome
ing [2, 5], used to delimit the changes that may be pzjl- '

formed [7, 11], and to capture the impact of a change [e impact of programs '.[hat |.ncllu_de large depende_nce
) ; usters. However, this ability diminished as program size
A dependence cluster a maximal set of program com-

increases. Thus, a challenge in scaling the software de-
ponents where each depends on the others. Dependenfe . . .

ot velopment process is the dealing with large dependence
clusters have a negative impact on both programmerefftce'ﬁj—Sters
tiveness and dependence-based static analysis tools. rh ' iders th £l q q
example, consider a programmer trying to test or to dei— IS paper considers the causes of large dependence
bug part of the program. If this part overlaps with a g&lusters. It first summarizes prior work on the identifica-
pendence clutter, then the programmer must be award'3F of dependence clusters. Then, the core of the paper,

the entire cluster, which greatly reduces their productivi _esented in Section 3, considers the initial sear.ch for de-
endence cluster causes. The paper then considers future

*On sabbatical leave from Loyola College in Maryland. work before concluding with a summary.

1 Introduction

Within a program, dependence connects program com
nents €.g, statements and predicates). Dependence h

Dagstuhl Seminar Proceedings 08161
Scalable Program Analysis
http://drops.dagstuhl .de/opus/vol ltexte/2008/1571

main()

{ void f(int a) void g(int x)
while | < 10 {
LitAnf>o a=42 X = 1968
Gl=1+2 b = h(a) y = h(x)
} } ¥
Figure 1: A cluster caused by data (black) dependences int h(int z)
and control (grey) dependences. {
z=z+1,
return z;
2 Dependence Cluster Identification }

Th|s section describes how dependence clu§t§rs are Gire 2: An example illustrating how the data depen-
fined and then presents results from an empirical sea

for th A naive definii fad d lust ce relation is not transitive in the presence of proce-
or them. halve detinition ol a dependence ClUSte oq | this example there is a path of dependences from
would be based on transitive closure and thus would

' fie assignment to variabéeto the assignment of variable
fine a cluster as a strongly connected component.

: that does not correspond to a legal execution of the pro-
fortunately, for certain language features dependenc
not transitive. Examples of such features include pro-
cedures [9] and threads [10]. Thus, in the presence of

these features, strongly connected components oversigiftice, the identification is facilitated by the observation
the size and number of dependence clusters. thatsame slicean be approximated lsame slice sizg].

To illustrate, consider the program shown in Figure Zhat is, two program components that have the same slice
This code includes a sequence of data dependences f&pg are deemed to reside in the same cluster. This is a
the assignment dd, to the use of as an actual param-conservative approximation because two slices may dif-
eter in the call toh, to formal parametez, and then to fer, yet, coincidentally, have the same size. However, two
the statemenz = z+1. There is also a sequence of dat@entical slices must have the same size. In practice, the
dependences from this assignment, to the return valueapproximation is over 99% accurate.
the call ing, and then to the assignmentyf However, This approximation also provides a useful visualiza-
the concatenation of these two paths, while in the trafon: theMonotone Slice-size GragMSG) [3]. An MSG
sitive Closure, ignores caIIing-context. Therefore, forn’ps a graph of slice sizes p|0tted in monotonica”y increas-
ing strongly connected components wrongly places tfig order on ther-axis. They-axis measures slice size.
assignmenta = 42 andy = h(x) in the same cluster. That s, slices are sorted according to increasing size and

Fortunately, program slicing, a context-sensitive intetlie sizes are plotted on the vertical axis against slice num-
procedural dependence analysis, captures the necessaryin order, on the horizontal axis. To facilitate com-
calling-context information [9]. Intuitively, a slice ex-parison of MSGs, the MSGs shown in this paper use the
tracts a sub-program that captures a semantically mep#rcentage of the slices taken on thaxis and the per-
ingful sub-computation from a program. Slices can le@ntage of the entire program on theaxis.
efficiently computed using a two-pass reachability al- The MSG provides a visual aid to dependence clus-
gorithm over a program'sSystem Dependence Grapker identification because dependence clusters appear as
(SDG) [9]. a sheer—drop cliff face followed by a long flat plateau. To

Using slicing, dependence clusters can be definedilasstrate, Figure 3 shows an example MSG where, read-
maximal sets of statements that all have the same sliceing along the horizontal axis, approximately the first 8%

Program Count

100%

73%

0 10 20 30 40 50 60 70 80 90 100

50 0"0 Largness Threshold (percent of program in cluster)
25% . .
0% Figure 4: Follargeranging from 0 to 100% of a program,

' the y-axis shows the number of the 45 programs with at

least one large cluster.

0% 20% 40% 60 % 80% 100%

(I:IE]le'[reer 3: An example MSG showing a large dependens Er’\uction, this paper considers the next ongoing phase

in the investigation: the search folependence cluster
causes ldentifying cluster causes provides a first step to-
of slices are very small, after which the MSG revealsvéards improving static analysis tools, which must cope
sharp increase to just over 50% of the program. Most\sfth programs that contain large dependence clusters.
the remaining slices are essentially the same size thoughe way of characterizing the search is as the search for
there is a small up-tick at the far right. a linchpin component. That is, a single component (or
The MSG visualization helps in the inherently subjeémall set of components) that hold a dependence clus-
tive task of deciding whether a cluster is large (how lorigr together. If such components exist, then ignoring the
is the plateau at the top of the cliff face relative to théependences associated with them will cause the depen-
surrounding landscape?) and whether it denotes a disc@@ice cluster to disappear.
tinuity in the dependence profile (how steep is the cliff While partially successful, an initial manual search
face relative to the surrounding landscape?). proved to time consuming and too error prone; thus, a
Using 45 programs that contain just over one milliogemi-automated search was employed. This search is
lines of C code, a surprisingly large number of large clugased on measuring taeea under the MS@s illustrated
ters turned up [3]; although the prevalence and size iBfthe top chart of Figure 5. Aeductionin the area is a
dependence clusters should be even higher in prograngsessary but not sufficient condition for identifying the
with greatedata-flow uncertaintguch as object-orientedcause of a cluster. This is because there are two possible
programs. The 45 programs range in size from 600 L@Otcomes: alrop and abreak These two are illustrated
to almost 180 KLoC and cover a range of application dby the center and lower MSGs shown in Figure 5. Both
mains such as utilities, games, operating system code, B&ye a reduction in area; however, the center MSG re-
While the definition oflarge is clearly subjective, Fig- flects only a reduction in the size of the slices making up
ure 4 attempts to quantify the data by showing the numiseg cluster. Only the lower MSG shows a true breaking of
of programs with at least one large cluster for a rangetbﬁ cluster. From these MSGs, it is clear that a reduction
values forlarge. From the figure, all 45 programs includén area must accompany a breaking of a cluster, but does
a cluster of 5% of the program. Two-thirds have a clugotimply the breaking.
ter of at least 20% of the code and one, at the far right,Starting ‘small’, the search fdinchpincomponents be-
includes a cluster of 94% of the program! gins by considering individual vertices and edges from
the program’System Dependence Graf8DG) [9]. The
vertices of an SDG represents the statements and predi-
3 Dependence Cluster Causes cates of the program. They are similar to the nodes of a
control-flow graph. The edges of an SDG represent the
Having found that dependence clusters are common amglaprocedural and interprocedural control and data de-
noting that they have a negative impact on software cqggendences between components.

Area under MSG pa(_:t, r}eed pe considered. Because recomputing the MSG
while ignoring the dependence represented by an edge
or a vertex is marginally expensive, all vertices are pro-
cessed first and then only edges incident on a vertex as-

0% { sociated with a significant reduction are considered. This

2% avoids significant wasted computation by not considering

nt;v-:, 0% 40% 0% 80% 100% unprofitable edges.

3.1 Linchpin Vertices

To begin with, the dependence associated with each ver-
tex is ignored in turn. To better understand the potential
% W% A% A% 0% 100% impact that this has on a dependence cluster, consider the
two extreme possibilities. At one extreme, a verteis

100% on one ofmanypaths connecting the vertices of a cluster.
o In this case ignoring’s dependences does not impact the
25% cluster at all because alternate paths exist. At the other ex-
O e o ame eow s 100 treme, the paths neck downaaepath that contains. In
this case, ignoring’s dependences has a significant im-
Figure 5: The area under the MSG drops under two cquact: it removes the cluster completely. In between, it is
ditions: the slices of the cluster get smaller (center MSGossible to have redundant paths connect parts of a cluster
or when the cluster breaks (lower MSG). Thus a redugnd thus the impact of ignoring the dependences associ-
tion in area is a necessary, but not sufficient condition fated with a vertex can range between the two extremes.
a cluster breaking. The investigation starts by considering, in turn, the re-
duction in the area under the MSG associated each vertex,
The search for dependence clusters is conducteditaien looks more closely at those vertices that produce a
computing the MSG whilégnoring the dependence asiarge reduction. Finally, the investigation considers and
sociated with an individual component. Here, a single dgategorizes the MSGs for the largest reductions.
pendence edge represents the smallest components coTe begin with, all the reductions for three representa-
sidered. If all of the dependence ‘flows’ through an edgiee programs are shown in Figure 6. Each chart shows,
then ignoring this edge will break the flow and thus break monotonically decreasing order, the reduction in area
the cluster. A vertex, which has a collection incoming anghder the MSG obtained by ignoring the dependences of
outgoing edges, is the next smallest. For a vertex, itis sgfich program vertex. All programs are dominated by a
ficient to ignore either the vertex’s incomimg outgoing long almost zerdail on the right. Thus, at most a small
dependence edges. The experiments ignore the incontag@dful of vertices cause a significant reduction. For ex-
dependence edges. ample, this pattern is seen in the three programs shown in
Rather than starting with the edges, vertices are condiilgure 6. Given that a vertex is a rather small part of an
ered first. This is done for two reasons: first, it is conceBDG, that such vertices exist is, in and of itself, interest-
tually simpler to present the impact on dependence clisg.
ters of a vertex because each vertex maps to a particulaConsidering all 279,992 vertices collectively, only
program component. In contrast, an edge representslail (0.58%) cause a reduction greater than 1%. Those
interaction between two components. causing a 10% and a 20% reduction number 71 (0.025%)
The second reason is efficiency. By definition ignorirgnd 21 (0.0075%), respectively. The reduction caused by
the dependence associated with a vertex ignores the ttie-71 vertices having at least 10% reduction is shown in
pendence associatedl its incoming edges. Thus, onlyFigure 7. Finally, details of the 21 verities that cause a
those edges whose associated vertex has a significantreduction of at least 20% are presented in Figure 8.

ro e

0

copia

90%
80%
70%
60%
50%
40%
30%
20%

EEEEERS

replace

16%
14%
12%
10%
8%
6%
4%

time
50%

40%

30%

20%

10%

0%
0 200 400 600 800 1000

2%
0%

200 400 600 800

10%

0%

o

1000 2000 3000 4000

pear to produce the largest reduction, but (almost) as large
reduction is caused by non-control vertices.

The final step in the analysis is to generate and examine
the MSGs for those vertices that cause a large reduction in
the area under the MSG. From these MSGs it is possible
to categorize each reduction as cluster breaking or simple
producing adrop in the MSG. Figure 9 shows several ex-
ample MSGs for vertices that produced a large reduction.
The top chart, for the progratime, shows the classic ex-
ample of a small cluster being completely broken. While
the largest slices in this MSG are essentially unchanged
in size, the cluster evidenced by the plateau in the mid-
dle of the graph is replaced by a gradual rise when the
dependences for the vertex represensimitch(*_fmt) is
ignored. This vertex is in a loop that processes an output
formal string for the current time. The loop and switch tie

Figure 6: Fall-off in reduction for three example protogether the formatting cases.

grams. Note that the scale on tip@xis is not the same in
the three graphs.

90%

80%

70%
60%

—— vertex reduction

1

——edge reduction

50%
40%

30%
20%
10%

0%

In the center chart, the same pattern is seen on a larger
scale with the vertex representiggpia’s switch state-
ment switch(a) (which is the core of a finite-state ma-
chine wherea is the machine’s next-state). Ignoring de-
pendences associated with this vertex produces the low-
est MSG shown in the center chart. The chart also in-
cludes the MSGs produced when ignoring the dependence
through the second and third largest reduction causing
vertices. These two produce classic exampledrops
in the size of the slices making up the cluster, but do not
break the cluster. Such vertices segregate off a portion
of the program, but do not remove the true cause of the
cluster.

The bottom chart of Figure 9 shows the MSGs for the
top three reduction causing vertices of the program
place. While none of these provides significant evidence
of cluster breaking, they are useful in illustrating two pat-

Figure 7: Top Reduction Causing Vertices and Edgegerns seen in non-cluster busting reductions that can be

The most striking feature in this data is that theeh-

directly tied back to the source code; thus, they serve to
refine the notion of arop.
The first of these, termed shift, is illustrated in the

pin verticescausing the largest reductions are dominate@per chart in Figure 10. Ignoring the vertex that repre-
by control-points. Only two non-control vertices (a funcsents the assignmentafatch’s return value to variable
tion return value and the expressidone++) occur in the m essentiallycuts offslices that use the values of. For

top 21. Figure 8 also includes, a subset of the 50 vexample, the assignmeastm = m depends (through the
tices causing between 10% and 20% reduction (the selassignment tan) on the results of callingmatch and
tion favors the larger programs). In this range, it is cleaonsequently the computation it entails. Ignoring the de-
that control has lost its dominance. This is true with timendence associated with the assignment toakes the
smaller programs as well. Thus ‘control’ statement aplice onlastm = m quite small because it omits the com-

Program | Percentagd Vertex Type | Source
For all programs, vertices producing at least a 20% reduction
copia 80.20% | control-point | switch (a)
fass 69.13% | control-point | if(tmp[i-1]=="")
apartment 51.37% | control-point | switch(choice)
fass 50.70% | call-site lookup()
time-1.7 47.06% | control-point | switch (*++fmt)
apartment 40.96% | control-point | while(choice !='5")
pos 38.21% | control-point | if (bag_plus_lollie >= 10)
h_server 32.43% | control-point | if(fp==NULL)
h_server 31.88% | control-point | switch(request_no)
h_server 31.84% | control-point | if(fp==NULL)
nascar 25.57% | control-point | if(cars[x].is_done())
nascar 25.15% | control-point | while(done<NUM_CARS)
sudokul 24.82% | control-point | while(!check_completed())
sudokul 24.81% | actual-out check_completed()
nascar 23.98% | control-point | if(count%mod==0)
pos 23.86% | control-point | if (num_lollie<15)else
nascar 23.58% | expression done++
apartment 23.46% | call-site GuestMenu()
nascar 21.95% | call-site sort_display()
fass 20.80% | control-point | if(flag==0)
fass 20.43% | call-site synt()
For the larger programs only, vertices producing a 10% to 288@ation
replace 13.82% | control-point | if (in_set_2())
copia 13.70% | formal-in inta
copia 13.66% | actual-in m
which 13.57% | control-point | while (next)
copia 13.57% | expression | m=urna[n]
copia 13.11% | expression | urna[jj=probtab[i].posizione
replace 12.58% | actual-out in_set_2()
findutils 11.92% | expression | parse_function = find_parser ()
findutils 11.91% | actual-out find_parser ()
findutils 11.63% | indirect-call | (*parse_function) ()
copia 10.75% | control-point | while (ijriga)
compress 10.73% | expression | text_buffer[bufindex]=c2
replace 10.56% | actual-out amatch()
compress 10.56% | expression | c2=getranchar()
copia 10.55% | formal-in int riga
replace 10.49% | expression | m =amatch()
compress 10.43% | actual-out getranchar()
which 10.11% | call-site find_command_in_path()

Figure 8: Vertices causing a large reduction.

Time

while 1in[i] 1 ENDSTR
~
e~
|—Original —ignoring switch(™++fmt) |
Copia
else if ((argli] == CLOSURE) && (i > start))
{
I 1j = lastj;
if (in_set_2(pat[13]))
toneE True;
el A
close (pat ,‘\& j. lasti);
}
else \
i
)
tl”
—Original = switch{a) =——if (geocircal ... =——formal a
Replace
Function "Next-state” from Copia
Match Pattem l void seleziona(int a)
{
switgh (a) {
Generate Pattarn
|/
—

_—

|—Origina| =—ifin_sef 2 =—patfl] ain ==——m =amatchi) |

ure 10: Source code patterns illustrating the MSG pro-

Figure 9: MSGs for high reduction vertices that show ﬂﬁ?
ced for several large reduction vertices on the MSGs.

different patterns seen in the search for dependence ¢
ters.

putation contained immatch. This in essence replaceshifts. In identifying drops and shifts the dominant fea-
a large slice (that was part of the cluster) with a smallare was used, so no combinations of drop and shift are
slice and thus shifts the plateau of the dependence clustetrreported.
to the right (as well as shortening its length).
Second, the chart in the middle of Figure 10 shows two
patterns: alropand the combination of a shiftand adrog3.2 Linchpin Edges
The drop comes from ignoring the actual parameter that
represents the passing of actual parampéfij] to the The search of linchpin edges considers the 8678 incom-

functionin_set_2. This effectively cuts the statements thdfd edges of the 1623 vertices that produced at least a

that include this call. As the call is in the cluster, thifemendous savings in effort because the total number of

removes the computation from all the slices of the clust&€lges in all the graphs is almost nine million. All the un-

which appears as a drop in the MSG (because all the sli€egsidered edges, by definition, produce no more than a
are smaller). 1% reduction. Of the 8678 edges 5106 (59%) ledhdo

This chart also illustrates a case in whiclskift and reduction at all, 2682 (31%) led to between 0% and 1%
a drop occur together. In this case, ignoring the depefduction, 860 (10%) led to between 1% and 10% reduc-
dence associated witifi (|n_set_2(pat[|J])) includes the tion, and 30 (034%) let to a reduction greater then 10%
impact of ignoring the dependencet[lj] and also or- reduction. Figure 7 shows the reduction attained by the
phans statements suchdane = true (in the same way top 78 edges (the number of edges was chosen to match
lastm = m was orphaned). the number of vertices shown in the chart). As would be

The final chartin Figure 10 includes the MSG shown &kpected the reduction from the edges is in general lower.
the center chart of Figure 9. It shows another drop (fromOf the 30 edges associated with at least a 10% reduc-
ignoring the dependence of the formal paramatgvhich tion 23 have essentially the same reduction as their asso-
holds the finite state machines next state) and the bregited vertex. Five of these are the sole incoming edge of
ing of the cluster (from ignoring the dependence of tile target vertex. For the others, the target vertex includes
switch statement). Considering these two together is édges that contribute little of the size of a slices. For ex-
lustrative. In the program, each of the functions callémple, the most common such edge is from a variable
from within the switch statemeng(g, grid) eventually declaration vertex.
leads to a recursive call teelezioa. This leads to al- The remaining seven edges only cause part of the re-
most the entire program being tied together via contrdliction obtained by ignoring all the edges into their target
dependence. In contrast ignoring the dependence of tleetex. This pattern is rare because it requires incoming
formal parametea (the FSMs next state) removes fronedges whose sources are dependent on separate parts of
each slice only those parts of the next state computatibe code. Thus, each such edge includes a separate part of
that are not (recursively) connected to the switch via cative program. For example, two of the seven edges targets
trol dependence. This leads to the drop in the plateaucopia’s switch statemerdwitch(a) (recall thata hold the
the MSG, but still leaves the bulk of the cluster connectdihite-state machine’s next state). These two edges are a
Comparing these two helps to illuminate why control vedata-dependence from the vertex represerdiag a for-
tices dominate the large reductions shown in Figure 8. mal parameter to the function, and a control-dependence

Generating the 71 MSGs for each of the 71 vertices tHedm the function entry vertex. In this case, part of the
causes at least a 10% reduction produces examples otaihputation ofa is separate from other parts of the pro-
of the patterns described above. To begin with, eightgfam. Thus, ignoring the data-dependence reduces all
the programs include no clusters and thus can only ptbe slices including the switch by the size of computation
duce drops. Of the remaining 63, five cause complaita. This does not cause a breakingamfpia’s cluster
cluster breaking (as seen witlopia) and 13 partial clus- because most of the code impactiads also reachable
ter breaking (as seen withme). This is about 30% of the through the control dependence. This situation is not sym-
vertices. The remaining vertices produce 23 drops andi®2tric as ignoring the control edge disconnects very little

because the vertex representing the formal pararagter Findutils Removed Calls
dependent on the function entry vertex.

Finally, the MSGs for the 30 edges associated with a - -
least a 10% reduction were constructed. These showg
five breaks and five partial breaks. They also include te
shifts and ten drops (all subsets of the vertex data). Whil

not many edges cause significant cluster busting, it is im —

portant to note that an edge is a rather small compone — _______,f

and thus that any an edge has a significantimpactisinte — " ‘= = = 7 T
esting.

Figure 11: The MSG foffindutils before and after the
3.3 Mutually Recursive Functions ignoring the dependences associated with an indirect call.

The frequency of control vertices, procedure calls, and pa-
rameter vertices in Figure 8, and the importance that margest reduction. The function-pointer used can point to
tually recursive functions have in tlepia example, sug- one of sixty different parse functions that each process the
gest that mutually recursive functions might play a moggguments for a particular search criteria. Thus, ignoring
general role as a linchpin component that holds a depéependences associated with the Calarse_function)(),
dence cluster together. The search for mutually rechgs a significant impact on the area under the MSG. The
sive functions is conducted by separately ignoring depdviSGs with and with-out the dependences associated with
dences associated with calls and procedure entry. Biis call are shown in Figure 11. The original (upper)
of which include ignoring dependences of the associaté$G shows thatindutils includes four clusters (the first
parameter vertices. two have similar slice size). Ignoring dependence associ-
To better understand the relation between these téégd with the indirect calf*parse_function)() breaks the
let maxcall be the maximum reduction attained by igfirst cluster (making it easier to tell apart from the second).
noring the dependence associated with a single call dhalso reduces the size of the slices in the remaining three
let maxentry be the maximum reduction attained by igclusters (causing a drop in the latter part of the MSG).
noring the dependence associated with a single proceduréhe second example, which illustrates the other main
entry. For programs with a singleycall to akeypro- causes ofmaxcall exceedingmaxentry, occurs in the
ceduremaxcall and maxentry are essentially the sameprogramsudoku wheremaxcall and maxentry both in-
Multiple calls to a key procedure dilute the reduction atolve the functiorsubmcom(). In this casemaxcall ex-
tained by ignoring the incoming dependence of any oneedsmaxentry because of what might be termed the
call; thus,maxentryis larger. However, it is possible forsummary edge effect Figure 12 illustrates this effect
maxcall to exceedmaxentry. The most common casecaused when the ignoring of the dependences associated
where this happens involves an indirect call cite. with a call-site resulting in the ignoring of the associated
For most of the programs the reduction obtained is sifiDG summary edges. First, consider the graph fragment
ilar weather ignoring calls or entrys. For a few caseshown in the left of Figure 12. In the SDG, parame-
one or the other produces a considerably larger redterpassing and return values are modeled as assignments
tion. The remainder of this section first considers prthirough special variables labelef, and P, for for-
grams for which ignoring the incoming dependences ofral f and functionP, respectively. (The graph fragment
call produces a larger reduction than ignoring the incoshown is a simplification of the actual SDG.) In this graph
ing dependences of a procedure entry. It then considdere is a path (an intraprocedural path) from so@¢e
the inverse. Fortuitously, these two illustrate the two maliargetT; thus, a slice that includéswill also includesS.
causes ofmaxcall exceedingnaxentry. The impact of ignoring the dependences associated
To begin with, in the progranfindutils ignoring de- with a call and procedure entry are shown in the center and
pendence associated with an indirect call site causes tiigat of Figure 12 where ignored dependences are shown

in gray. The key difference is that the ignoring of depen-
dences (incoming edges) of the vertex labelad"P,;"
breaks the connection betweSrandT. Thus, unlike the
right figure, in the center figure there is no path fr6ro

T. Because of this, ignoring the dependences associat
with a call can cause greater reduction than ignoring th
edges associated with the entry to the called procedure.

The proceeding two examples illustrated the two mair
cases wherenaxcall exceedsmaxentry. At the other
end of the spectrum, two illustrative examples of wher
maxentryexceedsnaxcall are found in the progranisc
andgnuchess. With bc there are two calls to the func-
tion, dc_func, which processes the current input charac-
ter. This character can denote part of number, an ope
ation (.9, add, multiple, negate), etc. Each call is in a
loop (that iterates over a string or a file, respectively). To:
gether the call and the loop ‘connect’ the implementatior
of the various operations. Ignoring the dependences ass
ciated with one of the two calls still leaves the operation: be
connected through the other. Ignoring the dependengs
associated with the entry, breaks these dependences.
effectively breaks the large dependence clustdydnas
shown in Figure 13.

re 13: Reduction caused by ignoring dependences of
%ntry to the functiondc_func frombc.

The second example is the programuchess. Ig-
noring dependences associated with the funcielect-
Move() generates a 44% reduction. This is the lowes
line in the chart shown in Figure 14. In addition to the -
lowering the MSG, the chart shows evidence of severe
smaller clusters separating out. The middle MSG result
from ignoring of dependence associated with the functiol
search(). While it still shows the large central cluster, the
beginning of this MSG shows the gradual increase that i> GAaRElaialateln
evidence of a broken cluster. In both cases the associ
call-sites cause no significant reduction.

d
aI‘Elegure 14: Ignoring dependence associated with the top 2

_ _ function entries ilgnuchess.
Because more dependendes.(those of a function en-

try or call, andits parameters) are being ignored, greater

reduction is to be expected. This expectation is born altift. Thus, a higher percentage of breaks are seen than
in the data generated from the 4275 calls and 2759 entnyith the smaller linchpin vertices or edges.

that were considered. Overall 3920 (68.3%) of the 4275Next considering the entry’s, 27 entry’s include three
call cites and 2474 (89.6%) of the 2759 entrys causdm programs without clusters and thus are drops by def-
less than a 10% reduction. Looking at the top 10% ofition. From the programs that include clusters, there are
each data set, the 42 calls include six that come from peight breaks, 13 partial breaks and only 3 drops with no
grams without clusters and thus produce drops by defishifts. Thus, even more dramatic than the calls, a higher
tion. From the programs that include clusters, there grercentage of breaks are seen than with the smaller linch-
nine breaks, 13 partial breaks, but only 13 drops and gpias.

10

TR o w o
& | e oo | asme))
S o !
e - i
| SR Pl Ener® |
l

Figure 12: lllustration of the Summary-Edge Effect

3.4 Difference between source level and // body preserves dependence caused

graph level analysis /1 by calls in R
. . o int RPRIME(int x, long I)
While ignoring the dependences of an individual vertex

has a clear parallel at the source level, the summary edge o4y
effect suggests that ignoring dependences of larger SD
structures might not always have a direct analog at the

source level. This section illustrates how ignoring the ifis rewriting effectively breaks the dependences gener-
coming dependences of a call in the SDG differs from igze through calls t& while preserving the dependences
noring the incoming dependences of the same call in {§,se by calls from within the body BX(i.e., from within
source. - body). A generalization of this observation suggests the
For example, the transitive effects of the call's sumgy, gy of other source-level transformations such as ignor-

mary edges cannot be (easily) accounted for from withify the dependence associated with globals variables.
the SDG (consider the case wh&ealls P producing a

summary edge at the call-site, aRdcalls R again pro-
ducing a summary edge at the call-site). If the call (QI Future Work
entry) toRis ignored this might disconnect the path caus-

ing the summary edge at the call B but it might not. One of the features that is not easily visualized using

Re:l:(r:]pmputatmn IS pos]:smle, l?Ut cost:]y. level I:the MSG is the sub-cluster relationships between clus-
|s|sugge|sts_ transtormation at the source level. R@fs \yhere the slices of one clusters includes the slices
exampe, replacing of another. For example, the lower chart in Figure 9 in-

int R(int x, long I) clude two clusters (labelggenerate Pattern andMatch

{ Pattern). From the MSG, it is not clear th&enerate
body Pattern is related toMatch Pattern (beyond involving
} smaller slices). Figure 15 shows a sub-cluster contain-
ment graph folReplace. In the lower zoomed-in view,
with the two clusters (each of size 220) are labebsherate
Pattern and Match Pattern. From the sub-cluster dia-
/1 stub generating no dependence gram, it is clear thaGenerate Pattern is a sub-cluster
int R(int x, long |) of Match Pattern. Future challenges in presenting these
{ sub-clusters are illustrated in Figure 16, where the number
} of sub-clusters and sub-cluster relations is visually over-
whelming.

11

no: 162
criteria= 6
size = 253

criteria =220
size = 446

no: 157
criteria= 19
size = 248

no: 171
criteria = 22
size = 39

Generate
Pattern

no: 214
criteria =9
size = 42

no: 92
criteria = 220
size = 224

5 Summary

This paper describes recent work on analyzing and under-
standing dependence clusters. These surprisingly com-
mon features in programs, negatively impact programmer
performance and static-analysis tool performance. Pre-
vious work has identified the prevalence of dependence
clusters. This paper presents results from an initial search
for their causes. In starts by looking for ‘low level’ causes,
whose presence is interesting in and of itself. The study
finds that a handful of the vertices and edges|ereh-
pinsin that they hold together large dependence clusters.
These vertices and edges suggest the seartdérfguage-
levelfeatures that may act dgh-level linchpinsExam-

ples include procedure calls and global variables. Better
understand of the graph-level and source-code level fea-
tures the hold together large dependence clusters will al-
low programmers and static-analysis tools to better deal
with the complications caused by large dependence clus-
ters.

6 Acknowledgement

Discussions and working with Mark Harman and Jens
Krinke were essential in the running of the experiments
and preparing of this paper. This work was supported by
EPSRC grant EP/F01044.3.

References

[1] T. Ball and S. Horwitz. Slicing programs with
arbitrary control-flow. In P. Fritzson, editot,
Conference on Automated Algorithmic Debugging
pages 206—222, Linkdping, Sweden, 1993. Springer.
Also available as University of Wisconsin—Madison,
technical report (in extended form), TR-1128, De-
cember, 1992.

[2] F. Balmas. Using dependence graphs as a support

Figure 15: The top figure shows all the sub-cluster rela- to document programs. I2°! IEEE International

tions withing the prograniReplace. The bottom figure
shows a zoom of the lower portion.

Workshop on Source Code Analysis and Manipu-
lation, pages 145-154, Los Alamitos, California,
USA, Oct. 2002. IEEE Computer Society Press.

12

Figure 16: Sub-cluster Relations

[3] D. Binkley and M. Harman. Locating dependencg8] M. Harman, A. Lakhotia, and D. W. Binkley. A

[4]

clusters and dependence pollution. A’ IEEE
International Conference on Software Maintenance
pages 177-186, Los Alamitos, California, USA,
2005. IEEE Computer Society Press. (]

S. E. Black. Computing ripple effect for software
maintenance. Journal of Software Maintenance
and Evolution: Research and PracticE3:263—-279,

2001. [10]

[5] V. Deng, S. Kothari, and Y. Namara. Program slice

browser. In9*" IEEE International Workshop on
Program Comprenhesigpages 50-59, Los Alami-
tos, California, USA, May 2001. IEEE Computefl1]
Society Press.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The

[7]

program dependence graph and its use in optimiza-
tion. ACM Transactions on Programming Lan-
guages and Systen(3):319-349, July 1987.

K. B. Gallagher and J. R. Lyle. Using program slic-

ing in software maintenancéEEE Transactions on
Software Engineerindl7(8):751-761, Aug. 1991.

13

framework for static slicers of unstructured pro-
grams. Information and Software Technolqgy
48(7):549-565, 2006.

S. Horwitz, T. Reps, and D. W. Binkley. Interproce-
dural slicing using dependence grapAE€M Trans-
actions on Programming Languages and Systems
12(1):26-61, 1990.

J. Krinke. Static slicing of threaded programs.
In ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering
(PASTE’98) pages 35-42, June 1998.

P. Tonella. Using a concept lattice of decomposition
slices for program understanding and impact anal-
ysis. IEEE Transactions on Software Engineering
29(6):495-509, 2003.

