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Abstract. The average case of some elimination-based data-flow analysis al-
gorithms is analyzed in a mathematical way. Besides this allows for comparing
the timing behavior of the algorithms, it also provides insights into how rele-
vant the underlying statistics are when compared to practical settings.

1. Introduction

Elimination-based approaches [22] are used for data flow analysis problems [20,
21, 18, 10, 3, 7] that cannot be solved with iterative approaches [16, 12]. There
exist other applications for elimination methods, which go beyond the area of pro-
gram analysis [27]. For solving data flow analysis problems there are two families
of elimination-based approaches: algebraic methods and methods using path ex-
pressions.

Algebraic elimination methods [1, 13, 11, 25] consist of three steps: (1) reducing
the flowgraph to a single node, (2) eliminating variables in the data flow equations
by substitution, and (3) back-propagating the solution to other nodes. Algebraic
elimination methods require two algebraic operations for a set of equations: sub-

stitution and loop-breaking. The substitution transformation is the replacement of
the occurrence of a variable by its term whereas loop-breaking eliminates the oc-
currence of a variable on the right-hand side. Though not very efficient, Gaussian
elimination is a generic algebraic elimination method to solve data flow equations
in cubic time [19].

Path expressions were introduced in [27] to solve data flow equations. The
flowgraph is seen as a deterministic finite state automaton [14] whose language
consists of all paths emanating from the start node to a node. The language is
represented as a regular expression whose alphabet is the edge-set of the flowgraph.
To find the data flow solution of a node, a path homomorphism is applied to
the path expression. The operators ·, ∪, and ∗ of the regular expressions are re-
interpreted. An elimination method using path expressions comprises two steps:
(1) the computation of path expressions for all nodes in the flowgraph, and (2)
the application of the path homomorphism. An inefficient algorithm for converting
flowgraph to path expressions is described in [14] and runs in O(n3).

As an example Figure 2 shows the CFG of the program fragment given in Fig-
ure 1. Node 3 is the if-statement. The edge to Node 4 is the then-branch and is
followed only if c1 is true. The edge 3 → 2 has assigned condition ¬c1∧¬c3 and the
edge 3 → 6 has assigned ¬c1 ∧ c3. In a similar way edges 5 → 4, 5 → 2, and 5 → 6
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begin -- Node 1

repeat -- Node 2

if c1 then -- Node 3

repeat -- Node 4

. . . -- Node 4

until c2 -- Node 5

endif

until c3 -- Node 5

end -- Node 6

Figure 1. Example: Program Source Code
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Figure 2. Example: Control Flow Graph

have assigned conditions c2, c2∧¬c3, and c2∧ c3, respectively. Edge 1 → 6 is only
present to facilitate algorithms performed on the CFG and has assigned false. All
the other edges have assigned true.

In this paper we present a survey on how the average case behavior of some
elimination algorithms can be determined. In detail we present the main ideas
of [4] in Section 2, which shows that Sreedhar’s algorithm ([26]) behaves linearly
on the average. In Sections 3 to 5 we show how the average case timing behavior
of an algorithm presented in [23] can be determined. It turns out that the the
difference between the average case and the worst-case behavior is only a small
constant. In contrast, employing different statistics an average case behavior of the
same algorithm can be found which fits practical settings much better.

2. Sreedhar’s Algorithm

Sreedhar et al. [26] have presented an efficient and easy to implement elimination-
based algorithm to solve data flow problems. The algorithm starts with a general
(reducible) directed CFG G. The union of G and the dominator tree of G is called
a DJ graph. The data flow problem is solved by redirecting and removing edges in
the DJ graph until the remaining graph is the dominator tree of G. Because the
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dominator tree is part of the DJ graph, each node can be assigned a certain level
(equal to its distance from the root).

Edges being part of the dominator tree and not being part of G are called d-

edges. Edges being part of the dominator tree and of G are called dj-edges. The
remaining edges are j-edges1.

Three different operations are performed in a bottom-up fashion on the graph
by the algorithm: Eager1, Eager2a, and Eager2b.

Sreedhar et al. [26, 24] give a thorough worst-case performance analysis of the
algorithm showing that the number of Eager (Eager1 + Eager2a + Eager2b) op-
erations is at most O(e · n) where n denotes the number of nodes and e denotes
the number of edges in G. A more detailed description and analysis of Sreedhar’s
algorithm and how the DJ graph can be used to solve the underlying system of
equations, can be found in [26].

In contrast, Sreedhar reports a linear, i.e., O(e), time behavior based on some
practical application programs.

In [4] we have proved that for goto-free programs, the average case behavior is
indeed linear. By “goto-free” programs we mean programs written in programming
languages without a goto statement like Modula-2 [30] and Java [2] or programs not
using goto statements or statements with similar effects (cf. [9]). Some program-
ming languages allow to exit loop statements not only at the beginning (while-loops)
and at the end (repeat-loops) of loop-statements, but also at certain points within
the loop body. Exit-statements are a form of “tamed” goto-statements, which while
retaining structured programs, give more freedom to the programmer and often re-
sult in more readable and understandable program code. The analysis in [4] covers
such exit-statements, too. As a byproduct the results of [4] also apply to the av-
erage size of the so-called dominance frontier [8]. The dominance frontier DF (u)
of a CFG node u is defined as the set of all CFG nodes v such that u dominates a
predecessor of v but does not strictly dominate v.2

In the following we present the main ideas of the proof given in [4].
DJ graphs for goto-free programs can be derived by a graph grammar. One

single production of this grammar is shown in Figure 3.
By assigning a probability to each production of the graph grammar, we are able

to determine how probable a DJ graph with n nodes is. Using multivariate gen-
erating functions and well-known methods from singularity analysis we can prove
the following theorem, where the pi refer to probabilities assigned to some specific
productions of the graph grammar given in [4] and the branch predicate is true if
the grammar allows for branching language features such as if-statements.

Theorem 1. Let G be a DJ graph with n nodes which can be derived by the graph

grammar given in [4]. Then the average number of Eager2b operations performed

by Sreedhar’s algorithm En can be determined as follows.

If the branch predicate is true, then

(a) if further p4 = p6 = p8 = p9 = p10 = p11 = p12 = p13 = p14 = p15 = p16 =
p17 = p18 = p19 = p20 = p21 = p22 = p23 = 0,

En = c1 · n3/2 +O
(

n1/2
)

,

1Sreedhar et al. [26] only introduced d- and j-edges; we have defined dj-edges in order to
facilitate the description of our graph grammar

2Node x strictly dominates y if x dominates y but x 6= y.
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T → T0 loop T exit when c T endloop T

Figure 3. Production of Graph Grammar

(b) otherwise

En = c2 · n+O(1).

If the branch predicate is false and

(c) if further p10 = p11 = 0, we obtain

En = c3 · n2 +O(n),

(d) otherwise

En = c4 · n+O(1).

�

Taking a closer look at Theorem 1 we find that programming languages of case (c)
consist of repeat-until-loops only. Programming languages of case (a) support only
restricted forms of if-statements and repeat-until-loops. Except for such very un-
common languages, the following corollary holds.

Corollary 1. The average number of Eager2b operations performed by Sreedhar’s
algorithm for goto-free programs is linear in the size of the program. �

Remark 1. Note that a program P , consisting only of straight-line code and repeat-
until-loops written in a certain programming language L that also supports other
language features like if-statements and while-loops, implies quadratic running time
of Sreedhar’s algorithm for this specific program P .

Since, however, the probabilities for if-statements and while-loops are non-zero,
according to Theorem 1 the average case performance of Sreedhar’s algorithm for
programs written in L is linear.

It is shown in [26] that the number of Eager2b operations corresponds to the size
of the dominance frontier [8] (which is needed for SSA3 analysis, a method common
in compiler construction).

Thus, we have also proved the following corollary as a byproduct.

Corollary 2. Under the same assumptions as in Corollary 1, the average size of
the dominance frontier is linear in the program size. �

3Static Single Assignment
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P (a, a) = (a→ b · (b→ d · d → d∗ · d→ e∪
b→ e) · e→ a)∗

P (a, b) = P (a, a) · a→ b

P (a, c) = P (a, a) · a→ c

P (a, d) = P (a, b) · b→ d · d→ d∗

P (a, e) = P (a, b) · b→ e ∪ P (a, d) · d→ e

P (a, f) = P (a, c) · c→ f

(a) Flowgraph (b) Regular Expressions

Figure 4. Flowgraph and Regular Path Expressions

3. Annotated Decomposition Trees

For elimination frameworks a new data structure called Annotated Decomposi-
tion Tree (ADT) that recursively splits the reducible flowgraph into intervals has
been introduced in [23]. An interval is a subgraph of the flowgraph and has the fol-
lowing properties: (1) every interval has a single entry node, and (2) the single-entry
node of the interval dominates all nodes of the interval.

The ADT is a binary leaf tree. An inner node in the ADT represents a compo-
sition operation that composes two disjoint intervals G1 and G2. The leaves of the
tree represent trivial intervals consisting of a single node in the flowgraph4. The
composition operation is a generalization of work published in [28, 29, 15].

Definition 1. Let G1(V1, E1, r1) and G2(V2, E2, r2) be flowgraphs such that V1

and V2 are disjoint sets. The composition G1 ⊕(F,B) G2 is defined as

(V1 ∪ V2, E1 ∪ E2 ∪ (F × {r2}) ∪ (B × {r1}), r1)
where F ⊆ V1 and B ⊆ V2 denote the sources of the forward and backward edges.
Node r1 becomes the new single-entry node of the composed interval.

The composition of two intervals G1 and G2 is depicted in Figure 5(a). The
single-entry nodes of the intervals are denoted by r1 and r2. The edge set F ×{r2}
connects a subset of nodes in G1 to r2. The edge set B×{r1} connects a subset of
nodes in G2 to r1.

By Definition 1, root node r1 dominates all nodes of G1 and G2 because every
node in the composed interval can only be reached via r1. The same holds for r2,
i.e., r2 dominates all nodes in G2. This implies that the nodes of G1 form a sub-tree
in the dominator tree with r1 as a root-vertex of the sub-tree, and single-entry node
r2 is immediately dominated by r1.

The forward edges of a reducible flow graph form a directed acyclic graph im-
posing a topological order < such that for all edges (u, v) ∈ EF , u < v holds. Since
the single-entry node of an interval dominates all nodes in the interval, the single-
entry node of the interval is smaller than the nodes in the interval with respect to
the topological order. The composition implies that r1 < r2. Given a composition

4Because ADTs are binary leaf trees, there are n − 1 inner nodes where n is the number of
leaves.
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(a) Composition

Dominator
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T1 T2
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T1 T2

(b) Decomposition

Figure 5. Composition and Decomposition of Reducible Flowgraphs.

G1 ⊕G2, the inequality

(1) ∀u ∈ V1 : ∀v ∈ V2 : r1 ≤ u < r2 ≤ v

holds. Assume a total order R of nodes in the flowgraph [u1, . . . , un] such that for
(ui, uj) ∈ EF , i < j. An interval decomposition of the flowgraph partitions the
ordered nodes into two parts. Vertex r1 has index 1 and all the nodes between
1 and r2 − 1 belong to the interval G1. The nodes from r2 to n belong to G2.
By recursively applying the decomposition for ordered nodes, we have a range
representation of the tree. For example a possible total order for the flowgraph in
Figure 4(a) is [a, b, d, e, c, f ]. The first composition of the ADT splits the ordered
nodes in two halves, i.e., [[a, b, d, e], [c, f ]]. By recursively splitting intervals, we
obtain [[[a], [[b, d], e]], [c, f ]] representing the intervals of the flowgraph.

Without proof we state that each reducible flowgraph can be decomposed into
two smaller reducible flowgraphs (w.r.t. the composition operation ⊕) until only
trivial flowgraphs (comprising one single node) are left. Keeping track of the de-
composition process by a tree-like structure is straight-forward. By decorating the
tree structure with information on the edges we get Annotated Decomposition Trees

(ADTs).
The ordered dominator tree and the decomposition tree of Figure 4 are displayed

in Figure 6.
Assuming that all ADTs (i.e., reducible CFGs) are equally probable we are able

to analyze the average case behavior of the ADT-based algorithm presented in [23].
In addition, as pointed out in [5], we need to

(1) determine the number of ADTs with n nodes and
(2) find the average path length of ADTs that corresponds to the number of

update operations of the algorithm [23].

The next sections will be concerned with these tasks.
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(b) Decomposition Tree

Figure 6. Dominator and Decomposition Tree of Example.

4. Enumerating Reducible Flow Graphs

Using the decomposition method illustrated above, we get the following recur-
rence relation for the number of reducible flow graphs:

r0 = 1, rn = 2n
n−1
∑

k=0

rkrn−k−1

The first few values of rn are displayed in Table 1.
Pulling out the major factor we obtain

rn = 2
n
2+3n

2 pn

and a second recurrence relation

p0 = 1, pn =
1

2

n−1
∑

k=0

pkpn−k−1

2k(n−k−1)

Now we can prove the following theorem (cf. [6]).

Theorem 2. The limit limn→∞ pn exists and

β = lim
n→∞

pn = 0.7153374336148697409440754744847115 . . . . �

In fact one can even provide a complete asymptotic expansion of pn (details can
be found in [6]) as follows.

Theorem 3. Let the sequence (αj) be defined by

α0 = 1,

αj = − 1

2j − 1

j
∑

i=1

2j(i+1)piαj−i

for j ≥ 1. The first few values of αj are α1 = −2, α2 = − 16
3 , and α3 = − 19·28

3·7 .

Then we have for each s ≥ 0

pn = β ·
(

s
∑

r=0

αr

2rn
+Os+1

( n

2(s+1)n

)

)

, n→ ∞. �
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n rn
1 1
2 2
3 16
4 288
5 10240
6 700416
7 92864512
8 24184487936
9 12484798840832

10 12835745584644096
11 26339606633209921536
12 107993030830149951553536
13 885112171099428768672907264
14 14505223494706550858367937544192
15 475365227058478388903633481696804864
16 31155437679322378551183102532362203824128
17 4083730172099442706977088626238641029051842560
18 1070541698651870103092428850642121888501001793568768
19 561276448465663221666495855250671194867830902552354881536
20 588543258383518726413960717220681231298059528311109827745021952

Table 1. The first few values of rn.

Thus we can derive a complete asymptotic expansion of the number of reducible
flow graphs.

Theorem 4. The number of reducible flow graphs with n nodes fulfills for each s

β · 2n
2+n−2

2 ·
(

s
∑

r=0

αr

2rn
+Os+1

( n

2(s+1)n

)

)

, (n→ ∞)

where

β = 0.7153374336148697409440754744847115899 . . .

and the constants αr are defined in Theorem 3. �

These results will be used in the following section to analyze the algorithm
introduced in [23].

5. The average path length of ADTs

The number of update operations done by the algorithm presented in [23] is
equal to the path length of the underlying ADT (cf. [5]).

Now, as shown in [5] the path length of ADTs can be computed by the recurrence
relation:

sn = (n+ 1)rn + 2n+1
n−1
∑

k=0

rksn−k+1

s0 = 1,

where rn is defined above.



AVERAGE CASE ANALYSIS OF SOME ELIMINATION-BASED DFA ALGORITHMS 9

n sn

1 1
2 8
3 128
4 3712
5 191488
6 17866752
7 3098476544
8 1022435000320
9 652025545097216

10 811180990981472256
11 1980240222899616612352
12 9521984252771297333870592
13 90429524435241418765312720896
14 1699498885453320231898736901488640
15 63301128931534439966970136243646496768
16 4678373788134034048365953286392804234231808
17 686727923890534485219201697104950065817221857280
18 200364399252851344109979601356275212294786926916927488
19 116274912098600979308050056333407230201725474764183409000448

Table 2. The first few values of sn.

The first few values of sn are displayed in Table 2.
Recall that in the standard case, i.e., the path length of binary trees, the worst-

case appears if the tree degenerates to a list, giving a path length of n(n+1)
2 , in the

best case we have a balanced tree with a path length of n log2 n and on the average
we get n

√
πn− 3n+O(

√
n) (cf. [17]).

Continuing our above calculations and again pulling out the major factor, we
get a second recurrence relation

t0 = 0

tn = (n+ 1)pn +

n−1
∑

k=0

pktn−k−1

2k(n−k−1)

where pn is defined above.
Pulling out another factor, we obtain

tn = (n+ 1)(n+ 2)un

and the recurrence relation

u0 =
1

2

un =
pn

n+ 2
+

n−1
∑

k=0

(k + 1)(k + 2)

(n+ 1)(n+ 2)

ukpn−k−1

2k(n−k−1)

Now, we are able to prove the following theorem (details can be found in [5]).
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Figure 7. Numbers from SPEC2K

Theorem 5. For n→ ∞ we have

un

pn
=

1

2
+

1

n+ 2
+

ψ

(n+ 1)(n+ 2)
+O

( n

2n

)

where

ψ = −1.83856407133825712989304655948 . . . . �

Hence we obtain for the average number of update operations performed by the
algorithm of [23].

Theorem 6. For n→ ∞ we have

tn

pn
= (n+ 1)(n+ 2)

(

1

2
+

1

n+ 2
+

ψ

(n+ 1)(n+ 2)
+O

( n

2n

)

)

. �

The path length of ADTs has its worst-case if the tree degenerates to a list. The
worst-case is

(n+ 1)(n+ 2)

2
+ n = (n+ 1)(n+ 2)

(

1

2
+

1

n+ 2
− 1

(n+ 1)(n+ 2)

)

.

Hence the difference between worst-case and average case is approximately

0.83856407133825712989304655948 . . .

update operations.
We have applied the algorithm [23] to the reducible flow graphs in the SPEC2K

benchmark suite. The results are displayed in Figure 7, where the line above
denotes the worst-case. Assuming that the timing behavior is c ·nα, Figure 7 shows
the value of α for all reducible flowgraphs in the SPEC2K. On the average we get
α ≈ 1.61053.

Our analysis above is based on the assumption that all CFGs are equally prob-
able. If this were true in practical settings, the SPEC2K benchmarks should have
produced values being much closer to the worst-case than they actually are. Thus
we have to conclude that practical settings do not conform to these statistics.
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However, performing an analysis similar to that done for Sreedhar’s algorithm,
we get the following theorem.

Theorem 7. Let Un denote the number of update operations performed by the

algorithm in [23].
Then we have for goto-free programs

Un = c · n1.5 +O(n), (n→ ∞)

where constant c depends on the probability distribution of the statements only.

In this case α ≈ 1.61053 from SPEC2K is much closer to the predicted value 1.5.

6. Conclusions

We have surveyed average case analyzes of some elimination-based data-flow
analysis algorithms.

It turned out, that analyzing such algorithms on a strict mathematical basis
is possible. However, it is very important to choose statistics which conform to
practical settings. In particular, we have pointed out that statistics assuming that
all CFGs are equally probable do not conform to practical settings, while assuming
that the programs are “goto-free” fits practical settings much better.
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