
Dependence Clusters Causes

David Binkley∗

King’s College London,
Centre for Research on Evolution, Search and Testing (CREST)

Strand, London, WC2R 2LS, UK

Abstract

A dependence cluster is a maximal set of program com-
ponents that all depend upon one another. For small pro-
grams, programmers as well as static-analysis tools can
overcome the negative effects of large dependence clus-
ters. However, this ability diminished as program size
increases. Thus, the existence of large dependence clus-
ters presents a serious challenge to the scalability of mod-
ern software. Recent ongoing work into the existence and
causes of dependence clusters is presented. A better un-
derstanding of clusters and their causes is a precursor to
the construction of more informed analysis tools and ide-
ally the eventual breaking or proactive avoidance of large
dependence clusters.

1 Introduction

Within a program, dependence connects program compo-
nents (e.g., statements and predicates). Dependence has a
bearing on many aspects of software engineering. For ex-
ample, it has been linked to ease of program understand-
ing [2, 5], used to delimit the changes that may be per-
formed [7, 11], and to capture the impact of a change [4].

A dependence clusteris a maximal set of program com-
ponents where each depends on the others. Dependence
clusters have a negative impact on both programmer effec-
tiveness and dependence-based static analysis tools. For
example, consider a programmer trying to test or to de-
bug part of the program. If this part overlaps with a de-
pendence clutter, then the programmer must be aware of
the entire cluster, which greatly reduces their productivity.

∗On sabbatical leave from Loyola College in Maryland.

As a static analysis example, consider a tool designed to
extract a selected subcomponent from a program. If this
subcomponent overlaps a dependence cluster then the tool
must extract the entire cluster.

Two common dependences are thedata dependence
and control dependence. Adata dependenceconnects
a definition of a variable with each use of the variable
reached by the definition [6]. Acontrol dependencecon-
nects a predicatep to a componentc whenp has at least
two control-flow-graph successors, one of which can lead
to the exit node without encounteringc and the other al-
ways leads eventually toc [1, 8]. For structured code,
control dependence reflects the nesting structure of the
program.

Figure 1 shows an example simple dependence cluster
where the predicateI < 10 data depends on the assign-
ment toI, this assignment control depends on the predi-
cate of theif statement, and theif control depends on the
predicateI < 10. Thus, the three statements are tied to-
gether into a cluster by their dependences. Recent empir-
ical work has shown that dependence clusters are surpris-
ingly prevalent [3].

On a small scale, programmers and tools can overcome
the impact of programs that include large dependence
clusters. However, this ability diminished as program size
increases. Thus, a challenge in scaling the software de-
velopment process is the dealing with large dependence
clusters.

This paper considers the causes of large dependence
clusters. It first summarizes prior work on the identifica-
tion of dependence clusters. Then, the core of the paper,
presented in Section 3, considers the initial search for de-
pendence cluster causes. The paper then considers future
work before concluding with a summary.

1

Dagstuhl Seminar Proceedings 08161
Scalable Program Analysis
http://drops.dagstuhl.de/opus/volltexte/2008/1571

Figure 1: A cluster caused by data (black) dependences
and control (grey) dependences.

2 Dependence Cluster Identification

This section describes how dependence clusters are de-
fined and then presents results from an empirical search
for them. A naive definition of a dependence cluster
would be based on transitive closure and thus would de-
fine a cluster as a strongly connected component. Un-
fortunately, for certain language features dependence is
not transitive. Examples of such features include pro-
cedures [9] and threads [10]. Thus, in the presence of
these features, strongly connected components overstate
the size and number of dependence clusters.

To illustrate, consider the program shown in Figure 2.
This code includes a sequence of data dependences from
the assignment ofa, to the use ofa as an actual param-
eter in the call toh, to formal parameterz, and then to
the statementz = z+1. There is also a sequence of data
dependences from this assignment, to the return value of
the call ing, and then to the assignment ofy. However,
the concatenation of these two paths, while in the tran-
sitive closure, ignores calling-context. Therefore, form-
ing strongly connected components wrongly places the
assignmentsa = 42 andy = h(x) in the same cluster.

Fortunately, program slicing, a context-sensitive inter-
procedural dependence analysis, captures the necessary
calling-context information [9]. Intuitively, a slice ex-
tracts a sub-program that captures a semantically mean-
ingful sub-computation from a program. Slices can be
efficiently computed using a two-pass reachability al-
gorithm over a program’sSystem Dependence Graph
(SDG) [9].

Using slicing, dependence clusters can be defined as
maximal sets of statements that all have the same slice. In

void f(int a)
{

a = 42
b = h(a)

}

void g(int x)
{

x = 1968
y = h(x)

}

int h(int z)
{

z = z+1;
return z;

}

Figure 2: An example illustrating how the data depen-
dence relation is not transitive in the presence of proce-
dures. In this example there is a path of dependences from
the assignment to variablea to the assignment of variable
y that does not correspond to a legal execution of the pro-
gram.

practice, the identification is facilitated by the observation
thatsame slicecan be approximated bysame slice size[3].
That is, two program components that have the same slice
size are deemed to reside in the same cluster. This is a
conservative approximation because two slices may dif-
fer, yet, coincidentally, have the same size. However, two
identical slices must have the same size. In practice, the
approximation is over 99% accurate.

This approximation also provides a useful visualiza-
tion: theMonotone Slice-size Graph(MSG) [3]. An MSG
is a graph of slice sizes plotted in monotonically increas-
ing order on thex-axis. They-axis measures slice size.
That is, slices are sorted according to increasing size and
the sizes are plotted on the vertical axis against slice num-
ber, in order, on the horizontal axis. To facilitate com-
parison of MSGs, the MSGs shown in this paper use the
percentage of the slices taken on thex-axis and the per-
centage of the entire program on they-axis.

The MSG provides a visual aid to dependence clus-
ter identification because dependence clusters appear as
a sheer–drop cliff face followed by a long flat plateau. To
illustrate, Figure 3 shows an example MSG where, read-
ing along the horizontal axis, approximately the first 8%

2

Figure 3: An example MSG showing a large dependence
cluster.

of slices are very small, after which the MSG reveals a
sharp increase to just over 50% of the program. Most of
the remaining slices are essentially the same size thought
there is a small up-tick at the far right.

The MSG visualization helps in the inherently subjec-
tive task of deciding whether a cluster is large (how long
is the plateau at the top of the cliff face relative to the
surrounding landscape?) and whether it denotes a discon-
tinuity in the dependence profile (how steep is the cliff
face relative to the surrounding landscape?).

Using 45 programs that contain just over one million
lines of C code, a surprisingly large number of large clus-
ters turned up [3]; although the prevalence and size of
dependence clusters should be even higher in program’s
with greaterdata-flow uncertaintysuch as object-oriented
programs. The 45 programs range in size from 600 LoC
to almost 180 KLoC and cover a range of application do-
mains such as utilities, games, operating system code, etc.

While the definition oflarge is clearly subjective, Fig-
ure 4 attempts to quantify the data by showing the number
of programs with at least one large cluster for a range of
values forlarge. From the figure, all 45 programs include
a cluster of 5% of the program. Two-thirds have a clus-
ter of at least 20% of the code and one, at the far right,
includes a cluster of 94% of the program!

3 Dependence Cluster Causes

Having found that dependence clusters are common and
noting that they have a negative impact on software con-

Figure 4: Forlargeranging from 0 to 100% of a program,
they-axis shows the number of the 45 programs with at
least one large cluster.

struction, this paper considers the next ongoing phase
in the investigation: the search fordependence cluster
causes. Identifying cluster causes provides a first step to-
wards improving static analysis tools, which must cope
with programs that contain large dependence clusters.
One way of characterizing the search is as the search for
a linchpin component. That is, a single component (or
small set of components) that hold a dependence clus-
ter together. If such components exist, then ignoring the
dependences associated with them will cause the depen-
dence cluster to disappear.

While partially successful, an initial manual search
proved to time consuming and too error prone; thus, a
semi-automated search was employed. This search is
based on measuring thearea under the MSG, as illustrated
in the top chart of Figure 5. Areductionin the area is a
necessary but not sufficient condition for identifying the
cause of a cluster. This is because there are two possible
outcomes: adrop and abreak. These two are illustrated
by the center and lower MSGs shown in Figure 5. Both
have a reduction in area; however, the center MSG re-
flects only a reduction in the size of the slices making up
the cluster. Only the lower MSG shows a true breaking of
the cluster. From these MSGs, it is clear that a reduction
in area must accompany a breaking of a cluster, but does
not imply the breaking.

Starting ‘small’, the search forlinchpincomponents be-
gins by considering individual vertices and edges from
the program’sSystem Dependence Graph(SDG) [9]. The
vertices of an SDG represents the statements and predi-
cates of the program. They are similar to the nodes of a
control-flow graph. The edges of an SDG represent the
intraprocedural and interprocedural control and data de-
pendences between components.

3

Figure 5: The area under the MSG drops under two con-
ditions: the slices of the cluster get smaller (center MSG),
or when the cluster breaks (lower MSG). Thus a reduc-
tion in area is a necessary, but not sufficient condition for
a cluster breaking.

The search for dependence clusters is conducted by
computing the MSG whileignoring the dependence as-
sociated with an individual component. Here, a single de-
pendence edge represents the smallest components con-
sidered. If all of the dependence ‘flows’ through an edge
then ignoring this edge will break the flow and thus break
the cluster. A vertex, which has a collection incoming and
outgoing edges, is the next smallest. For a vertex, it is suf-
ficient to ignore either the vertex’s incomingor outgoing
dependence edges. The experiments ignore the incoming
dependence edges.

Rather than starting with the edges, vertices are consid-
ered first. This is done for two reasons: first, it is concep-
tually simpler to present the impact on dependence clus-
ters of a vertex because each vertex maps to a particular
program component. In contrast, an edge represents an
interaction between two components.

The second reason is efficiency. By definition ignoring
the dependence associated with a vertex ignores the de-
pendence associatedall its incoming edges. Thus, only
those edges whose associated vertex has a significant im-

pact, need be considered. Because recomputing the MSG
while ignoring the dependence represented by an edge
or a vertex is marginally expensive, all vertices are pro-
cessed first and then only edges incident on a vertex as-
sociated with a significant reduction are considered. This
avoids significant wasted computation by not considering
unprofitable edges.

3.1 Linchpin Vertices

To begin with, the dependence associated with each ver-
tex is ignored in turn. To better understand the potential
impact that this has on a dependence cluster, consider the
two extreme possibilities. At one extreme, a vertexv is
on one ofmanypaths connecting the vertices of a cluster.
In this case ignoringv’s dependences does not impact the
cluster at all because alternate paths exist. At the other ex-
treme, the paths neck down toonepath that containsv. In
this case, ignoringv’s dependences has a significant im-
pact: it removes the cluster completely. In between, it is
possible to have redundant paths connect parts of a cluster
and thus the impact of ignoring the dependences associ-
ated with a vertex can range between the two extremes.

The investigation starts by considering, in turn, the re-
duction in the area under the MSG associated each vertex,
it then looks more closely at those vertices that produce a
large reduction. Finally, the investigation considers and
categorizes the MSGs for the largest reductions.

To begin with, all the reductions for three representa-
tive programs are shown in Figure 6. Each chart shows,
in monotonically decreasing order, the reduction in area
under the MSG obtained by ignoring the dependences of
each program vertex. All programs are dominated by a
long almost zerotail on the right. Thus, at most a small
handful of vertices cause a significant reduction. For ex-
ample, this pattern is seen in the three programs shown in
Figure 6. Given that a vertex is a rather small part of an
SDG, that such vertices exist is, in and of itself, interest-
ing.

Considering all 279,992 vertices collectively, only
1611 (0.58%) cause a reduction greater than 1%. Those
causing a 10% and a 20% reduction number 71 (0.025%)
and 21 (0.0075%), respectively. The reduction caused by
the 71 vertices having at least 10% reduction is shown in
Figure 7. Finally, details of the 21 verities that cause a
reduction of at least 20% are presented in Figure 8.

4

Figure 6: Fall-off in reduction for three example pro-
grams. Note that the scale on they-axis is not the same in
the three graphs.

Figure 7: Top Reduction Causing Vertices and Edges

The most striking feature in this data is that thelinch-
pin verticescausing the largest reductions are dominated
by control-points. Only two non-control vertices (a func-
tion return value and the expressiondone++) occur in the
top 21. Figure 8 also includes, a subset of the 50 ver-
tices causing between 10% and 20% reduction (the selec-
tion favors the larger programs). In this range, it is clear
that control has lost its dominance. This is true with the
smaller programs as well. Thus ‘control’ statement ap-

pear to produce the largest reduction, but (almost) as large
reduction is caused by non-control vertices.

The final step in the analysis is to generate and examine
the MSGs for those vertices that cause a large reduction in
the area under the MSG. From these MSGs it is possible
to categorize each reduction as cluster breaking or simple
producing adrop in the MSG. Figure 9 shows several ex-
ample MSGs for vertices that produced a large reduction.
The top chart, for the programtime, shows the classic ex-
ample of a small cluster being completely broken. While
the largest slices in this MSG are essentially unchanged
in size, the cluster evidenced by the plateau in the mid-
dle of the graph is replaced by a gradual rise when the
dependences for the vertex representingswitch(* fmt) is
ignored. This vertex is in a loop that processes an output
formal string for the current time. The loop and switch tie
together the formatting cases.

In the center chart, the same pattern is seen on a larger
scale with the vertex representingcopia’s switch state-
ment switch(a) (which is the core of a finite-state ma-
chine wherea is the machine’s next-state). Ignoring de-
pendences associated with this vertex produces the low-
est MSG shown in the center chart. The chart also in-
cludes the MSGs produced when ignoring the dependence
through the second and third largest reduction causing
vertices. These two produce classic examples ofdrops
in the size of the slices making up the cluster, but do not
break the cluster. Such vertices segregate off a portion
of the program, but do not remove the true cause of the
cluster.

The bottom chart of Figure 9 shows the MSGs for the
top three reduction causing vertices of the programre-
place. While none of these provides significant evidence
of cluster breaking, they are useful in illustrating two pat-
terns seen in non-cluster busting reductions that can be
directly tied back to the source code; thus, they serve to
refine the notion of adrop.

The first of these, termed ashift, is illustrated in the
upper chart in Figure 10. Ignoring the vertex that repre-
sents the assignment ofamatch’s return value to variable
m essentiallycuts offslices that use the values ofm. For
example, the assignmentlastm = m depends (through the
assignment tom) on the results of callingamatch and
consequently the computation it entails. Ignoring the de-
pendence associated with the assignment tom makes the
slice onlastm = m quite small because it omits the com-

5

Program Percentage Vertex Type Source
For all programs, vertices producing at least a 20% reduction
copia 80.20% control-point switch (a)
fass 69.13% control-point if(tmp[i-1]==’:’)
apartment 51.37% control-point switch(choice)
fass 50.70% call-site lookup()
time-1.7 47.06% control-point switch (*++fmt)
apartment 40.96% control-point while(choice != ’5’)
pos 38.21% control-point if (bag plus lollie >= 10)
h server 32.43% control-point if(fp==NULL)
h server 31.88% control-point switch(request no)
h server 31.84% control-point if(fp==NULL)
nascar 25.57% control-point if(cars[x].is done())
nascar 25.15% control-point while(done<NUM CARS)
sudoku1 24.82% control-point while(!check completed())
sudoku1 24.81% actual-out check completed()
nascar 23.98% control-point if(count%mod==0)
pos 23.86% control-point if (num lollie<15)else
nascar 23.58% expression done++
apartment 23.46% call-site GuestMenu()
nascar 21.95% call-site sort display()
fass 20.80% control-point if(flag==0)
fass 20.43% call-site synt()
For the larger programs only, vertices producing a 10% to 20% reduction
replace 13.82% control-point if (in set 2())
copia 13.70% formal-in int a
copia 13.66% actual-in m
which 13.57% control-point while (next)
copia 13.57% expression m=urna[n]
copia 13.11% expression urna[j]=probtab[i].posizione
replace 12.58% actual-out in set 2()
findutils 11.92% expression parse function = find parser ()
findutils 11.91% actual-out find parser ()
findutils 11.63% indirect-call (*parse function) ()
copia 10.75% control-point while (i¡riga)
compress 10.73% expression text buffer[bufindex]=c2
replace 10.56% actual-out amatch()
compress 10.56% expression c2=getranchar()
copia 10.55% formal-in int riga
replace 10.49% expression m = amatch()
compress 10.43% actual-out getranchar()
which 10.11% call-site find command in path()

Figure 8: Vertices causing a large reduction.

6

Time

Copia

Replace

Figure 9: MSGs for high reduction vertices that show the
different patterns seen in the search for dependence clus-
ters.

Figure 10: Source code patterns illustrating the MSG pro-
duced for several large reduction vertices on the MSGs.

7

putation contained inamatch. This in essence replaces
a large slice (that was part of the cluster) with a smaller
slice and thus shifts the plateau of the dependence cluster
to the right (as well as shortening its length).

Second, the chart in the middle of Figure 10 shows two
patterns: adropand the combination of a shift and a drop.
The drop comes from ignoring the actual parameter that
represents the passing of actual parameterpat[lj] to the
functionin set 2. This effectively cuts the statements that
represent the computation ofpat[lj] out of all the slices
that include this call. As the call is in the cluster, this
removes the computation from all the slices of the cluster,
which appears as a drop in the MSG (because all the slices
are smaller).

This chart also illustrates a case in which ashift and
a drop occur together. In this case, ignoring the depen-
dence associated withif (in set 2(pat[lj])) includes the
impact of ignoring the dependence ofpat[lj] and also or-
phans statements such asdone = true (in the same way
lastm = m was orphaned).

The final chart in Figure 10 includes the MSG shown at
the center chart of Figure 9. It shows another drop (from
ignoring the dependence of the formal parametera (which
holds the finite state machines next state) and the break-
ing of the cluster (from ignoring the dependence of the
switch statement). Considering these two together is il-
lustrative. In the program, each of the functions called
from within the switch statement (e.g., grid) eventually
leads to a recursive call toselezioa. This leads to al-
most the entire program being tied together via control
dependence. In contrast ignoring the dependence of the
formal parametera (the FSMs next state) removes from
each slice only those parts of the next state computation
that are not (recursively) connected to the switch via con-
trol dependence. This leads to the drop in the plateau of
the MSG, but still leaves the bulk of the cluster connected.
Comparing these two helps to illuminate why control ver-
tices dominate the large reductions shown in Figure 8.

Generating the 71 MSGs for each of the 71 vertices that
causes at least a 10% reduction produces examples of all
of the patterns described above. To begin with, eight of
the programs include no clusters and thus can only pro-
duce drops. Of the remaining 63, five cause complete
cluster breaking (as seen withcopia) and 13 partial clus-
ter breaking (as seen withtime). This is about 30% of the
vertices. The remaining vertices produce 23 drops and 22

shifts. In identifying drops and shifts the dominant fea-
ture was used, so no combinations of drop and shift are
not reported.

3.2 Linchpin Edges

The search of linchpin edges considers the 8678 incom-
ing edges of the 1623 vertices that produced at least a
1% reduction in area under the MSG. This represents a
tremendous savings in effort because the total number of
edges in all the graphs is almost nine million. All the un-
considered edges, by definition, produce no more than a
1% reduction. Of the 8678 edges 5106 (59%) led tono
reduction at all, 2682 (31%) led to between 0% and 1%
reduction, 860 (10%) led to between 1% and 10% reduc-
tion, and 30 (0.34%) let to a reduction greater then 10%
reduction. Figure 7 shows the reduction attained by the
top 78 edges (the number of edges was chosen to match
the number of vertices shown in the chart). As would be
expected the reduction from the edges is in general lower.

Of the 30 edges associated with at least a 10% reduc-
tion 23 have essentially the same reduction as their asso-
ciated vertex. Five of these are the sole incoming edge of
the target vertex. For the others, the target vertex includes
edges that contribute little of the size of a slices. For ex-
ample, the most common such edge is from a variable
declaration vertex.

The remaining seven edges only cause part of the re-
duction obtained by ignoring all the edges into their target
vertex. This pattern is rare because it requires incoming
edges whose sources are dependent on separate parts of
the code. Thus, each such edge includes a separate part of
the program. For example, two of the seven edges targets
copia’s switch statementswitch(a) (recall thata hold the
finite-state machine’s next state). These two edges are a
data-dependence from the vertex representinga as a for-
mal parameter to the function, and a control-dependence
from the function entry vertex. In this case, part of the
computation ofa is separate from other parts of the pro-
gram. Thus, ignoring the data-dependence reduces all
the slices including the switch by the size of computation
of a. This does not cause a breaking ofcopia’s cluster
because most of the code impactinga is also reachable
through the control dependence. This situation is not sym-
metric as ignoring the control edge disconnects very little

8

because the vertex representing the formal parametera is
dependent on the function entry vertex.

Finally, the MSGs for the 30 edges associated with at
least a 10% reduction were constructed. These showed
five breaks and five partial breaks. They also include ten
shifts and ten drops (all subsets of the vertex data). While
not many edges cause significant cluster busting, it is im-
portant to note that an edge is a rather small component
and thus that any an edge has a significant impact is inter-
esting.

3.3 Mutually Recursive Functions

The frequency of control vertices, procedure calls, and pa-
rameter vertices in Figure 8, and the importance that mu-
tually recursive functions have in thecopia example, sug-
gest that mutually recursive functions might play a more
general role as a linchpin component that holds a depen-
dence cluster together. The search for mutually recur-
sive functions is conducted by separately ignoring depen-
dences associated with calls and procedure entry. Both
of which include ignoring dependences of the associated
parameter vertices.

To better understand the relation between these two,
let maxcall be the maximum reduction attained by ig-
noring the dependence associated with a single call and
let maxentry be the maximum reduction attained by ig-
noring the dependence associated with a single procedure
entry. For programs with a singlekeycall to akeypro-
cedure,maxcall and maxentryare essentially the same.
Multiple calls to a key procedure dilute the reduction at-
tained by ignoring the incoming dependence of any one
call; thus,maxentry is larger. However, it is possible for
maxcall to exceedmaxentry. The most common case
where this happens involves an indirect call cite.

For most of the programs the reduction obtained is sim-
ilar weather ignoring calls or entrys. For a few cases,
one or the other produces a considerably larger reduc-
tion. The remainder of this section first considers pro-
grams for which ignoring the incoming dependences of a
call produces a larger reduction than ignoring the incom-
ing dependences of a procedure entry. It then considers
the inverse. Fortuitously, these two illustrate the two main
causes ofmax call exceedingmaxentry.

To begin with, in the programfindutils ignoring de-
pendence associated with an indirect call site causes the

Figure 11: The MSG forfindutils before and after the
ignoring the dependences associated with an indirect call.

largest reduction. The function-pointer used can point to
one of sixty different parse functions that each process the
arguments for a particular search criteria. Thus, ignoring
dependences associated with the call(*parse function)(),
has a significant impact on the area under the MSG. The
MSGs with and with-out the dependences associated with
this call are shown in Figure 11. The original (upper)
MSG shows thatfindutils includes four clusters (the first
two have similar slice size). Ignoring dependence associ-
ated with the indirect call(*parse function)() breaks the
first cluster (making it easier to tell apart from the second).
It also reduces the size of the slices in the remaining three
clusters (causing a drop in the latter part of the MSG).

The second example, which illustrates the other main
causes ofmax call exceedingmaxentry, occurs in the
programsudoku wheremaxcall and maxentryboth in-
volve the functionsubmcom(). In this casemaxcall ex-
ceedsmax entry because of what might be termed the
summary edge effect. Figure 12 illustrates this effect
caused when the ignoring of the dependences associated
with a call-site resulting in the ignoring of the associated
SDG summary edges. First, consider the graph fragment
shown in the left of Figure 12. In the SDG, parame-
ter passing and return values are modeled as assignments
through special variables labeledfin and Pout for for-
mal f and functionP , respectively. (The graph fragment
shown is a simplification of the actual SDG.) In this graph
there is a path (an intraprocedural path) from sourceS to
targetT; thus, a slice that includesT will also includeS.

The impact of ignoring the dependences associated
with a call and procedure entry are shown in the center and
right of Figure 12 where ignored dependences are shown

9

in gray. The key difference is that the ignoring of depen-
dences (incoming edges) of the vertex labeled “a = Pout”
breaks the connection betweenS andT. Thus, unlike the
right figure, in the center figure there is no path fromS to
T . Because of this, ignoring the dependences associated
with a call can cause greater reduction than ignoring the
edges associated with the entry to the called procedure.

The proceeding two examples illustrated the two main
cases wheremaxcall exceedsmax entry. At the other
end of the spectrum, two illustrative examples of when
maxentryexceedsmaxcall are found in the programsbc
andgnuchess. With bc there are two calls to the func-
tion, dc func, which processes the current input charac-
ter. This character can denote part of number, an oper-
ation (e.g., add, multiple, negate), etc. Each call is in a
loop (that iterates over a string or a file, respectively). To-
gether the call and the loop ‘connect’ the implementation
of the various operations. Ignoring the dependences asso-
ciated with one of the two calls still leaves the operations
connected through the other. Ignoring the dependences
associated with the entry, breaks these dependences. This
effectively breaks the large dependence cluster inbc, as
shown in Figure 13.

The second example is the programgnuchess. Ig-
noring dependences associated with the functionSelect-
Move() generates a 44% reduction. This is the lowest
line in the chart shown in Figure 14. In addition to the
lowering the MSG, the chart shows evidence of several
smaller clusters separating out. The middle MSG results
from ignoring of dependence associated with the function
search(). While it still shows the large central cluster, the
beginning of this MSG shows the gradual increase that is
evidence of a broken cluster. In both cases the associated
call-sites cause no significant reduction.

Because more dependences (i.e., those of a function en-
try or call, and its parameters) are being ignored, greater
reduction is to be expected. This expectation is born out
in the data generated from the 4275 calls and 2759 entry’s
that were considered. Overall 3920 (68.3%) of the 4275
call cites and 2474 (89.6%) of the 2759 entrys caused
less than a 10% reduction. Looking at the top 10% of
each data set, the 42 calls include six that come from pro-
grams without clusters and thus produce drops by defini-
tion. From the programs that include clusters, there are
nine breaks, 13 partial breaks, but only 13 drops and one

Figure 13: Reduction caused by ignoring dependences of
the entry to the functionsdc func frombc.

Figure 14: Ignoring dependence associated with the top 2
function entries ingnuchess.

shift. Thus, a higher percentage of breaks are seen than
with the smaller linchpin vertices or edges.

Next considering the entry’s, 27 entry’s include three
from programs without clusters and thus are drops by def-
inition. From the programs that include clusters, there are
eight breaks, 13 partial breaks and only 3 drops with no
shifts. Thus, even more dramatic than the calls, a higher
percentage of breaks are seen than with the smaller linch-
pins.

10

Enter P

x = xin

x = ain

x++

S
Call P

T

P = xout

a = Pout

Enter P

x = xin

x = ain

S
Call P

x++

T

P = xout

a = Pout

Enter P

x = xin

x = ain

x++

S
Call P

T

P = xout

outa = P

Figure 12: Illustration of the Summary-Edge Effect

3.4 Difference between source level and
graph level analysis

While ignoring the dependences of an individual vertex
has a clear parallel at the source level, the summary edge
effect suggests that ignoring dependences of larger SDG
structures might not always have a direct analog at the
source level. This section illustrates how ignoring the in-
coming dependences of a call in the SDG differs from ig-
noring the incoming dependences of the same call in the
source.

For example, the transitive effects of the call’s sum-
mary edges cannot be (easily) accounted for from within
the SDG (consider the case whereQ callsP producing a
summary edge at the call-site, andP calls R again pro-
ducing a summary edge at the call-site). If the call (or
entry) toR is ignored this might disconnect the path caus-
ing the summary edge at the call toP, but it might not.
Re-computation is possible, but costly.

This suggests transformation at the source level. For
example, replacing

int R(int x, long l)
{

body
}

with

// stub generating no dependence
int R(int x, long l)
{
}

// body preserves dependence caused
// by calls in R
int R_PRIME(int x, long l)
{

body
}

This rewriting effectively breaks the dependences gener-
ated through calls toR while preserving the dependences
cause by calls from within the body ofR (i.e., from within
body). A generalization of this observation suggests the
study of other source-level transformations such as ignor-
ing the dependence associated with globals variables.

4 Future Work

One of the features that is not easily visualized using
the MSG is the sub-cluster relationships between clus-
ters where the slices of one clusters includes the slices
of another. For example, the lower chart in Figure 9 in-
clude two clusters (labeledGenerate Pattern andMatch
Pattern). From the MSG, it is not clear thatGenerate
Pattern is related toMatch Pattern (beyond involving
smaller slices). Figure 15 shows a sub-cluster contain-
ment graph forReplace. In the lower zoomed-in view,
the two clusters (each of size 220) are labeledGenerate
Pattern andMatch Pattern. From the sub-cluster dia-
gram, it is clear thatGenerate Pattern is a sub-cluster
of Match Pattern. Future challenges in presenting these
sub-clusters are illustrated in Figure 16, where the number
of sub-clusters and sub-cluster relations is visually over-
whelming.

11

Figure 15: The top figure shows all the sub-cluster rela-
tions withing the programReplace. The bottom figure
shows a zoom of the lower portion.

5 Summary

This paper describes recent work on analyzing and under-
standing dependence clusters. These surprisingly com-
mon features in programs, negatively impact programmer
performance and static-analysis tool performance. Pre-
vious work has identified the prevalence of dependence
clusters. This paper presents results from an initial search
for their causes. In starts by looking for ‘low level’ causes,
whose presence is interesting in and of itself. The study
finds that a handful of the vertices and edges arelinch-
pins in that they hold together large dependence clusters.
These vertices and edges suggest the search forlanguage-
levelfeatures that may act ashigh-level linchpins. Exam-
ples include procedure calls and global variables. Better
understand of the graph-level and source-code level fea-
tures the hold together large dependence clusters will al-
low programmers and static-analysis tools to better deal
with the complications caused by large dependence clus-
ters.

6 Acknowledgement

Discussions and working with Mark Harman and Jens
Krinke were essential in the running of the experiments
and preparing of this paper. This work was supported by
EPSRC grant EP/F01044.3.

References

[1] T. Ball and S. Horwitz. Slicing programs with
arbitrary control–flow. In P. Fritzson, editor,1st

Conference on Automated Algorithmic Debugging,
pages 206–222, Linköping, Sweden, 1993. Springer.
Also available as University of Wisconsin–Madison,
technical report (in extended form), TR-1128, De-
cember, 1992.

[2] F. Balmas. Using dependence graphs as a support
to document programs. In2st IEEE International
Workshop on Source Code Analysis and Manipu-
lation, pages 145–154, Los Alamitos, California,
USA, Oct. 2002. IEEE Computer Society Press.

12

Figure 16: Sub-cluster Relations

[3] D. Binkley and M. Harman. Locating dependence
clusters and dependence pollution. In21

st IEEE
International Conference on Software Maintenance,
pages 177–186, Los Alamitos, California, USA,
2005. IEEE Computer Society Press.

[4] S. E. Black. Computing ripple effect for software
maintenance. Journal of Software Maintenance
and Evolution: Research and Practice, 13:263–279,
2001.

[5] Y. Deng, S. Kothari, and Y. Namara. Program slice
browser. In9

th IEEE International Workshop on
Program Comprenhesion, pages 50–59, Los Alami-
tos, California, USA, May 2001. IEEE Computer
Society Press.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimiza-
tion. ACM Transactions on Programming Lan-
guages and Systems, 9(3):319–349, July 1987.

[7] K. B. Gallagher and J. R. Lyle. Using program slic-
ing in software maintenance.IEEE Transactions on
Software Engineering, 17(8):751–761, Aug. 1991.

[8] M. Harman, A. Lakhotia, and D. W. Binkley. A
framework for static slicers of unstructured pro-
grams. Information and Software Technology,
48(7):549–565, 2006.

[9] S. Horwitz, T. Reps, and D. W. Binkley. Interproce-
dural slicing using dependence graphs.ACM Trans-
actions on Programming Languages and Systems,
12(1):26–61, 1990.

[10] J. Krinke. Static slicing of threaded programs.
In ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering
(PASTE’98), pages 35–42, June 1998.

[11] P. Tonella. Using a concept lattice of decomposition
slices for program understanding and impact anal-
ysis. IEEE Transactions on Software Engineering,
29(6):495–509, 2003.

13

